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Abstract
One major barrier to applications of deep Reinforcement
Learning (RL) both inside and outside of games is the lack
of explainability. In this paper, we describe a lightweight and
effective method to derive explanations for deep RL agents,
which we evaluate in the Atari domain. Our method relies on
a transformation of the pixel-based input of the RL agent to an
interpretable, percept-like input representation. We then train
a surrogate model, which is itself interpretable, to replicate
the behavior of the target, deep RL agent. Our experiments
demonstrate that we can learn an effective surrogate that ac-
curately approximates the underlying decision making of a
target agent on a suite of Atari games.

Introduction
In the field of reinforcement learning (RL), there have been
recent strides in domains thought to be previously intractable,
such as playing Atari games (Mnih et al. 2013). However,
these agents are largely uninterpretable and opaque (com-
monly referred to as black boxes (Guidotti et al. 2018)). With
the right to explain imposed by GDPR (EUd 2018), real
world applications of RL could be hampered as there is no
consistent way to derive accurate, interpretable explanations
for RL agent actions. This is of particular interest in applied
fields such as the medical (Holzinger et al. 2017) and judi-
cial (Rudin and Ustun 2018) domains, where a model would
need to provide regular explanations comprehensible to a
layperson.

There have been prior methods developed to derive ex-
planations in computer vision applications. For example,
saliency maps, where pixels important to a model’s decision
are highlighted and displayed to the user (Simonyan, Vedaldi,
and Zisserman 2013), and t-SNE (Maaten and Hinton 2008),
that visualizes images that seem similar to the current image
according to the model. These approaches highlight impor-
tant features in making a decision, but are derived from un-
interpretable models and do not explain a model’s decision
making. Model agnostic methods exist (Ribeiro, Singh, and
Guestrin 2016), such as SHAP (Lundberg and Lee 2016),
which describes the impact each individual feature makes
on the deviation of the given prediction from the mean pre-
diction. However, they rely on the feature set itself being
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interpretable, which is untrue with models that utilize raw
pixels as input. If we had an accurate, interpretable model
with an appropriate feature set there would be benefits further
outside of offering explanations to laypeople. For example,
an expert could develop a mental model of the decision mak-
ing of the agent, driving improvements in the algorithm that
created the agent (Hayes and Shah 2017).

In this paper, we show that a simple, but surprisingly ac-
curate explainable model can be learned that approximates
the decision making of a deep reinforcement learning agent
in the Atari domain. Our approach depends on a state trans-
formation of the raw pixel input to a symbolic, interpretable
representation. We demonstrate the proposed state transfor-
mation leads to an equivalent representation via proving it is
a bijection of the original state space. Lastly, we show that,
on a set of Atari games with simple sprites and animations,
the behavior of deep reinforcement learning agents can be
captured by a decision tree, an interpretable classifier, trained
on this symbolic feature representation. In this way the sym-
bolic surrogate decision tree and deep neural network agent
create a neuro-symbolic, interpretable system.

Background
Deep Q Networks (DQN) (Mnih et al. 2013) were the first
successful demonstration of reinforcement learning in the
Atari domain. A DQN consists of a deep approximator of
the Q function (Sutton and Barto 2018), and utilizes the Q-
learning algorithm (Watkins and Dayan 1992). A myriad of
improvements, such as Double DQN (van Hasselt, Guez, and
Silver 2015), Prioritized Experience Replay (Schaul et al.
2015) and the Dueling architecture (Wang et al. 2015) were
used in tandem to produce the Rainbow architecture, which
combines these improvements in an agent that is much more
sample efficient than prior DQN based agents (Hessel et al.
2017). We use Rainbow as our testbed agent.

