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Abstract

Collaborative Al agents allow for human-computer collabo-
ration in interactive software. In creative spaces such as mu-
sical performance, they are able to exhibit creative autonomy
through independent actions and decision-making. These sys-
tems, called co-creative systems, autonomously control some
aspects of the creative process while a human musician man-
ages others. When users perceive a co-creative system to be
more autonomous, they may be willing to cede more creative
control to it, leading to an experience that users may find more
expressive and engaging.

This paper describes the design and implementation of a co-
creative musical system that captures gestural motion and
uses that motion to filter pre-existing audio content. The sys-
tem hosts two neural network architectures, enabling compar-
ison of their use as a collaborative musical agent. This paper
also presents a preliminary study in which subjects recorded
short musical performances using this software while alter-
nating between deep and shallow models. The analysis in-
cludes a comparison of users’ perceptions of the two models’
creative roles and the models’ impact on the subjects’ sense
of self-expression.

Introduction

Deep learning has led to great improvements in computer vi-
sion and artificial intelligence, including the creation of col-
laborative agents (Szeliski 2010; Russell and Norvig 2009).
These improvements in artificial agents have led to research
in real-time systems that communicate with users to gener-
ate creative outputs, known as collaborative systems (Mc-
Cormack et al. 2020; Elboushaki et al. 2020). Other arti-
ficial intelligence systems exhibit creativity through “emo-
tional” or “unexpected” artistic generation, as perceived by
its users (Salevati and DiPaola 2015). The ability for a col-
laborative agent to independently apply creative decisions
is referred to as “creative autonomy” (Jennings 2010). This
framework has been used in the discussion and evaluation
of other collaborative systems (Augello et al. 2013; Lépez-
Ortega 2013),

In the field of music technology, deep learning is used in
the creation of instruments with advanced gestural recogni-
tion controls, generative systems, and collaborative artificial
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intelligence agents that employ creative autonomy (Carami-
aux and Tanaka 2013; Verdugo et al. 2020; Saffiotti et al.
2020). When combined with approaches in computational
modeling, artificial intelligence can be used to quantify and
support creativity (Boden 1998, 2009). Other dynamics of
interaction between human and Al collaborators have been
examined in the domains of pretend play and interactive vi-
sual art (Davis et al. 2017; Andrews 2019).

Applications that take advantage of deep learning for live
music generation can either be characterized as an instru-
ment that uses a machine learning model trained on inputs
to create a musical result or as collaborative artificial intel-
ligence agents that compose in collaboration with the user
(Hantrakul and Kondak 2018; Xia 2016). These form the
basis for Machine Musicianship, in which music theory and
performance technique are used in the modeling of artificial
intelligence behavior (Rowe 2001). Machine Musicianship
has since given rise to the study of algorithmic improvisa-
tion and musical collaboration with improvisational agents
(Fremont 2019; Brown 2018). Artificial intelligence can also
shift between the roles of “tool” and an “actor” when used
in music creation (Caramiaux and Donnarumma 2020). The
systems using the role of a tool primarily respond to a mu-
sician’s initiative and may function similarly to instruments.
Other systems that take the roles of actors display their own
initiative. They can be considered to employ a greater deal of
creative autonomy, the independent application of creative
decisions (Jennings 2010), in musical composition or per-
formance. Communication of the state of the collaboration,
both from a user to an Al and from the Al to the user, allows
for Al systems to act in engaging human-machine improvi-
sation (McCormack et al. 2019).

The research detailed in this paper aims to analyze Al’s
role in the musical process by measuring the effects of deep
learning in human-agent musical interaction, focusing on
answering two questions:

» To what extent can the inclusion of a deep neural network
in a generative musical system affect its user’s perception
of it as a collaborative agent that exhibits creative
autonomy rather than an instrument responding to their
controls? How does this compare to a more shallow
neural network in the same system?



* To what extent does a user’s perception of the musical
system’s autonomy affect the level of control the user re-
tains and gives up in the creative process, as well as on the
user’s self-reported expressive ability with the system?

To answer these questions, we have developed a system
that generates music collaboratively with a user. The user
collaborates by performing gestures in front of a camera,
and the system collaborates by mapping their motions to
musical parameters. It can be used with various neural net-
works architectures interchangeably, similarly to software
instruments containing models and processes for live ma-
chine learning (Fiebrink, Trueman, and Cook 2009).

