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Abstract

In this paper we present Birds in Boots (BiB), a system that
uses a sampling-based search algorithm to learn a neural pol-
icy for solving Angry Birds levels. Our learning procedure
is based on the Bootstrap algorithm, which was previously
used to learn heuristic functions for solving classic heuris-
tic search problems. BiB starts its learning procedure with a
policy given by a randomly initialized neural network. This
initial policy is used to guide the search algorithm on a set
of procedurally generated Angry Birds levels. The levels the
search algorithm is able to solve are used to improve the neu-
ral policy. We repeat this procedure a number of times, until
solving all levels or reaching a time limit. We perform several
experiments with different instances of our method and show
that it can solve more levels than other approaches, including
learning-based and rule-based methods.

Introduction
Physics-based simulation games, such as the world-
acclaimed Angry Birds, bring a series of challenges to Arti-
ficial Intelligence methods (Renz et al. 2016). These games
typically have large state and action spaces, and agents have
to decide which action to take based on partial and imperfect
information. Thus, in recent years, different frameworks and
competitions have been proposed to foster the development
of intelligent agents for these games.

One of these competitions is the Angry Birds AI Compe-
tition (AIBirds) (Renz et al. 2015). The objective is to build
AI agents who can play new game levels as well or better
than human players. Agents do not have access to the game’s
internal state and have to act based on the information from
the screen, in the same way as human players. Moreover, the
game has no efficient forward model, and the outcome of
each action is only known after simulating it. So far, agents
based on machine learning have had limited success in this
competition (Renz et al. 2019). The very large action and
state spaces and the lack of an efficient forward model may
explain the lack of success of learning-based agents.

In this paper, we present Birds in Boots (BiB), an agent
that uses the Bootstrap system (Arfaee, Zilles, and Holte
2011) in conjunction with a sampling-based search algo-
rithm to learn a neural policy for solving Angry Birds lev-
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els. We show that the search algorithm BiB employs is suit-
able to domains with computationally expensive simulations
such as Angry Birds. BiB incrementally learns to solve more
difficult levels by solving simpler ones. BiB starts with a pol-
icy given by a randomly initialized neural network and uses
this policy to guide its search on a set of procedurally gener-
ated Angry Birds levels. The solved levels are used to train
and improve the neural policy, and this process is repeated
until solving all levels or reaching a time limit.

Empirical results show that the policy BiB learns gener-
alizes well not only to unseen levels sampled from the same
distribution used in training, but also to levels sampled from
a similar but different distribution. Namely, BiB performs
well on levels from the AIBirds competition, solving more
levels than all systems tested, which included a rule-based
system that placed second in the latest competition.

Related Work
Several Angry Birds agents have been created in the last five
years to participate in the AIBirds competition. These agents
used different approaches, including state-space search, ma-
chine learning, or manually constructed rule-based systems.

One of the most prominent Angry Birds search-based
agents is AKBABA (Schiffer, Jourenko, and Lakemeyer
2016), which uses search and simulation to find appropri-
ate parameters for launching birds. Launching parameters
are composed of a target within the scene, the bird’s initial
velocity, the bird’s initial angle, and the point on the bird’s
trajectory at which its ability is triggered in case it has one.
AKBABA relies on a heuristic that uses the estimated score
and the estimated number of destroyed pigs to traverse this
potentially infinite search space. The heuristic is computed
by simulating launching a bird given a particular set of pa-
rameters. Unlike AKBABA, which does not use machine
learning and searches on a very large parameter space, BiB
searches on the game’s action space and it learns a policy by
solving a set of procedurally generated levels.