Explainable AI (XAI) (Molnar 2019; Sado et al. 2020),
refers to a class of methods to create human-interpretable
explanations of a model’s behavior (Ehsan et al. 2017). By
understanding how the model makes its decisions, the human
can then make informed decisions on how to accommodate
or address the behavior of the model. For decision making
augmented with models, it is integral that the model is able to
communicate its decision making in a human understandable
manner, which often means a symbolic feature representation
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(Goebel et al. 2018).
Juozapaitis et al. described an XAI approach that incorpo-

rates the target RL agent by decomposing the rewards and Q
values (Sutton and Barto 2018) into a vector representation,
where each reward source is one component in the vector
(Juozapaitis et al. 2019). One can then formulate the agent
action given a certain state in terms of how the agent makes
the tradeoff between different reward sources. In many Atari
games, there is usually one main source of reward, and oc-
casionally some large source of reward (such as the UFO
in Space Invaders). Often, the agent is acting without the
presence of that large source of reward, leading to a lack of
explanation for some actions utilizing this method. Addition-
ally, this approach does not take into account the state of
the environment at all, consequently giving no explanation
with respect to the current state. For example, in Breakout,
we wouldn’t be able to explain the action with respect to the
paddle (the player controlled entity) and the ball (the main in-
teractable entity), since the only reward source is from hitting
blocks. In our work we focus on the game entities present in
a given observation, augmented with position and velocity,
as building blocks for explanations of the agent.

One intuitive approach would be to learn a structural causal
model of the agent and explaining the actions of the agent
via counterfactuals. Madumal et al. (Madumal et al. 2019)
take this route, and focus on answering why (or why not) an
agent decides to take an action given the current state. This
approach generates explanations that both satisfied human
participants and increased the trust of the human participants
with respect to the agent. However, the surrogate tends to be
a relatively weak fit for the agent, resulting in less accurate
explanations of the agent. This is a problem in mission critical
systems, or systems for which an accurate mental model
of the agent must be understood by the user, such as self
driving cars (Shalev-Shwartz, Shammah, and Shashua 2016).
We show our approach to be highly accurate and that the
explainable surrogate model captures the underlying decision
making of the target RL agent. However, we anticipate that
Madumal et al.’s results should generalize to our approach, in
terms of our similar explanations increasing user satisfaction
and trust.

Saliency maps (Simonyan, Vedaldi, and Zisserman 2013)
are widely purported to be a strong way of understanding
what portions of an image are responsible for the model
output. Since Atari agents use the pixels of the frame as a state
representation, it seems reasonable to utilize saliency maps
in order to explain what influenced an agent in its decision
making process. Greydanus et al. (Greydanus et al. 2018)
explore the utilization of saliency maps in order to explain to
humans what portions of an image an agent utilized in order
to make its decisions as a way of garnering trust. However,
this approach does not scale to large amounts of data due to
the limitation of examining the decision making process of
an agent frame by frame, requiring human inspection.

The Surrogate Model
Drawing on (Doshi-Velez and Kim 2017), we define inter-
pretability as the ability to explain or present in understand-
able terms to a human. The problem we target in this paper

is to be able to interpret deep reinforcement learning agents.
We focus on the Atari domain (Bellemare et al. 2013), in
this initial exploration of our approach, given its popularity
as a deep RL domain. We use a surrogate model trained on
interpretable features to predict what action the agent will
take in a given state. We can then use this interpretable sur-
rogate model to explain the agent, as a proxy for directly
explaining the agent. The intuition is that a sufficiently strong
surrogate model will capture the agent’s decision making
with interpretable features, which can then be communicated
to a human user.

In order for the surrogate model to be useful for interpre-
tation, we must transform the frame (the raw pixels from an
Atari game) into these interpretable features, as utilizing the
(x, y) raw pixels as features directly would make meaningful
interpretation impossible. One alternative would be to have a
human tag each frame with interpretable information, how-
ever this would be prohibitively time consuming. We outline
a simple and effective automated approach that transforms
the raw pixels into a feature set that is both interpretable and
rich enough to create a powerful surrogate model. Addition-
ally, we describe the data gathering process for the training
dataset of the surrogate model such that it can learn a strong
approximation of the decision making process of the agent.