We have designed an exploratory experiment to compare
users’ experiences and perceptions of this system’s auton-
omy across two models of contrasting complexity. Subjects
performed with the system, alternating between deep and
shallow neural networks. They rated their perceived auton-
omy of different versions of the system. They also rated the
level of creative control they gave to the two versions, and
reflected on their experiences after the performance.

Related Work

Designs for interactive music applications using gestural
control have included sequential neural networks to detect
drawings on a hardware peripheral, mapping motion data
directly using hardware sensors, or using bodily movement
sensors (Hantrakul and Kondak 2018; Ilsar and Hughes
2020; Verdugo et al. 2020). Our work only uses direct video
feed and no external sensors, in order to maintain a portable
and shareable system that also easily communicates the na-
ture of its machine learning models to users.

Analysis of error in gestural musical interfaces leads to
the conclusion that a system with increased error lowers
the perception of the system’s accuracy and responsiveness
(Brown, Nash, and Mitchell 2020). Instead of analyzing a
difference between the deep and shallow neural networks
in terms of gestural recognition error, subjects in this study
compare deep and shallow networks with similar perfor-
mances. This paper focuses on deep learning’s impact on a
user’s perceived autonomy when they do not have a clear un-
derstanding of the model’s performance, unlike other works
measuring performance increases in state-of-the-art models.

Previous research into creative autonomy in an inter-
active music system studied a system’s ability to act au-
tonomously in a musical setting without domain knowledge
(Paolizzo and Johnson 2020). Our work expands on this con-
cept through a user study comparing models of different
depths, and the effects of model complexity on perception
of autonomy. We also examine the effect that autonomy has
on the relationship between a user and autonomous agent.

Previous human-AlI collaboration research has measured
arobot’s ability to follow a human performer and also notes
the feedback loop in which the human naturally adjusts to
the model (Saffiotti et al. 2020). Our research adds to this
by quantifying the relationship between the human and Al
partners in terms of the perceived increase in creative control
afforded to a deeper model, as well as by relating it to the
level of recognition the user gives the model as an agent.
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Figure 1: User view of the training version of the applica-
tion, with sliders controlling the signal parameters (top), a
recording button (left), and the downsampled camera input
(right). The parameters include gain (left), center frequency
(middle), and bandwidth (right) for two audio signals.

Other related work in co-creative systems discusses the
behavior of human and Al collaborators during the process
of improvisation (Magerko and Long 2020). Prior research
to which we have contributed, focused on collaboration and
creativity in the online music-making platform EarSketch,
investigates how users engage with Al and human collabo-
rators while formulating musical ideas (Sarwate, Tsuchiya,
and Freeman 2018; Truesdell et al. 2021). Prior work into
the effect of interface constraints on musical improvisation
provides a comparison point for this study’s use of intention-
ally constrained devices (Tez and Bryan-Kinns 2017). Other
work in co-creative musical interaction dynamics explores
how pairs of human collaborators respond to a third, Al col-
laborator while composing music (Suh et al. 2021).

System Design
Generative Music System

This generative musical system is designed to host neural
networks that map motion to parameters controlling sounds.
It receives a stream of video data and plays a stream of audio
data simultaneously, and it synchronizes and records both to
create a dataset for model training.

Sound is generated through looping of two ambient sound
files. Ambient sound files were used in this study to prevent
participants from confusing changes caused by their gestures
with any rhythmic changes in the samples themselves. They
also allow for the looping of an audio stream with minimal
processing power, but with more complex and interesting
timbres than raw waveforms from simple synthesizers. Data
is recorded by manually setting audio parameters through
sliders on the program interface and performing a repetitive
motion while the “Start Recording” button has been acti-
vated. Figure 1 depicts the interface when training models.

When users are performing with the trained model, the
system maps motion patterns to controlling gain, center fre-
quency, and bandwidth of bandpass filters on two ambient,
looping audio signals. To ensure that users base their ob-



Figure 2: User view of sliderless testing versions of the ap-
plication, with red (left) and blue (right) windows hosting
the shallow and deep neural networks respectively.

servations of the model’s behavior only on musical output,
the amount of visual information identifying differences in
mappings between the two models is minimized. The sliders
themselves are hidden from the user when testing in order
to obfuscate the mappings between motions and parameters.
When in testing mode (Figure 2), the interface color changes
depending on the model.