Others have explored the use of reinforcement learning
(RL) for solving Angry Birds levels. For example, in the
2017 competition (Stephenson et al. 2018), there were two
RL agents: Vale Fina 007 and AngryBNU. The Vale Fina
007 agent uses Q-learning to identify suitable shots for un-
known levels. To describe the current state of a level, a list of
objects is used that contains information about every object
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within it. Q-learning is used to compute a policy that asso-
ciates the state description with successful shots. The An-
gryBNU (Yuan et al. 2017) agent uses deep reinforcement
learning to predict optimal shot angles and tap times based
on the features within a level. These features include the bird
type, the distance to the target points, and a 128x128 pixel
matrix around each target. A more recent agent that also
uses deep reinforcement learning is DQ-Birds (Nikonova
and Gemrot 2019). DQ-Birds use a Double Dueling Deep
Q-Network (Mnih et al. 2015) architecture which is trained
using more than 95, 000 images from 21 levels of the clas-
sic Angry Birds game. We compare the performance of our
proposed methodology with DQ-Birds.

Thus far, agents based on machine learning have not ob-
tained a good performance in the Angry Birds Competi-
tions (Renz et al. 2019). More traditional reasoning agents
tailored for the game have successfully obtained higher
scores, which is the primary metric used in the competition.
One example is the SimbaDD agent, which finished in sec-
ond place in the 2019 competition, defeating strong agents
such as the champion of the 2017 and 2018 competitions.
SimbaDD tries to emulate the human decision-making pro-
cess by building a three-layer structure with reactive, pre-
dictive, and reasoning processes (Starke et al. 2019). We use
SimbaDD as one of the baseline agents in our experiments.

AlphaGo (Silver et al. 2016) and its successor AlphaGo
Zero (Silver et al. 2018) also learn to play games from ex-
perience. The main difference between BiB and the Alpha
agents is the environment in which they operate. BiB deals
with a single-agent problem while the Alpha agents solve
two-player zero-sum games. Another difference is the search
algorithm used. The Alpha agents assume the existence of
an efficient forward model of the game and employ variants
of Monte Carlo Tree Search (Kocsis and Szepesvári 2006).
BiB uses a simpler sampling-based search procedure to deal
with the lack of an efficient forward model of the game.

BiB uses the Bootstrap system (Arfaee, Zilles, and Holte
2011) to learn a policy, while in its original paper Bootstrap
was used to learn a heuristic function Iterative-Deepening
A* (IDA*) (Korf 1985). In a recent work the Bootstrap sys-
tem was used to learn both a policy and a heuristic func-
tion for an algorithm called Policy-Guided Heuristic Search
(PHS) (Orseau and Lelis 2021). Similarly to the Alpha
agents, all these works assume the existence of an efficient
forward model of the game as they might require a large
number of simulations to solve Angry Birds levels. Instead,
we use a simpler sample-based search that is able to find so-
lutions with fewer simulations in domains with a bounded
search depth such as Angry Birds (Orseau et al. 2018).

There are several other agents that have participated in the
Angry Birds competitions. A work that tries to take advan-
tage of this great diversity of agents is presented in (Stephen-
son and Renz 2017a). The authors propose the construc-
tion of a hyper-agent that selects from a portfolio of agents
whichever agent it believes is best at solving any given level.
Stephenson and Renz used a collection of eight agents that
participated in the 2016 AIBirds competition and relied on
an assortment of score prediction models to rank the sub-
agents available in its portfolio based on a given level’s fea-

Figure 1: A level of Angry Birds with its main elements:
blocks and a slingshot that is used to throw birds. The type
of block (ice, wood, or stone) determines the resistance of
the block (Ferreira 2016).

tures. In general, the proposed hyper-agent presented a better
performance in comparison to the individual sub-agents.