Sprites As Symbolic Features
If one were to ask a human expert for an explanation of their
Breakout policy, they might answer using the concept of the
ball and the paddle. In particular, they might describe their
policy in terms of the locations of the ball and paddle, the
locations of all of the blocks, and the current velocity of the
ball, as these features directly impact the score of the game.

Inspired by this intuition, we chose our interpretable fea-
tures as the location, velocity, and appearance of game enti-
ties. First, we automatically identify the different entities. To
do this, we break each frame into groups of pixels to repre-
sent each game entity. We refer to these groupings as sprites
as they represent individual sprites of the game. These sprites
have position, and their velocity can be obtained using the
changes in sprite position. In contrast to the three dimensional
tensor representing the x position, y position and the channel,
our feature space consists of the set of sprites, their locations,
and their velocities. This allows us to interpret the model
utilizing the importance of sprites rather than the importance
of pixels.

Transforming Frames Into Features
Given a frame, we need to automatically convert it into the
feature space described above. To identify sprites, we need
to first identify the background color, to avoid interpreting
the background itself as a sprite. We do this by relying on a
heuristic of the most common pixel color in a given frame.
With the background color identified, we run a depth first
search through every unvisited pixel that is not the back-
ground color. We consider neighboring pixels to be neighbors
in the search space if they have the same pixel color, so that
the set of explored frontiers forms a partition over the pixels.
In order to increase generalization between similar sprites and
to match the feature generation process for Rainbow (Hessel
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Algorithm 1: Greedy pixel-wise sprite identification
Input: Frame F ∈ P , Neighbor function
N : P → P(P );

Initialise C : C → N such that C(c) = 0∀c ∈ C;
Initialise V = ∅, O = ∅;
for x, y, c ∈ F do

C(c)← C(c) + 1;
end
B ← argmaxc∈CC(c);
for p ∈ F do

x, y, c← p;
if c ≡ B or p ∈ V then

continue;
else

o← DFS(p, V );
V ← V ∪ o;
O ← O ∪ {o};

end
end
return O;

et al. 2017), this process is run on a downsampled version
of the image (downsampled from (210, 160) to (105, 80)).
In this way we can identify the sprites of the game without
human input. See Algorithm 1 for pseudocode of this proce-
dure. We refer to this algorithm as “greedy pixel-wise sprite
identification".

Note that we assume that sprites in an Atari game have
a uniform pixel color, and the entire sprite is structured so
that every pixel in the sprite is adjacent to at least one other
pixel in the sprite. As our results demonstrate, this approach is
still viable for games where sprites have multiple segments of
pixel colors (such as in Demon Attack), as each segment of the
larger sprite is highly correlated. However, we anticipate that
this naive method will need to be extended for domains with a
broader palette of potential pixel colors and where individual
pixels may have unique colors from all surrounding pixels,
such as DOTA2 or Starcraft.

Now that we have the frame grouped into sprites, we need
to transform this grouping into features. We designate the
lowest and farthest left pixel coordinates of each sprite to be
its (x, y) coordinates. If multiple sprites with the same pixels
are present, such as multiple aliens in Space Invaders, we
sort them by their (x, y) coordinates. Then, for a given sprite
returned by this procedure, we have its pixels, x coordinate,
y coordinate and its relative position. To find the velocity we
treat the data as if it’s a time series and take the difference
of the data shifted back by one timestep and the current data.
See Figure 1 for an example of our representation.

Analysis of Algorithm 1
We provide a proof that our proposed state transformation is
a bijection of the raw pixel inputs, to show concretely that
the feature space is rich enough to train an accurate surrogate
of the agent. Let P = P(X × Y × C) represent the set of
all possible frames, where X and Y are the set of possible x,

Figure 1: A visual demonstration of the output features after
the state transformation for a frame of Pong. The left image
is the last 5 frames smoothed to show movement, and the
sprites and their corresponding features are shown to the right
in their relative positions.

y coordinates respectively, C is the set of all possible RGB
colors, and P(X) is the power set of X . Let t : P → Q ⊂ P
be the state transformation function.
Proposition. The state transformation function t separates
the argument into a partition. That is, for any frame F ,
∪u∈t(F )u = F .