The software system was written in Python and developed
using a Tkinter ! interface. The camera readings of the lap-
top hosting the application are processed using OpenCV in
Python 2. The program downsamples camera images to an
8x8 grid. It stores the difference between successive frames
to represent frame-by-frame motion as arrays for both data
collection and visual representation. Downsampling is used
to drastically reduce training time, standardize across differ-
ent users and cameras, and to ensure that models generalize
motion patterns to windowed regions of the screen.

Two ambient sound files, drones of varying frequencies,
are loaded into asynchronous Pyaudio 3 streams. The pa-
rameters of the bandpass filters are updated and applied to
the signal at each frame. Rather than storing audio data, this
program stores the filter parameter values as they are repre-
sented in the GUI, creating a training set of parameters (1x6
arrays representing gain, center frequency, and bandwidth
for two bandpass filters) that are synchronized with frame
differences (8x8 arrays).

Neural Networks

Both models used in this experiment were Pytorch* neural
networks. The shallow network uses a single 64x6 linear
layer to predict 6 regression values (one for each signal’s
gain, center frequency, and bandwidth) given an 8x8 image.
The deep network uses two two-dimensional Convolutional
layers with 3x3 kernels and 10 and 20 filters alongside two
linear layers to generate the same 6 regression values. Both
models use dropout, ReLU, and identical hyperparameters
with an Adam optimizer and a learning rate of 0.001. Addi-
tionally, both models were trained over 30 epochs, a batch
size of 100 input-label combinations, and no GPU. As a re-
sult, the linear model trained over 11.511 seconds and the
CNN trained over 28.140 seconds to achieve similar levels
of Mean Square Error loss.

'https://docs.python.org/3/library/tkinter.html
Zhttps://pypi.org/project/opency-python/
3https://pypi.org/project/Py Audio/
*https://pytorch.org/
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The models were trained on the same dataset of motion-
parameter combinations, using a variety of gestures and dis-
tances from the camera. The motion dataset consisted of
input gestures, performed by one of the authors, that cor-
responded to parameters set using the manual training ver-
sion of the software (see Figure 1). Training data was col-
lected through sessions of repeatedly performing a motion
while changing a parameter, in order to create associations
between variations in that motion and parameter changes.
These were then combined as a dataset to train the models
on multiple combined gestures. For example, one session in-
cluded repeated circular motions while adjusting values of a
gain slider to match the motions’ size and speed. Differences
between camera frames are captured and are used as input
into both models to perform motion recognition with a point
of data. Because the dataset pairs frame differences with sin-
gle values for each parameter, inputting a motion over mul-
tiple frames causes the system to generate a series of param-
eter values over time. Through 17 data collection sessions,
with an average length of 46 seconds, a dataset of 9423 sam-
ples (pairs of 8x8 arrays of camera frame-differences and
1x6 arrays of audio parameters) was created. 70% of these
samples were used for model training, with the other 30% re-
served for validation. This data generation and training was
performed during development of the system, and before the
user studies.

A convolutional neural network was chosen as opposed to
sequential models such as recurrent neural networks, which
are popular in music generation. This was done to compare
two models that operate on the same temporal component of
a single frame of input, rather than a series of frames. Also,
features learned by a convolutional neural network are eas-
ier to extract and provide an interpretable framework that is
more comparable to the mappings learned by a linear model
(Selvaraju et al. 2017). Additionally, a CNN was used in or-
der to compare a simple deep model to the most shallow
neural network possible, despite the superior performance
of RNNs. Because both a CNN and linear network are feed-
forward networks that operate on a point of data rather than
a sequence, the training and output pipelines were identical.

Methodology

Subjects were required to have a minimum basic understand-
ing of music and computing concepts, as well as awareness
of machine learning. These criteria ensured that they were
able to understand what a collaborative musical agent is and
to make informed commentary on their experiences with the
two models. Subjects completed a pre-questionnaire, guided
performance task, post-questionnaire, and interview as part
of the one-hour experiment.