Problem Formulation
An Angry Birds level is defined by an ordered set of birds
B, pigs P , and a set of objects. Figure 1 shows an exam-
ple of an Angry Birds level. The pigs and objects are dis-
tributed on a 2-dimensional environment M where physics
rules such as friction and gravity apply; the birds are placed
on the left-hand side of a slingshot, which the agent uses to
throw the birds. The agent throws birds in the order given in
B. The location of birds, pigs, and objects in M determine a
game state. The agent sequentially chooses the force and an-
gle in which each bird is thrown with the goal of hitting the
pigs, which are eliminated from the game once hit. A level is
solved if all pigs are eliminated from the game. In addition
to force and angle, we also consider the birds’ special abil-
ities. All but one type of bird have a special ability, which
can be activated during the birds trajectory, after it leaves
the slingshot and before it hits an object or pig. The agent
must decide when the special ability is activated. An action
is either a tuple defining the force and angle or a scalar de-
termining the time that a special ability is activated during
the bird’s trajectory. A solution path of a level is a sequence
of actions a1, a2, · · · , an that eliminates all pigs from M .

Learning Agent
BiB trains an agent for playing Angry Birds in a self-
supervised fashion. The agent receives a set of procedurally
generated I levels of Angry Birds and employs a policy-
guided sampling search known as sample traj (Orseau
et al. 2018) and a neural network to guide the search. We
use the Bootstrap algorithm (Arfaee, Zilles, and Holte 2011)
to generate training data to train the neural policy that
sample traj employs.

Learning with Bootstrap
Bootstrap starts with a randomly initialized neural network
and sample traj tries to solve each instance in I with the
computational budget of n throws (a simulation of a throw
of a bird and the use of the bird’s special ability, if it has
any). The solution paths of the levels sample traj solves
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form a data set that is used to train the policy (a solution path
contains the action one needs to take in each visited state to
solve the level). The generated training data is organized in
mini-batches that are used to update the neural policy with
one gradient descent step. The Bootstrap process is repeated
with the updated (and hopefully stronger) policy on the set
of instances that sample traj could not solve in previous
iterations. Bootstrap stops when it reaches a time limit or it is
able to solve all instances in I . BiB accumulates the training
data across iterations, i.e., in iteration i the model is updated
with training data from iterations j for j ≤ i.

In the original formulation of Bootstrap one increases the
computational budget if the search algorithm is unable to
solve any instances in a given iteration. We did not notice the
need of increasing the computational budget n in our experi-
ments as the updated policy always allowed sample traj
to solve levels that were not solved in previous iterations.

Action Space Formulation
The action space of Angry Birds is continuous and thus in-
finite. BiB uses the maximum force in all throws and selects
the angle value of the throw. BiB discretizes the angle values
and learns a probability distribution over the discretized val-
ues. We evaluate two angle discretization schema in BiB. In
the first scheme, dubbed angles-model (AM), the agent can
choose angles from −6 to 78 degrees, with increments of
0.3, which results in 281 possible values of angle. The sec-
ond scheme, dubbed functions-model (FM), uses a set of 64
simple domain-specific functions for choosing angles. Each
function receives a state of the game and returns an angle.
For example, given a state of the game the function returns
an angle that hits the leftmost pig on M . We use the formula

arctan

(
v20 ±

√
v40 − g(g∆x2 + 2∆yv20

g∆x

)
, (1)

to determine the angle needed to reach a specific position
on M . Here, v0 is the initial velocity, ∆x = x0 − xs,
∆y = y0 − ys, where (x0, y0) and (xs, ys) are the initial
and the target coordinates of the bird. Note that the formula
is a second-order polynomial and thus returns two valid an-
gles for reaching the same position. BiB uses the larger of
the angles as it results on a trajectory that crosses a usu-
ally less populated area of M . The functions we employ in
the functions-model do not account for other objects in M ;
it computes an angle that would allow the bird to reach a
given position inM should the environment was empty. The
functions-model is inspired on the action abstractions used
in real-time strategy games (Tavares et al. 2018; Churchill
and Buro 2013; Lelis 2020). The set of functions used in our
experiments can be accessed in our codebase.1

The functions-model allows the agent to learn over a
smaller and hopefully helpful set of actions; the angles-
model is more fine grained as the agent has more actions
to choose from, which can allow it to learn stronger policies
at the cost of a possibly more difficult learning process.

For both angles and functions models, we discretize the
time intervals in which the special ability can be activated.

1https://github.com/lucasvictorsp/science-birds.