Proof. Let F ∈ P be arbitrary. From Algorithm 1, we have
that for an arbitrary pixel p ∈ F , it must either belong to an
object generated by the algorithm or a part of the background.
Suppose that p ∈ o0 and p ∈ o1, for some o0, o1 ∈ t(X).
We then have that p was visited multiple times in Algorithm
1, which violates the loop invariant for the outermost loop.
So, we have that for arbitrary p ∈ X , there exists o in t(X)
such that p ∈ o. Additionally, suppose that there exists some
p ∈ F such that for all o ∈ t(F ), p 6∈ o. We then have
that p must have not been visited in Algorithm 1, which
is impossible as we execute the depth first search on every
p ∈ X such that it hasn’t been visited previously due to some
other p′ ∈ F . So, we have that t(F ) is a partition of F .
Lemma. The state transformation function t is a bijection.

Proof. First, we show that t is an injection. Let X,Y ∈ P
such that t(X) = t(Y ). Since t(X) = t(Y ) = O ⊂ P(P ),
we have that for all o ∈ O generated by Algorithm 1, o ⊂ X
and o ⊂ Y . Since ∪p∈op ∈ O, we have that X = Y . Next,
we show that t is a surjection. Let O be in the range of t.
Since we have that t forms a partition of the argument, we
have that ∪o∈Oo = X implies that t(X) = O. So, we have
that t is a bijection.

Obtaining a Surrogate Model For the Agent
Our environment is a Markov decision process M =
(S,A, P, r, ρ0, γ) (Sutton and Barto 2018). There are two
distinct cases that we would like to examine in our evalua-
tion, in order to encourage diversity in our RL agent’s behav-
ior; noop starts and sticky actions alongside noop starts. For
noop starts, we modify ρ0 by executing k noop actions, to
diversify the distribution of starting states (Mnih et al. 2015).
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For the case with sticky actions (Machado et al. 2017), the
last selected action is used in place of the agent action with
probability ζ = 0.25, as recommended in (Machado et al.
2017), alongside the aforementioned noop starts modification.
This gives us more distinct trajectories and forces the agent
to learn a more general policy, which we draw on for our
evaluation. In order to train a surrogate model, trajectories
must be sampled; we employ a sampling procedure for ob-
taining trajectories corresponding to noop starts k → v. For
each noop start in [k, k+1, ..., v], begin by sampling s0 from
ρ0. Until termination of the episode, sample at according
to π(·|st), and obtain the new state and reward st+1, rt+1,
all while recording the mapping between t(st) and at. This
allows us to divide our trajectories into training and test sets.
In the sticky actions case, the state features are augmented
with the last action taken in order to expose this information
to the surrogate model, which the agent has knowledge of im-
plicitly via the state representation in (Mnih et al. 2013). This
gives us a dataset Dk, where k is the amount of noop starts.
Once the desired amount of trajectories are obtained, we
train a classifier to approximate the mapping of t(st)→ at,
using ∪k∈KDk, where K is the set of all noop starts used
to generate the trajectories. This is reminiscent of imitation
learning (Hussein et al. 2017), though in this case we want to
approximate the agent’s behavior in a symbolic representa-
tion, rather than a reward function. In order for the surrogate
model to be interpretable, a model of desired interpretable
ability should be selected. In particular, a decision tree has
strong predictive power (Steinberg and Colla 2009) while
still achieving interpretability when trained on interpretable
features.

Evaluation
In this section we present an evaluation of our explainable
surrogate model in the Atari domain. Specifically, we seek to
identify the extent to which our surrogate model is able to suc-
cessfully learn to approximate the behavior and underlying
decision making of a target RL agent.