Pre-Questionnaire

Subjects began the study by answering a questionnaire re-
garding musical experience and preferences. They ranked
their experience with live electronic music as well as their
experience with and self-reported desire to perform music
with artificial musicians by answering the following ques-
tions on a 7-point scale:



* I have listened/been exposed to live electronic music.
* I have interacted with live electronic music tools.

* I have performed live electronic music.

* [ have performed live electronic music collaboratively.

* I am interested in performing live electronic music with
an artificial agent collaboratively.

The survey also included questions used to establish
the subject’s familiarity with electronic music and machine
learning concepts in order to characterize their prior experi-
ence. Experience with electronic instruments may influence
them to prefer instrument-like behavior, or their machine
learning experience may predispose them to show more in-
terest in a more autonomous model. They reported their ex-
perience with machine learning through the following ques-
tions, derived from the Bloom’s Taxonomy of Educational
Objectives (Bloom et al. 1956), on a 7-point scale:

* [ feel confident in my ability to remember machine
learning concepts from my computer science education.

* I feel confident in my ability to describe machine
learning concepts.

* I feel confident in my ability to compare machine
learning models.

* I feel confident in my ability to evaluate a machine
learning model.

* [ feel confident in my ability to create a machine
learning model.

[ am familiar with the use of machine
learning in a live/interactive music context.

By answering the same questions for machine learning
and deep learning, subjects reported their ability to remem-
ber, describe, compare, evaluate, and create machine and
deep learning models respectively. They also reported their
familiarity with the use of machine learning and deep learn-
ing in a musical context.

Following the survey questions, participants rated their
musical tastes according to the genre categories of the Short
Test of Music Preferences (STOMP) to provide a reference
point for generalizing their musical preferences (Rentfrow
and Gosling 2003). Subjects ranked their preferences among
15 genres, and their preferences were mapped to four dimen-
sions: Reflective & Complex, Intense & Rebellious, Upbeat
& Conventional, and Energetic & Rhythmic.

Performance

Subjects then completed a performance with a deep neural
network-embedded version and a shallow neural network-
embedded version of the interactive music software. Sub-
jects were randomly selected to start with either the deep or
shallow model, and rehearsed for 5 minutes with each.
During this time, they were encouraged to freely ask ques-
tions about the system and to describe their observations
and impressions of the models. They then recorded 2-minute
videos for both systems, containing the system’s pixelated
video capture and musical output without identifying the
user. Subjects were not explicitly given compositional plans
for these recordings, but were encouraged to form their own.
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Post-Questionnaire

Following the performance task, subjects were guided
through an analysis of the recorded audio and video to iden-
tify trends in model output. This was performed separately
for the deep and shallow versions. Subjects identified start
and end times for any number of notable musical interac-
tions within the 2-minute performance period. They then
rated the system in that window on two criteria: autonomy,
or the amount to which the system felt like an autonomous
agent as opposed to an instrument, and control, the amount
of control that the system had over the current musical state
through influencing the gestures and actions of the partici-
pant. For example, one subject reported a single musical in-
teraction as a series of circular gestures they performed be-
tween 00:30 and 00:46 of their trial. They felt that they were
“beginning to take control” of the system, so they rated it as
a 3 out of 7 for control. They also felt that the system was
generating musical output that ’is based on what [they were]
doing, but different that what [they] expected”, so they gave
it a high autonomy rating of 6 out of 7. These ratings are
designed to evaluate a user’s relationship with the system as
a co-creator. They are derived from models of creative au-
tonomy (Jennings 2010) and the interactions between mu-
sicians and Al agents. Each subject recorded between four
and eight musical interactions for both of their trials. The
subjects rated their musical output for the two versions on a
scale defined by the Short Test of Music Preference’s four
music preference dimensions (see Post-Questionnaire), so
that their original preferences in the pre-questionnaire can
be compared to their perception of each version of the sys-
tem’s output (Rentfrow and Gosling 2003).

The remainder of the questionnaire included a usability
and satisfaction questionnaire in the form of a modified ver-
sion of the Creativity Support Index (CSI) for a collaborative
musical agent (Cherry and Latulipe 2014). The modified cre-
ativity support questionnaire, listing the individual scales of
the CSI, is one of the usage scenarios listed in (Cherry and
Latulipe 2014). These questions were designed to gauge user
experience relative to their perceived autonomy of the sys-
tem, and subjects answered a set of questions for the deep
and shallow versions of the system separately. Individual
scores are recorded, rather than aggregating into a single
metric, in order to evaluate and compare the two systems’
enabling of expressive ability separately from user enjoy-
ment and engagement. The comparison of CSI scale ratings
is used alongside creative autonomy ratings as a measure of
the effect that the inclusion of deep learning has on a user’s
perception of the system’s creative autonomy. It is then used
to measure whether or not it indicates increased satisfaction
and self-reported expressive ability with the system.