We consider values from 0.5 to 2.5 seconds and use incre-
ments of 0.05 for values between 0.5 to 1.20 seconds and
increments of 0.1 for values between 1.20 to 2.50 seconds.
We use finer intervals in the beginning of the trajectory be-
cause that is when most of the special abilities are used. BiB
also considers the option of not activating the special ability,
totalling 29 actions.

Neural Model
With the goal of speeding up training and inference, BiB
uses a simplified version of the game’s screenshot image as
input to the neural model. BiB uses only the part of the im-
age that can contain objects; specifically, it considers a box
of size 397×264 on the right-hand side of the slingshot. We
further reduce the size of the image by using a coarser ver-
sion of the reduced image. The original 840×480×3 image
is reduced to an image of size 159× 106× 3, where the last
dimension of the image represents the RGB channels. The
reduction is performed by traversing the matrix representing
the image and skipping a few values. We start by selecting
the RGB values at index (0, 0) and skipping values as fol-
lows. If the value (i, j) is selected to be used in the coarser
image, then we skip (i+ 1, j), select (i+ 2, j) and skip both
(i+3, j) and (i+4, j); the process is then repeated by select-
ing (i + 5, j). The same process described for rows is also
applied to columns. Instead of providing the RGB channels,
we use a one-hot matrix of size 159×106 for each of the fol-
lowing objects of the game: ice, wood and stone blocks, in-
destructible platforms, explosive objects, and pigs, resulting
in a tensor of zeros and ones with dimensions 159×106×6.

Figure 2 shows the architecture of the neural network used
in our experiments. The 159× 106× 6 tensor goes through
three convolutional layers and a fully connected layer be-
fore producing a probability distribution of the discretized
angles (see output 1) with a Softmax layer of size 281
and 32 for angles-model and functions-model, respectively.
Both the probability distribution over angles and the output
of the last convolutional layer is provided as input to a fully
connected layer for computing the probability distribution
over the discrete time steps of the special ability. We pro-
vide output 1 as input to the last fully connected layer
because deciding when to use a special ability depends on
the angle in which a bird is thrown.

The ordered set B of birds also provides valuable infor-
mation to the agent, as it needs to plan the current throw
based on how many birds it has left. BiB uses a 7 × 5 ma-
trix with zeros and ones (see matrix “Birds” in Figure 2)
for encoding information of the next 7 birds in B. Each col-
umn of the matrix represents a type of a bird and each row
represents the position of a bird in the ordered set B. If the
position i, j is one, then the i-th bird in B is of type j. The
“Birds” matrix is flattened and provided as input to the two
dense layers of the model. Note that BiB is able to plan for
levels with more than 7 birds; it only has to account for the
next 7 birds when deciding its next throw.

We use the sum of the cross entropy loss of output 1
and output 2 as the training loss for BiB’s model. We
place a stop gradient on the values of output 1 that are
provided as input to the last dense layer of the model. This is
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Figure 2: BiB’s neural architecture. The probability distribution over angles is provided as input to the last fully connected layer,
which computes the probability distribution over the discretized time steps defining when the bird’s special ability is activated.

to prevent gradient descent changing the angle decisions of
the model while trying to attempt to correct for the use of the
birds’ special abilities. The cross entropy loss of output
1 and output 2 will serve to adjust the weights of the
shared convolutional layers and each will serve to adjust the
weights of its Softmax and dense layers.

All models used in our BiB experiments are trained with
Adam with learning rate 0.01 and, unless stated otherwise,
mini-batches of size 64.

Sampling Search Algorithm
Algorithm 1 presents sample traj, which receives an
initial state s0 of the game, a budget n on the number of
action executions the algorithm can perform, and a pol-
icy π; sample traj either returns a sequence of actions
that solves the level represented by s0 or it returns fail-
ure. sample traj sequentially samples a tuple of actions
a = (g, t), where g is angle and t a time step, until all birds
have been thrown and their special abilities have been used
(if applicable) — see inner loop of Algorithm 1). If a solu-
tion is found, the sequence of actions used to achieve it is
returned (see lines 7 and 8). The process is restarted (line 2)
until sample traj finds a solution or it uses all its com-
putational budget and it returns failure (lines 9 and 10).