Implementation Details
In terms of evaluation domain we chose a suite of Atari
games, see Table ?? for a list of these games. The first set of
these games have simplified sprites and animations, which
adhere to the implicit assumptions in Algorithm 1. In par-
ticular, the sprites should not have any perspective, and the
animation must be either alternating sprites (such as the fish
in Seaquest) or no animation (such as the ball in Breakout).
These games should represent ideal evaluation domains for
our approach. Additionally, we chose two games with more
complicated sprites (Boxing and DemonAttack), in order to
demonstrate how our approach performs when these sprite
assumptions are broken.

We choose to use OpenAI Gym (Brockman et al. 2016)
for the environment implementations of the Atari games
(which uses the Arcade Learning Environment (Bellemare
et al. 2013)), and the Stable Baselines (Hill et al. 2018) im-
plementation of Rainbow (Hessel et al. 2017), and frame
skip. We examine the cases of noop starts and sticky actions

combined with noop starts. We train the Rainbow agent for
1,000,000 timesteps on each game. We used the same param-
eters as in (Hessel et al. 2017). We limit our noop starts to
be [0, 29] inclusive, and for every 4 frames obtained from
ALE, we use max(frame 3, frame 4) as an observation. Since
Rainbow uses a downsampled version of the pixel observa-
tions from the Atari games, we have downsampled the pixel
representation provided by the Arcade Learning Environment
from (210, 160) to (105, 80), in order to better represent the
input that Rainbow is using while still minimising sprite dis-
tortion due to downsampling. For our surrogate models, we
have chosen a decision tree (Steinberg and Colla 2009) for
its performance and high interpretability. We have utilized
Scikit-learn (Pedregosa et al. 2011) for a decision tree imple-
mentation, using their default hyperparameters, which allows
for easy adoption and extension of this work.

We require some method to understand what features are
responsible for a given prediction deviating from the mean
prediction to compare to our explanations. Shapley values
(Shapley 1952) fit this requirement. We can consider the clas-
sification problem as a game, with the players as the features.
If we assume the fairness axioms described in (Shapley 1952),
then we have that the unique solution to a distribution of pay-
out for each player is given by the Shapley value. SHAP
(Lundberg and Lee 2016) was created as a way to efficiently
estimate Shapley values for individual predictions, and Tree-
SHAP (Lundberg, Erion, and Lee 2018) gives a method for
exactly calculating the Shapley values for tree based models
in polynomial time. Thus, TreeSHAP is appropriate to obtain
the exact Shapley values for our surrogate model, given we
use a decision tree (Steinberg and Colla 2009).

Experiments
We chose to focus on the problem of demonstrating that our
interpretable surrogate model accurately reflects the behav-
ior and decision making of the RL agent. This is crucial, as
while other approaches have demonstrated that even inac-
curate explanations increase user trust (Ehsan et al. 2019;
Madumal et al. 2019), an accurate explanation is required for
many domains and applications. As such, we designed our
experiments to answer the following research questions:

1. Given some agent and environment, can a surrogate model
be trained that is highly accurate?

2. Does a surrogate model overfit to the trajectories it was
trained on, or can it generalize to trajectories it hasn’t been
trained on?

3. To what extent does the model capture the underlying
decision making of the agent?

In order to answer (1), we obtain 25 sampled trajectories
using 0, 1, ..., 24 noop actions at the start of the episode,
following the procedure outlined above, with and without
sticky actions (Machado et al. 2017) with probability 0.25.
We train the surrogate in a supervised fashion, and evaluate
both the accuracy and cross entropy using a 5 fold split. The
results can be found in Table ??. This demonstrates that it is
possible to learn a very accurate approximation for the agent,
at least for interpolation in between trajectories. The usage of
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Game Accuracy (%) Cross Entropy Accuracy (%) (Sticky) Cross Entropy (Sticky)