Finally, subjects were asked a series of open-ended ques-
tions. For example, the question “Did this trial change your
perception about performing with an artificial agent collab-
oratively?” is used for comparison against their originally-
reported perception in the pre-questionnaire. The subjects
were also able to freely comment on how they would ap-
proach future interactions with similarly unknown musical
systems. Subjects were asked to verbally identify the kind
of music they were trying to make and whether or not it



aligned with their musical preferences. Subjects with a well-
defined compositional plan for their 2-minute performances
commented on whether or not their musical ideas changed
over time. Subjects who did experience changes attributed
them to increased experience with the model output. Their
time experimenting with the system led them to new ideas
or to changes in their perceptions about the predictability of
the output. While reflecting on their performances, subjects
also reported any surprising decisions made by the model
that changed their course of action and how their experience
differed between the deep and shallow models.

Results

The five subjects for this experiment were selected from a
pool of graduate-level Georgia Tech Music Technology stu-
dents. These students (labeled A, B, C, D, and E) came from
a variety of musical backgrounds and experience levels re-
garding computer science and machine learning concepts.

Discovery of Musical and Machine Learning
Properties

Each subject commented on their impressions of the system
as they practiced with it during the initial practice phase.
For example, Subject E said “this one feels less responsive”
when transferring from Blue [deep] to Red [shallow].

Each subject began by testing the limits of the system
through a variety of extreme hand gestures before attempting
to use smaller gestures. Some used the interface’s visual in-
dications of motion to determine that only motion triggered
changes in the filter parameters, while others attempted to
stand still in different positions to confirm it had no effect
on the sounds. Additionally, each subject correctly identi-
fied that the system was manipulating filters on existing au-
dio samples, by remarking aloud during the initial 5-minute
practice period. Other common occurrences among the sub-
jects were the use of traditional conducting patterns, inan-
imate objects, and beginning the practice for their second
model with patterns they used in the first.

Perceptions of Creative Autonomy and Musical
Output

Because both models affected the same set of musical pa-
rameters on the audio signals, the sounds the subjects were
able to make with the two systems were largely the same.
Additionally, they were trained on the same data and reached
similar convergences. This was an intended result of the sys-
tem design, as subjects instead observed differences in how
the two models responded to subtle motion to achieve the
same dimensions of musical variety.

As shown in Table 1, subjects rated the two models in
their abilities as creativity support tools in a modified Cre-
ativity Support Index (Cherry and Latulipe 2014). They re-
ported higher ability to collaborate and be expressive using
the deep version, while they rated the musical quality of the
two systems’ outputs identically. Additionally, subjects re-
ported higher enjoyment and willingness to re-use the soft-
ware for the deep version.
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Question Shallow Deep
Avg. Score | Avg. Score

Collaboration 3.8 4.2
Enjoyment 4.2 4.6
Expression 3.8 4.2
Would Use Again 32 34
High Standard of Output 3.6 3.6
Output Resembles a Human 2.6 2.6

Table 1: Creativity Support Index questionnaire scores, with
average responses between subjects for the shallow and deep
models on a 7-point scale.

Three of the five subjects reported that the deep neural
network version felt “more responsive”, with subject D com-
menting that “as long as I do something, it will do something
in return”. Subject C, with a strong preference for the deep
version (see Table 2), stated that “Both versions brought me
through the narrative of starting to work with it as an in-
strument, then getting confused when it acted unpredictably,
then coming to recognize it as a collaborative partner. The
blue [deep] version brought me through it in a much shorter
time, so I was able to have more time to enjoy it”. Con-
versely, subject B reported that “Red [shallow] felt more in
control. Blue [deep] felt more responsive when practicing,
but not when trying to do something specific”, preferring the
shallow version when enacting their compositional plans.