Algorithm 1 sample traj

Require: initial state s0, budget of n throws, policy π
Ensure: sequence of actions

1: while True do
2: s← s0, i← 0
3: while has not thrown all birds do
4: sample a tuple of actions a = (g, t) from π(s)
5: s′ is the state obtained after applying a to s
6: i← i+ 1
7: if s′ is a solution then
8: return sequence of actions that led to s′
9: if i equals n then

10: return failure

We also implemented and evaluated LevinTS, which is a
more systematic policy-guided search algorithm that builds
a tree with action sequences that are promising according to
the policy (Orseau et al. 2018). Since the number of throws
allowed in Angry Birds is small (simulating actions in the
game engine is computationally expensive), LevinTS often
fails to encounter a solution because it is unable to visit
states in which all birds have been thrown before exhausting
its computational budget. sample traj’s more aggressive
sampling approach allows one to find solutions even with the
limited computational budget imposed by the game.

Empirical Methodology
In this section we detail the empirical methodology used in
our experiments with BiB. We start with the generation of
the set of instances I used in the Bootstrap procedure.

Problem Instances
We use a modified version of the award-winning pro-
cedural generation system of Angry Birds levels, Ira-
tusAves (Stephenson and Renz 2017b), to generate the set
of instances I used in our experiments. IratusAves is guar-
anteed to generate stable and solvable Angry Birds levels.
The problem with the levels IratusAves generates is that they
tend to be easy to solve, as we show below. Ideally, the set I
will contain levels of varied difficulty, so that the easy levels
allow BiB to learn an initial policy that will allow it to learn
policies able to solve the harder levels. If the set of instances
I contains only easy instances, then BiB is unlikely to learn
strong policies that will generalize to unseen instances, such
as those used in the Angry Birds competitions.

We modify IratusAves with the goal of generating levels
of varied difficulty. Whenever a level is generated, with 30%
of chance, we remove a random bird from the level. Levels
with one bird removed might become unsolvable, but this
change allows us to generate harder levels that BiB can solve
and learn from. We used this modified version of IratusAves
to generate 280,000 levels. A simple agent, which we refer
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to as the Naı̈ve Agent (NA), is able to solve 264,148 of these
instances with a computational budget of 75 action execu-
tions. NA chooses its actions with the goal of hitting a ran-
dom pig in M . NA uses the maximum force and Equation 1
to compute the angle that will hit the randomly selected pig;
if the bird has a special ability, NA randomly chooses the
time step in which the special ability is activated.

Since NA has generated labeled data for 264,148 levels
(i.e., it has encountered solution paths to all these levels), we
sample 17,438 levels without replacement from the solved
levels to warm start the neural policy. We perform one epoch
of training with this training data in a randomly initialized
neural network with mini-batches of size 32. The resulting
pre-trained neural policy is provided as input to the Boot-
strap procedure we describe above. The set I is formed by
sampling without replacement 5,000 levels out of the 15,852
that NA could not solve with 75 throws.

Searching with a Trained Model
We use a depth-first search (DFS) with the trained models
in our test experiments (see “test and competition evalua-
tions” below). In our DFS, the actions are ordered accord-
ing to the policy’s probabilities: the search selects the ac-
tions with highest probability before selecting actions with
lower probability. Initially, the algorithm will visit through
the sampling related to the actions with highest probability
at each state of the game. If the search does not find a so-
lution, then we perform chronological backtracking and try
actions with lower probability. Similarly to sample traj,
the search stops when it either finds a solution or when it ex-
hausts its computational budget of executions. We use DFS
with a trained model instead of sample traj because
DFS is greedy with respect to the learned policy, which is
better suited for testing the system. sample traj samples
an action according to the probability distribution given by
the neural model, which could result in suboptimal choices
even for a strong policy.