Atlantis 89.5± 0.129 3.32± 0.027 81.6± 0.209 6.21± 0.0740
Gopher 93.51± 0.056 2.242± 0.019 84.6± 0.178 5.31± 0.0580
Breakout 92.285± 0.283 2.66± 0.097 85.6± 0.358 4.93± 0.122
Star Gunner 87.477± 0.309 4.223± 0.118 73.9± 0.345 9.02± 0.119
Pong 90.271± 0.027 3.306± 0.011 82.369± 0.169 6.076± 0.058
Qbert 97.525± 0.132 0.524± 0.025 91.8± 0.327 2.83± 0.117
Space Invaders 78.94± 0.404 7.047± 0.128 78.0± 0.260 7.50± 0.0930
Seaquest 93.2± 0.234 0.675± 0.239 66.2± 0.120 11.7± 0.0420
Ms Pacman 97.977± 0.087 0.47± 0.03 88.7± 0.199 3.79± 0.0610
Kung Fu Master 98.677± 0.085 0.373± 0.035 88.1± 0.125 4.10± 0.0410
Asterix 95.7± 0.190 0.137± 0.007 91.2± 0.362 2.85± 0.124
Demon Attack 87.692± 0.163 4.251± 0.056 79.6± 0.237 7.03± 0.082
Boxing 74.11± 0.169 8.872± 0.058 77.6± 0.249 7.73± 0.0870

Table 1: Surrogate model accuracy and cross entropy. A line separates those games that match our sprite assumptions and those
that do not.

sticky actions causes much more variance in the trajectories
(Machado et al. 2017), causing greater diversity in the train-
ing data, likely being the cause of the performance reduction.
However, even in the sticky actions case, the resulting sur-
rogate models are still very powerful despite being simple
decision trees. We also note that for games like Boxing, where
the sprite animation is complicated due to the moving hand
creating a variety of different sprites, there is a huge amount
of sparsity in the data for a given state. However, despite
this complexity and the fact that Boxing violated our sprite
assumptions, the resulting surrogate model is still better than
random chance.

Now, the next question is if this surrogate model can gen-
eralize to trajectories that it has never seen before. This is
equivalent to answering (2). We consider this problem solely
in the domain of noop starts, without loss of generality. Note
that the agent attempts to maximize its return over trajectories
where the starting state is sampled from choosing 0, 2, ..., 29
noop starts. We have trained the model on the trajectories
using 0, 2, ..., 24 noop starts, leaving the trajectories gener-
ated by 25, 26, ..., 29 noop starts as a test set. As such, we
obtain the 5 trajectories aforementioned, using the method
outlined in section 3.2. We then use this dataset as a test set
for the surrogate model. The results can be found in Table
??. We see that the performance of the surrogate model is
still strong, in some cases stronger than in the training set.
This indicates that the model has learned a good, general
model of the behavior of the agent. The consistently strong
accuracy results also stand out in comparison to other XAI
approaches (Madumal et al. 2019; Ehsan et al. 2019). There
is a significant degradation in performance over the unseen
trajectories for Boxing, likely due to the lack of features that
describe objects relative to one another in the feature space,
greatly restricting the ability for the model to learn location
invariant features. Said features appear to be important to the
policy learned for the non-sticky action case.

Our third research question asks whether or not the learned
decision making of the model accurately approximates the
underlying decision making of the agent. This is important,

as it’s possible our surrogate model is getting the right an-
swer for the wrong reason, or a type III error. But we cannot
directly compare the decision making as that would require
matching decision nodes and neural network weights. How-
ever, if it is the case that the surrogate model has accurately
approximated the Rl agent’s policy in symbolic features, than
these symbolic features should be integral to the RL agent’s
policy. As such, we show that a permutation of the symbolic
features important to the surrogate model’s decision making
also results in a significant change in agent behavior.

