
MappyLand: Fast, Accurate Mapping for Console Games

Joseph C. Osborn1, Adam Summerville2, Nathan Dailey1, Soksamnang Lim1

1 Pomona College
2 California State Polytechnic University, Pomona
joseph.osborn@pomona.edu, asummerv@cpp.edu

Abstract

We present MappyLand, a rewrite and enhancement of the
earlier Mappy automatic game mapping system, which lever-
ages instrumentation of a game console emulator to produce,
from a sequence of game inputs, accurate annotations for ac-
tion/adventure games including object detection and tracking,
in-game camera movement, grid-based tile maps, and links
between identified disparate spaces. The overhead of gener-
ating these annotations is on the order of one millisecond per
observed frame.
We also show a higher latency (but still online) algorithm
for merging together previous observations of distinct game
maps for the purposes of agent localization across a long pe-
riod of time. Specifically, our system can determine a con-
sistent graph of game rooms from a set of strings of game
rooms, capturing behaviors like backtracking and synthesiz-
ing observations from multiple play sessions.
Altogether, this fast, accurate approach to mapping yields
new and useful knowledge representations and expedient
ways to produce new datasets given just a game and some
example play.

Introduction
Mappy (Osborn, Summerville, and Mateas 2017) was a set
of techniques and prototype Python program for mapping
video game levels via interaction with a game console emu-
lator. Because of its performance issues, off-line algorithm,
and its inability to recognize previously visited rooms, we
have rewritten it in the Rust programming language and re-
vised its core algorithms to obtain a roughly 1000x perfor-
mance improvement. Our new real-time and online version
is called MappyLand, as it now can address not just single
rooms and their transitions, but form an accurate map when
the same room is traversed repeatedly.

Model-free reinforcement learning has been a popular ap-
proach for game playing artificial intelligence over most of
the past decade (Justesen et al. 2019). However, it is overly
reductive to treat videogame understanding and play as sim-
ply a problem of picking the most rewarding move at a given
moment. In games like The Legend of Zelda and Metroid, the
player might revisit the same room dozens of times during a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The first level of Castlevania, extracted automati-
cally from observations of play.

playthrough, with different items in their possession or hav-
ing defeated certain bosses. In Dragon Warrior or Final Fan-
tasy, the player can wander around the same small region of
the world for hours defeating monsters and increasing their
characters’ statistics. Since these measures of progression
are often not shown in a single screenshot of a game (or even
in a few minutes of video) they would be indistinguishable
to game playing algorithms that work from instantaneous
vision alone. Approaches based on exploration and curiosity
have begun to do well for simple adventure games like Mon-
tezuma’s Revenge (Ecoffet et al. 2019), given some domain
knowledge; but it is difficult to see how this would scale up
to larger, longer adventure games with more backtracking.

Many games simulate the movement of characters in
continuous or gridded spaces linked together via discrete
jumps. Examples include the worlds and stages of Castle-
vania (Fig. 1) or Super Mario Bros., the dungeon rooms of
The Legend of Zelda, and the network of levels to select in
Bionic Commando or Super Mario Bros. 3.

The underlying assumption that makes it hard to scale
these approaches up to more complex games is that of seeing
a game as merely a black-box transition system—an over-
abstraction that discards important structuring information.
Based on the game design theory of operational logics (Os-
born, Wardrip-Fruin, and Mateas 2017), we consider action-
adventure games as being comprised of linked spaces in-
habited by entities; by focusing on the Nintendo Entertain-
ment System (NES) (an easily emulated and well-understood
hardware platform from the mid-1980s), we obtain a sys-
tem which, given a game and a sequence of controller in-
puts, observes the movements of characters through spaces
in an online fashion and efficiently builds a model of the

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

66



in-game camera movements and game world at large. This
model accounts for spaces which are themselves dynamic
(e.g., the destructible blocks in Super Mario Bros.) and non-
Euclidean (exiting through a doorway and then re-entering
it might take you to a new, third room).