Experiments Performed
We perform three sets of experiments. We have implemented
all algorithms and baselines of our experiments in the Sci-
ence Birds platform (Ferreira and Toledo 2014).

Training Evaluation In the first experiment, we verify
how fast different systems learn a strong policy by mea-
suring how long it takes to solve the training instances.
We compare the BiB models with the two discretization
schema, angles-model (AM) and functions-model (FM),
with DQ-Birds, which is an implementation of DQN for An-
gry Birds (Nikonova and Gemrot 2019). We also provide
DQ-Birds with a model that is also pre-trained on the same
17,438 levels used to pre-train the BiB models.

We evaluate several versions of BiB. Two versions that are
trained with the Bootstrap procedure and sample traj,
which we denote as BiB(AM) and BiB(FM). Two versions
that use a random walk planner (RW) on the action space in-
duced by either AM or FM, which are denoted as BiB(AM,
RW) and BiB(FM, RW). RW selects an action uniformly at
random at a given state. We also evaluate versions of BiB

with sample traj that do not receive a pre-trained model,
denoted BiB(AM, NPT) and BiB(AM, NPT), where NPT
stands for “no pre-training”. We evaluate these variants to
understand how much learning and the pre-training affect
the results. We call this experiment the “training evaluation.”

Test Evaluation In the second experiment we evaluate the
trained models on a set of held-out levels, which are also
generated with IratusAves. The test set has 1,008 levels out
of which NA cannot solve 252 with 85 action executions;
NA solves the remaining levels with at most 85 throws.

We compare the same BiB models used in the training
evaluation and the DQBird agent. However, instead of using
sample traj, we employ DFS with the policies learned
in the training experiment. We use DFS to allow for a di-
rect comparison of the quality of the learned policies as DFS
greedily selects the actions according to the policy probabil-
ities. We compare the agents in two settings: with a single
throw, one for each bird, and with 40 throws in total for both
DFS and RW. In both settings the evaluated methods use a
smaller computational budget than the 85 action executions
NA used in our procedure to select the test instances. Thus,
even if NA is able to solve some of the levels in the test set,
the levels can still be challenging for BiB and DQ-Birds as
they need to find a solution with many fewer throws. We call
this experiment the “test evaluation.”

Competition Evaluation Finally, the last experiment
compares the BiB models with DQ-Birds and simbaDD on
20 of the 24 levels used in the 2017 competition. We did
not use 4 of the levels because they were unstable in the
Science Birds platform. The simbaDD is a domain-specific
rule-based agent that placed second in the latest AIBirds
competition. We use simbaDD because it performed well in
the competition and because its code was open source and
the system was easy to run. Here, in addition to DFS and
RW, we also evaluate the BiB models with sample traj.
The levels used in the competition can be very different
from the levels the models were trained on since they come
from a different distribution (i.e., they were not generated
by IratusAves). We believe that the sampling-based nature
of sample traj can be helpful in solving levels that come
from a distribution different than the one used in training.

Following a similar approach to the Angry Birds competi-
tion, in this experiment, each method was allowed 3 minutes
per level, for a total of 60 minutes for the experiment. We
call this experiment the “competition evaluation.”

Empirical Results

In this section we present the results of the three experi-
ments: training, test, and competition evaluations. The train-
ing evaluation was run on a machine with 2.30 GHz CPUs,
256 RAM, and a NVidia GeForce GTX Titan X; the test and
competition evaluations were run on a machine with 4.00
GHz CPUs, 16 GB RAM, and a NVidia GeForce GTX 1060.
Table 1 contains the acronyms of the methods used in our
experiments.
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Symbol Meaning

BiB(AM) Trained BiB agent that uses the
angles-model for actions.

BiB(AM, NPT) BiB(AM) without the pre-training step.
BiB(AM, RW) BiB(AM) using uniform distribution.