We use the surrogate model to produce adversarial exam-
ples (Goodfellow, Shlens, and Szegedy 2014). Instead of a
single decision tree, we employ a tree ensemble (LightGBM
(Ke et al. 2017) with default hyperparameters) to allow for
many possible candidate splits to search through in order
to generate said adversarial examples. We use the degree of
change in the prediction of the surrogate model as a metric
for producing adversarial examples, as such a single decision
tree would be insufficient. To begin with, we take all sprites
in the state, and rank them according to the maximal Shapley
value of each of their features for a decision tree’s predicted
action. We then consider the sprites in the top 10% of this list.
For each decision tree in our surrogate model, we do a 3-ply
search over the splits, obtaining eight different subsets of
the dataset. We sample one state from each subset. For each
sampled state, we swap the feature values corresponding to
the top 10% of sprites with the feature values in the sampled
state. This gives us 800 possible adversarial examples, as we
employ a surrogate model of 100 decision trees. We take the
example which minimizes the original prediction of the surro-
gate model to be our adversarial example. This is essentially
the permutation of the original state that most changed the
predicted behavior from our surrogate model. At no point do
we query the deep RL agent when producing these adversar-
ial examples. If the agent is using the same features in its
decision making, it follows that it’s behavior should change
when the surrogate model’s prediction changes.

We collected 200 (state, action) pair permutations from
the trajectory with 24 noop starts, and considered only the

86



Game Accuracy (%) Cross Entropy Accuracy (%) (Sticky) Cross Entropy (Sticky)

Atlantis 96.2± 0.791 0.272± 0.0252 90.03± 7.08 3.29± 2.45
Gopher 98.1± 0.115 0.205± 0.0159 83.4± 0.952 5.71± 0.338
Breakout 98.2± 0.537 0.158± 0.00567 96.33± 2.04 1.27± 0.705
Star Gunner 95.0± 0.971 0.150± 0.0207 82.4± 6.64 6.02± 2.29
Pong 90.0± 0.372 0.330± 0.00671 83.6± 0.709 5.64± 0.240
Qbert 99.1± 0.319 0.0282± 0.00505 97.19± 1.29 0.703± 0.481
Space Invaders 99.5± 0.00265 0.118± 0.0125 65.3± 5.34 11.7± 1.88
Seaquest 99.0± 0.185 0.121± 0.00815 72.6± 4.06 9.47± 1.40
Ms Pacman 97.4± 0.00694 0.0620± 0.00909 98.5± 0.443 0.121± 0.023
Kung Fu Master 99.9± 0.0361 0.324± 0.00345 85.5± 1.74 4.93± 0.581
Asterix 95.7± 0.19 0.137± 0.007 66.9± 6.86 10.9± 2.33
Demon Attack 67.8± 6.38 0.964± 0.139 64.6± 2.13 12.2± 0.737
Boxing 58.0± 2.33 1.33± 0.08356 76.2± 0.547 8.20± 0.189

Table 2: Surrogate model accuracy and cross entropy on unseen trajectories.

Game Agent action changed %

Atlantis 54.8
Gopher 46.8
Breakout 92.5
Star Gunner 69.2
Pong 92.8
Qbert 74.1
Space Invaders 70.0
Seaquest 76.8
Ms Pacman 94.6
Kung Fu Master 73.6
Asterix 40.6
Demon Attack 62.7
Boxing 86.0

Table 3: Probability of agent changing action given permuted
state.

(state, action) pairs. The results in terms of the percentage of
instances where the agent changed its action from the original
compared to the permuted state can be found in Table ??.

We can see that in general, our adversarial examples cause
the agent to change its predicted action, with an average prob-
ability of 72% across all games. Due to the nature of these
comparisons, we consider them similar to correlation, which
would imply a strong average alignment in decision making
between the surrogate and agent. This is surprising given how
much smaller and simpler our surrogate is compared to Rain-
bow, even in the case of using a random forest in comparison
to a single decision tree. The alignment remained strong in
the more complex games where our surrogate’s action pre-
diction accuracy was lower. This indicates that even in the
more complex games our surrogate is still identifying the
important features on which the agent makes its decisions.
We do not anticipate that this was due to the use of a random
forest instead of a single decision tree, as the decision tree
performed roughly equivalently to the random forest across
the first two evaluations in our experiments. We note that

Rainbow is a limiting factor here, as we cannot measure the
confidence change in the action, which would give us a more
nuanced measure of impact.