Beyond game play, MappyLand promises to expedite the
development of game-centric datasets like the Video Game
Level Corpus (Summerville et al. 2016) and to mitigate re-
liance on synthetic data (Kim, Kim, and Osborn 2020). It
also affords new opportunities for improving the accessibil-
ity of games for players with visual perception challenges.

Related Work
The idea of combining a set of static snapshots into a more
coherent understanding of the world as a whole is common
in the domains of photogrammetry (Ackermann 1984) and
Structure from Motion (Ullman 1979). The field of robotics
also addresses the problem of Simultaneous Localization
And Mapping (SLAM) (Smith and Cheeseman 1986) which
tries to solve the problem of accurately constructing a map
of the world while also situating an agent’s location in that
map.

The problem of mapping videogame worlds is, of course,
important to communities of game players; games are ei-
ther mapped by hand (Leung 2017) (often by stitching
together screenshots) or by game-specific, purpose-built
tools (Hansen 2017). In the former case, the resulting maps
are just images—grids of pixels with no particular seman-
tics. In the latter case, richer maps can be obtained, but the
process is tedious and hard to generalize as each game stores
map data in ROM in its own particular way.

Obtaining high-quality game maps is important for the
computational creativity community, especially in the area
of procedural content generation via machine learning
(PCGML). High-quality corpora like the Video Game Level
Corpus (Summerville et al. 2016) are time-consuming to
create, so some researchers have devised automatic tech-
niques for particular games, making certain simplifying as-
sumptions or assuming foreknowledge of the level compo-
nents (the terrain and other graphics used in composing the
level) (Guzdial and Riedl 2016). Our approach, in contrast,
uses no specific knowledge about the game under consider-
ation except the assumption that it is a game where a player
controls one or more characters moving in a space.

The idea of taking advantage of a simulation (often
games) to obtain high-quality data is well-known in the com-
puter vision community (Richter et al. 2016; Krähenbühl
2018). We note two main differences with this work (besides
the two-dimensional setting): first, we are interested in de-
veloping not only segmentations, but richer spatial data; and
second, we assume slightly less transparency into the oper-
ations of the simulated system. Whereas previous work ob-
tains 3D models, transforms, and shader programs for every
object along with other API-level notions, we work mainly
from pixels with two auxiliary data streams (the positions of
certain objects and the movement of the in-game camera).

Some of the techniques used in MappyLand—in particu-
lar, parts of the in-game camera tracking algorithm—were
pioneered in WideNES (Prilik 2020), an emulator meant to

produce 16:9 widescreen versions of NES games and assem-
ble maps of game worlds by stitching together screenshots;
MappyLand constructs richer models and recognizes returns
to previously seen locations. Several heuristics (including
sprite tracking and room transition detection) are adapted
from Mappy (Osborn, Summerville, and Mateas 2017). Our
key improvements over Mappy are computational efficiency
(our implementation runs in real time whereas Mappy was
off-line only and roughly 1000 times slower), memory com-
pactness, and a more complete knowledge representation
that supports the identification of previously visited rooms,
a key limitation of the original Mappy.

Mapping in particular is important in the speed-running
community, and the idea of instrumenting a game to obtain
maps has recently been explored in wanderbar (Mandelin
2021), for which an automatic mapping plugin specialized
for The Legend of Zelda 2: The Adventure of Link was re-
cently developed. Like these tools, MappyLand runs with a
live emulator in the loop, but it does not rely on any game-
specific knowledge.

MappyLand derives abstract game knowledge at the level
of game rules and design features from general principles
of game design and some instrumentation of the emulator
platform. Of these two givens, the latter can be relaxed in
the presence of robust detection of in-game camera move-
ment and moving object detection. Notably, MappyLand is
exclusively focused on the mapping problem and not the ex-
ploration problem: it relies on a given sequence of inputs
to replay (or interactive play), and our whole emphasis so
far has been on recognizing and interpreting observations,
rather than on automated exploration of a game’s configura-
tion space.