BiB(FM) Trained BiB agent that uses the
functions-model for actions.

BiB(FM, NPT) BiB(FM) without the pre-training step.
BiB(FM, RW) BiB(FM) using uniform distribution.

sample traj Sampling algorithm that uses a policy.
DFS Depth-first search that uses a policy.

DQBirds DQN Agent for Angry Birds
(Nikonova and Gemrot 2019).

NA Naı̈ve Agent

SimbaDD Baseline from the 2019 Competition
(Starke et al. 2019).

Table 1: Methods used in our evaluation.

Training Evaluation

Figure 3 shows the results for the training evaluation. The
x-axis shows the number of throws executed in the game by
each of the approaches during training; the y-axis shows the
number of training levels solved. The curves for BiB(AM),
BiB(FM), and DQ-Birds are shifted to the right to account
for the number of action executions NA performed while
labelling the data used to pre-train the model.

The methods that learn a policy solve more instances than
the methods that simply use sample traj with a uniform
policy. The RW methods plateau at around 1,000 solved lev-
els. The pre-trained model substantially improves the perfor-
mance of BiB with AM, as BiB(AM) solves almost 1,000
more levels than BiB(AM, NPT). The improvement pre-
training provides BiB with FM is much less pronounced.
The action space of the AM scheme is larger than the ac-
tion space of the FM scheme and simple strategies such as
“aim at a pig” are harder to learn from scratch with the AM
scheme. The pre-trained model already assigns high proba-
bility to such simple strategies, which are refined with fur-
ther training with the AM scheme. BiB with FM is also able
to play such strategies in the beginning of training due to the
pre-trained model. However, BiB with FM is unable to learn
stronger policies. We conjecture that this happens because
FM constrains the action space and the good policies BiB
with AM learns are not available in FM space.

DQ-Birds is competitive with BiB(FM), but it solves ap-
proximately 1,000 fewer levels than BiB(AM) at the end
of training. We conjecture that the search BiB performs
helps the agent be more effective at collecting training data
than DQ-Birds. That is, the policy sample traj employs
might be unable to quickly guide the agent to a solution of
a given level, but sample traj can compensate for the
weak policy with search. The use of abilities might also ex-
plain the difference between BiB and DQ-Birds. While BiB
explicitly learns a policy for deciding when to use the abili-
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to account for the number of throws NA performed while
labelling the data used to pre-train the model.

ties, DQ-Birds uses a hard-coded heuristic to use them.

Test Evaluation
Table 2 presents the results of the test evaluation. The aver-
age number of levels solved is computed for different runs
of the system trained with a different models (the three mod-
els trained in the first experiment). We highlight the best
results in bold. Naturally, all methods perform better if al-
lowed a larger computational budget (see rows for n = 1 and
n = 40) and the search algorithms using a trained model,
DFS and DFS(NPT), perform better than the RW method for
a fixed budget. The BiB(AM) model with DFS and n = 1
performs comparably to other RW models with n = 40. This
result provides an approximated measure of how much one
gains in terms of computational budget when training a pol-
icy with BiB.

Similarly to what was observed in the training evalua-
tion, the use of pre-trained model increases the performance
of both AM and FM, with the difference being more pro-
nounced for AM. Finally, both BiB(FM) and BiB(AM) solve
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n DQ-Birds BIB(AM) BiB(FM) NA
RW DFS RW DFS(NPT) DFS RW DFS(NPT) DFS

1 20.5± 7.8 175.0± 9.9 48.3± 25.1 243.3± 7.8 379.0 ± 3.6 25.3± 11.1 198.0± 6.2 287.3± 7.6 116.3± 11.5
40 371.0± 49.5 596.0± 14.1 395.2± 79.3 649.7± 10.7 729.7 ± 12.0 406.0± 58.2 649.3± 13.0 689.7± 7.8 529.0± 40.8

Table 2: The table shows the average number of levels solved and the standard deviation of different agents with computational
budget n of 1 and 40 throws. The average is computed by running DFS with the 3 different models trained in the training
evaluation experiment. We also run RW 3 times and report its average results as well as its standard deviation.