We have shown thus far that the model is a strong surrogate
of the agent, both for interpolation of trajectories previously
seen and on trajectories not explicitly seen before, and that
the decision making of both the agent and model is well-
aligned. However, this does not necessarily mean that the
features learned by the surrogate model also match human
intuition. In Figure 2 we visualize the sprites with the highest
Shapley values in the selected frames for two of the Atari
games. We can see that the player sprite, along with the
sprites the player would interact with impacts the deviation
of the given predicted action distribution from the mean pre-
dicted action distribution, with little regard to other objects of
the scene. This agrees with our intuition for these games, in
terms of which sprites are of most importance. Additionally,
in figure 3, we visualize the first three levels of the decision
tree obtained from Breakout, all of which focus on paddle ori-
entation. There is a huge emphasis on paddle orientation and
velocity that agrees with human intuition, such as continuing
to move left when already moving left, and likewise with
moving right. Additionally, opting to do noops after coming
in contact with the ball is a common strategy observed with
Breakout agents trained by DQN, which is emphasized by
the Paddle X position node. One oddity is that the ball touch-
ing the paddle is recognized as a unique sprite compared
to the ball or paddle individually. This is due to the simple
sprite finding technique utilized, and the fact that both ball
and paddle are the same color. However, represented visually,
and with some knowledge of Breakout, the sprite still reads
clearly.

Limitations and Future Work
We note a number of limitations and corresponding areas of
future work. From the results with Demon Attack and Boxing,
we can identify that our approach at times underperforms
in more complex games. We anticipate that this is partially
due to our naive sprite detection approach. In future work we
plan to draw on techniques like Blob Detection (Danker and
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Figure 2: A pictorial representation of the highest absolute
Shapley values given a specific game state. The left frame
occurs 1 time step before the right frame. The 5 sprites on the
right are ordered by their Shapley value, and additional in-
formation (which coordinate, position or velocity, and which
sprite (ordered from top left to bottom right)).

Rosenfeld 1981) and image segmentation (Felzenszwalb and
Huttenlocher 2004) to address this.

Atari is a relatively simple domain. While this is appro-
priate for an initial exploration of this approach, given it’s
popularity for deep RL research, it is far less complex than
many real world domains. While we drew upon intuitions
unique to video games in this work, these assumptions will
not hold in other domains. We anticipate that these other
domains, particularly those reliant on natural language, will
require their own non-trivial state transformations.

We do not include a human subject study, instead focusing
this paper on demonstrating that our method shows strong
accuracy with regards to an RL agent compared to prior work
(Madumal et al. 2019; Ehsan et al. 2019). In particular, inter-
pretability, as discussed in this paper, relies on the intrinsic
interpretability of decision trees and Shapley values. It’s un-

Figure 3: A visualization of the first 3 levels of the decision
tree classifier learned on the training data from Breakout. The
colors correspond to the chosen label; tan corresponds to
class 0 (noop), blue corresponds to class 2 (move right) and
pink corresponds to class 3 (move left).

certain whether or not these decision trees are practically
interpretable with human subjects, which will be explored in
further work or how they might be employed to produce ex-
planations for those without technical knowledge. We intend
to delve into the specific impact of our surrogate model on
human experience in future work.

Conclusion
In this paper, we have presented a simple, yet surprisingly
effective approach to train an accurate surrogate model. We
proved that our interpretable representation is a bijection of
the original state space. Through experimentation we demon-
strated that the surrogate model learned to accurately approx-
imate the behavior of Rainbow on a set of Atari games. This
indicates that the approach is an appropriate one to add inter-
pretability to complex, black box agents in simple domains.
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potential for negative impact if it is brought to more com-
plex domains too soon. Without sufficient improvement, our
approach applied to a complex RL agent may present inaccu-
rate explanations that still increase user satisfaction and trust
(Madumal et al. 2019). This could be devastating in high-
risk scenarios, for example doctors trusting faulty diagnoses
(Holzinger et al. 2017). We therefore highly caution against
applying this approach broadly until it has been improved to
function in more complex domains and suitable research into
its impact on users has been completed.
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