Setting
In this paper, we describe algorithms and knowledge rep-
resentations for mapping NES games. The inputs com-
prise a game (a ROM file) and a series of controller
states; by making use of the open-source emulator core
FCEUMM (CaH4e3 and FCEU Team 2020) with some
modifications we can drive the game using these inputs or
other, synthetic inputs and obtain data from the running
code. As stated earlier, we have constrained our attention
to action/adventure games, so e.g. Punch-Out! or RBI Base-
ball are outside of the scope of the present work. To apply
our approach, the player must control one or more characters
moving in a simulated 2D space.

The NES hardware, first released in 1983 in Japan as the
Famicom, sported a 1.79MHz CPU, 2KB of RAM, and 2KB
of video RAM (NESDev 2017). It would have been impos-
sible for the CPU to both simulate games and render the
61,440 (256×240) on-screen color pixels—storing the pixel
data alone as 8-bit RGB color would require 30 times the
amount of available video RAM, and the number of pixels
to be rendered during a second (at 60 frames per second)
is roughly twice the number of instructions the processor
could execute in a second. Like the Atari 2600 before it,
the NES used specialized hardware (the Picture Processing
Unit, or PPU) to convert from a compact representation of

67



Figure 2: Score displays can use different areas of VRAM.

game graphics to rendered pixels, one raster scanline at a
time.

The PPU’s video memory stores a grid of 8× 8 pixel tiles
and a vector of (usually) 8 × 8 pixel sprites. While tiles are
arranged on a grid, sprites may be rendered anywhere on the
screen. To achieve the effect of a scrolling camera (or a split
screen), the PPU can offset the drawing of the tiles by a num-
ber of vertical or horizontal pixels. Since the 2KB tile grid
is too small to hold a complete game level, generally a game
with large rooms will update tiles in memory in columns
(for horizontal scrolling) or rows (for vertical scrolling) just
as the new column or row is about to become visible.

The PPU runs at triple the clock rate of the CPU, and the
CPU communicates with the PPU by reading from and writ-
ing to particular memory addresses. Based on the approach
used by WideNES (Prilik 2020), we have added instrumen-
tation to the emulator to catch reads and writes involving
these addresses to observe updates to the hardware scrolling
registers of the PPU. This is important not only to know how
and whether the in-game camera has moved, but also to help
distinguish the playfield from menus or other static parts
of the screen. For example, the score display at the bottom
of the screen in Super Mario Bros. 3 (Fig. 2) is positioned
in a separate part of video memory from the playfield, and
scrolling is reset on the scanline just above it; this leads to
some visual artifacts but prevents the user interface elements
from scrolling out of frame as the player moves.

While we currently read memory locations to learn ob-
ject positions (as of the end of the frame), and we monitor
memory writes to certain addresses to determine changes in
scrolling state (during the frame), we could relax these two
constraints given robust vision-based models. In so doing,
we could expand our scope beyond just NES games to in-
clude other 2D games; although the representations used in
the present work do assume a tile-based world with only
foreground and background layers that do not scroll inde-
pendently.

Our system can map NES games with around 1ms per
frame overhead on average. In a test with 34,514 frames of
input (about 575.2 seconds of gameplay), the overhead due
to our system was approximately 1.5ms per frame (emula-
tion on its own took about 0.2ms per frame). Most of this
1.5ms overhead is actually from executing additional emu-
lation steps, as explained in Sec. . Because NES games all
use the same hardware platform and thus we evaluate them
through the same emulator, we do not expect large variations
in performance or overhead for different NES games.

Algorithms
MappyLand relies on a variety of heuristics and algorithms
to generate maps from multiple observations. We’ll ex-
plore these techniques in increasing order of abstraction,
from low-level graphical features up to high level con-
cepts like recognizing portions of previously visited rooms.
Briefly, starting from the emulated system’s memory state
and framebuffer (visual output), instrumented detection of
changes to hardware scrolling registers (NES-specific), and
control inputs, we begin by determining the game’s current
playfield, scrolling state, sprite locations, and whether the
player currently has control. Next, the screen data is inter-
preted as a grid of tiles and registered (with the scrolling
information) onto the current room. Whenever the room
changes (perhaps because the screen has scrolled substan-
tially while the player has not had control), the current room
is finalized and a new room is initialized. Meanwhile, sprites
are tracked from frame to frame (to go from instantaneous
locations to long-term records of object identity and move-
ment) and previously visited rooms are merged together into
a graph of rooms.