A set of music preference dimensions was calculated
using each subject’s answers to the Short Test of Mu-
sic Preferences questions in the pre-questionnaire (see Pre-
Questionnaire). In the post-questionnaire, subjects rated the
output they were able to create on the same music preference
dimensions for the deep and shallow models separately. For
the deep model, subjects’ scores differed from their initial
musical preferences at an average of 1.92 out of 7 over the
four dimensions. Scores for the shallow model differed by
an average of 2.17 out of 7. This suggests that users were
able to create music more akin to their tastes using the deep
model, despite the two being the same in musical quality and
audio content.

Subject D remarked that inconsistencies in model perfor-
mance caused them to see the system as less autonomous
and more random. This was exacerbated by a lack of depth
in the shallow model, which to them was “unsuccessful at
capturing beat-based movements”. Both versions surprised
the user with repeated use of the same gesture generating
different audio parameters, but that the deep version had a
“larger range of sounds” and was “more complex”. Simi-
larly, subject E reported that inconsistencies in the model
output affected their confidence in mappings they had dis-
covered while practicing. They stated that “Blue [deep] was
better than red [shallow]” in this regard, but they experi-
enced frustration when they “tried to produce contrast, but
was limited except for going in and out of resting state”.



Perceptions of Role in the Creative Process

Table 2 shows the average scores for control and autonomy
ratings for each model, as each subject annotated between
four and eight musical interactions for the shallow and deep
versions respectively (see Post-Questionnaire). On average,
subjects rated the deep version higher in both their percep-
tion of it as an autonomous agent and its ability to take
control creatively. Participants rated the control of the deep
model an average of 0.55 higher than the shallow model on
a 7-point scale, with the autonomy rating 0.76 higher for the
deep model as well.

Table 2 shows the average scores for autonomy and con-
trol for each subject, as well as their answer to the ques-
tion “I was able to be expressive while using this system”
in the Creativity Support Index post-questionnaire. Four out
of the five subjects rated the deep learning version higher
in terms of autonomy, and four out of the five stated that
the deep learning version influenced their actions more, tak-
ing more control in the collaborative process. Additionally,
three of the subjects reported higher expressive ability with
the deeper model, with one preferring the shallow version.

Subject C, who rated the deep version much higher than
the shallow version in terms of enabling expression, felt that
the shallow version inhibited their ability to form a musical
plan. Specifically, they intended to “start soft, have a first
section, die down, then have a second section and climax”,
and they reported deviations from their original plan dur-
ing the performance when discovering new mappings from
the model. This user stated that they became “lost” while
using the shallow version, and attempted to regain control
by using familiar motions such as wide sweeps with their
arm. They welcomed the lack of control in the deep version
due to its responsiveness, stating that they “accepted its au-
tonomy” and began to enjoy experimentation. They felt that
alternating sequences of experimentation and relaxation al-
lowed them to build a “different kind of control, trusting the
system’s autonomy and building a mutual relationship.”

The two subjects that did not report a higher expressive
ability with the deep learning version of the system cited a
lack of confidence in the system’s ability to interpret their
musical goals. Subject A stated that human collaborators
have “idiomatic conventions” to allow other performers to
interpret their actions. The “black box” nature of this sys-
tem allowed them to more easily follow their own compo-
sitional ideas with the less autonomous model. Even though
they percieved the deep learning version as having more au-
tonomy and afforded it more creative control, they enjoyed
using the shallow version more and would be more likely to
use it again. They stated that it was “more autonomous, but
wasn’t helping ME perform”. Subject B had attempted to use
traditional conducting as an input gesture, and felt that their
ability to be expressive was limited due to the system’s use
of audio parameters on a constant audio loop. This subject
stated “it feels more like someone mixing my music, rather
than even collaboration like with another musician”.

These relationships between subject ratings of system and
their reported self-expression using the system indicate that
the experience of a subject was largely determined by the
nature of their compositional ideas while using the software.
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Autonomy Control Expression

S D S D S D
A 34 | 575 32 5.5 6 2
B 50 | 525 | 483 | 525 | 3 3
C 4375 | 525 | 4.875 | 4.125 | 1 5
D 433 | 42 | 3.16 4.2 5 6
E 325 | 375 | 3.25 34 4 5
Avg.| 4.17 | 493 | 4.0 455 | 3.8 | 4.2

Table 2: Subjects’ ratings for system autonomy, creative
control, and user-reported expressive ability for the shallow
(S) and deep (D) models respectively, on a 7-point scale.