DQBirds BiB
SimbaDD NA

RW DFS AM
sample traj

AM
DFS

AM
RW

FM
sample traj

FM
DFS

FM
RW

6.67± 3.10 14 19.33 ± 1.15 15 7.33± 3.51 14.33± 0.58 12 4.67± 4.04 15.67± 0.58 9.00± 1.00

Table 3: Average number of levels solved and standard deviation on 20 levels from the 2017 AIBirds competition.

more levels than DQ-Birds, with BiB(AM) with the pre-
trained model and DFS solving more levels than all the other
methods for a fixed computational budget.

Competition Evaluation
In this section we evaluate BiB’s generalization to levels
sampled from a distribution different from the one used in
training. Table 3 presents the results on 20 levels from the
2017 AIBirds competition. We highlight the best result in
bold. In addition to RW and DFS, we also evaluate the BiB
sample traj. For both DQ-Birds and BiB we selected the
best performing model in terms of levels solved during train-
ing, out of the three trained. We run sample traj and RW
three times with the selected model and present the average
number of levels solved and the standard deviation of the re-
sults. Since DFS is deterministic, we run the algorithm only
once with the selected model.

The RW models solved a small number of levels on aver-
age; RW with the AM action space performed best amongst
the RW methods with 7.33 levels solved. The DFS with DQ-
Birds and BiB models solved fewer levels than SimbaDD.
The BiB models performed better with sample traj than
with DFS, especially AM. BiB(AM) with sample traj
solved almost all levels on average, which is far better than
all other methods tested. Both the DFS and sample traj
results show that the policies learned with DQ-Birds and
BiB can generalize to levels sampled from a distribution dif-
ferent than the one used in training. The results of BiB(AM)
and sample traj show that the policies BiB learned can
outperform successful approaches such as SimbaDD.

Conclusions
In this paper we presented Birds in Boots (BiB), a system
that combines search and learning to train a policy for play-
ing Angry Birds. BiB uses the Bootstrap system to itera-
tively solve levels from a training set. BiB uses the data col-
lected from the solved levels to further improve its policy.
The neural model BiB employs predicts both the angle in
which a bird is to be thrown and the time in which the bird’s

special ability is to be activated. BiB uses a sampling-based
policy-guided search algorithm that is suitable to the settings
where it is computationally expensive to simulate actions.
Empirical results showed that the policy BiB learns general-
izes well not only to unseen levels sampled from the same
distribution used in training, but also to levels sampled from
a similar but different distribution. Namely, BiB performed
well on levels from the AIBirds competition, solving more
levels than all systems tested, including a rule-based system
that placed in second in the latest competition.

Enhancing PCG Systems As future work, BiB might be
used to enhance procedural content generation (PCG) sys-
tems. Once BiB is able to train a strong neural policy, one
can then use it to check for the solvability of levels a PCG
system generates. We can then try to generate harder and
hopefully more interesting levels by removing birds from the
levels, similarly to how we generated the levels for our ex-
periments. This is an interesting direction for future works.

Acknowledgements
We would like to thank Lucas N. Ferreira for helping with
the Science Birds platform. This research was funded by
Brazil’s CAPES and by Canada’s CIFAR AI Chairs pro-
gram.

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning
heuristic functions for large state spaces. Artificial Intelli-
gence 175(16-17): 2075–2098.

Churchill, D.; and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1–8. IEEE.

Ferreira, L.; and Toledo, C. 2014. A Search-based Approach
for Generating Angry Birds Levels. In Proceedings of the
9th IEEE International Conference on Computational Intel-
ligence in Games, CIG’14.

80



Ferreira, L. N. 2016. Uma abordagem evolutiva para
geração procedural de nı́veis em jogos de quebra-cabeças
baseados em fı́sica. Master’s thesis, Universidade de São
Paulo.
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