The deep learning-enabled system improved the experience
for subjects C, D, and E who all tested a variety of motions to
find mappings, but came to the detriment of subjects A and
B who were more reliant on traditional musical conventions.

Interest in Collaboration with Al

Subjects initially reported a high interest in performing us-
ing a collaborative agent, with an average of 6.2 out of 7
in their survey questionnaires about musical experience (see
Pre-Questionnaire). When asked if the experience affected
their interest, all subjects responded that it either stayed
the same or increased, although many had new skepticism
gained from the experience: Subject E stated that knowing
details about the model’s performance would affect their
perception of it’s quality and their “relationship with the
app.” Given sufficient time with a system, they would be
able to balance consistent mappings with gestures result-
ing in machine-led parameter changes. Subject D stated that
they would want to know the nature of future collaboration,
as this experiment “didn’t feel back and forth” due to the
model manipulating audio parameters in response to ges-
tures instead of simultaneously generating sound alongside
the user. Lastly, subject B, who rated the deep version higher
in terms of control and autonomy but not expressive ability,
said that they would want a clear explanation of the parame-
ters being manipulated. They spent more time learning how
to use the deeper model, with less time to actualize a musical
plan. As such, they would have appreciated more instruction
or visual indicators in a future version of the system.

Discussion, Limitations, and Future Work

This research presents an examination of how the inclu-
sion of a deep neural network in an interactive generative
musical system might increase the user’s sense of that sys-
tem’s creative autonomy and control. By comparing the ex-
periences of users using the system outfitted with deep and
shallow models, it also explores the relationship between
the level of creative control a user gives to an agent and
their perceived musical expression. Despite using identical
audio samples and manipulating the same parameters, the
deep model achieved higher ratings than the shallow model
in the creative autonomy exhibited by the system and cre-
ative control it took. The users also had an increased sense



of expression and collaboration while interacting with the
deep version of the system, but did not report a link between
control and autonomy with expressive ability. These findings
suggest that the perceived value of a system’s autonomy is
situationally dependent on the user’s creative goals, and that
a lack of understanding of the model’s creative process can
diminish a user’s expressive ability. This study suggests an
area for future work investigating the correlation between
the interpretability of a model and users’ experiences with
and perceptions of their relationships with the models.

Sample size in this experiment was limited by unavail-
ability of subjects due to the COVID-19 pandemic, with
the subject pool taken exclusively from Georgia Tech Music
Technology students. Future work can be generalized and in-
crease statistical significance through a larger subject pool of
more diverse perspectives and levels of self-reported famil-
iarity with music and machine learning concepts. A larger
subject pool would include non-expert musicians and gen-
eral users without computer science knowledge.

Another limitation of this study was the lack of a third,
random model. The decision to forego a control group was
made due to limited time with each subject, factoring both
subject availability constraints due to the COVID-19 pan-
demic and concern for subject fatigue with a third condi-
tion. Additionally, the display color for the two systems were
not randomized between subjects. This may have influenced
users’ perceptions. Alternative visual representations, such
as different shapes, will be used in future studies and ac-
counted for in experimental design.

The example of subjects such as A and B (Table 2), who
reported higher creativity support scores for the model with
lower autonomy and control ratings, suggests that users per-
ceiving a system’s autonomy alone is not enough to enhance
feelings of expression and collaboration on a per-user basis.
These subjects experienced a negative effect on expressive
ability due to a loss of control when they had strict com-
positional ideas, which manifested as a lack of confidence
in the model. This indicates the need for collaborative mu-
sical systems to accommodate users with specific musical
goals by following their directives. The system itself can be
expanded to include audio generation so that it can better
enable expression and act as a collaborative musician.

Additionally, after using the software, subjects were asked
if their interest in collaborating with an Al musician had
changed since the pre-questionnaire. Subjects were either
more interested than at pre or had already been fully inter-
ested at pre (reporting a 7 out of 7 in the pre-questionnaire).
However, users stated that they would appreciate more vi-
sual information to better understand the system’s inner
workings. Future work will include the addition of visual
communication from the agent to the user, in order to ascer-
tain their effects on perceived expressiveness and collabora-
tion, and quality of interaction.
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