MappyLand operates in a loop, where first input is read
from an input source (a physical controller, recorded inputs,
or some other source), a step of emulation is performed, and
the emulator’s state (memory, framebuffer, etc) is analyzed.
This is an essentially online process, and the real-time per-
formance means that new applications are possible that were
not feasible in the original Mappy (e.g., automated support
for accessibility or inclusion in a game playing agent).

Examples in this paper come from the authors’ play on a
representative sample of games. The derived maps are ac-
curate up to human inspection. Because there is no suitable
reference data set for game levels, an automated quantitative
evaluation is beyond the scope of this paper.

Source code is available for MappyLand1 and the modi-
fied NES emulator core 2.

Scroll Registration
The fundamental algorithm on which our system relies splits
the screen into viewports and determines the local coordi-
nate system of each viewport. We call this scrolling detec-
tion or scroll registration, as it relates one frame’s pixels to
those of the next. As mentioned earlier, we hook writes to
and reads from certain memory addresses in the emulator
(writes to 0x2005 and 0x2006 and reads from 0x2002); these
events either manipulate the hardware scrolling registers or
reset the latch used to determine whether writes modify the
hardware scrolling x or y offset. Whenever such a read or
write occurs, we record the scanline on which it happens
and the new values of the x and y scrolling offsets.

After running a frame of emulation, we iterate through
the recorded scroll register updates and record spans which
maintain the same x and y scrolling offsets. Each span is
treated as a candidate playfield. Taking the largest such span
as the main playfield, we further refine it by splitting off
any upper or lower portion which has a thick (24px) solid

1https://github.com/faim-lab/mappy
2https://github.com/faim-lab/fceumm-libretro-hooks

68



Control Inputs

Memory State

PPU Register Changes

Framebuffer

Sprite Detection

Playfield Detection

Control State 
Detection

Sprite Tracking

Read Tiles from 
Screen

Room Change 
Detection

Room Merging

Room Registration

Figure 3: The MappyLand pipeline. Blue represents the inputs to MappyLand, Green the intermediate steps, and Yellow the
output.

Figure 4: Zelda’s menu is not part of the playfield (red grid).

color border. For example, in The Legend of Zelda we do
not want to treat the menu portion of the screen as part of
the playfield; while it is usually contiguous with the room
the player is in, during transitions between rooms it is kept
stationary while the room scrolls out of view (see Fig. 4).

Scroll registration is linear in the number of scroll changes
(a small constant) and is dominated by the time taken to
scan splits for solid color border backgrounds (which is con-
stant given the thickness parameter). The individual opera-
tions are simple, so scroll registration has a negligible cost
(less than 0.1% of the total overhead of the mapping system).
This is a key algorithmic improvement over Mappy, which
had to resort to image registration against a rendering of the
PPU’s nametables, which itself was an error-prone process
that would not work correctly for games that switched CHR
banks while rendering a frame (e.g., Super Mario Bros. 3.

Tile Mapping
Knowing which pixels make up the playfield and what their
grid alignment is, we can aggregate the pixels into a grid
of 8 × 8 tiles. This is done by iterating through 8 × 8 pixel
blocks of the image, with the origin set to the top-left cor-
ner of the first whole grid square, and building a screenful
of tiles where each distinct tile is represented by a unique
identifier. This is more compact than using pixels and al-
lows for quick comparisons of the current screen against the
previous frame’s. Since we know how much the camera has
moved since the last frame and which tiles make up the cur-
rent and previous screens, we can register the new screen on
the existing room to update and extend our map.

Figure 5: The playfield (left) of Super Mario Bros., the cor-
responding known tiles (center), and live sprites (right).

Importantly, we cannot observe every pixel of the
tilemap—some tiles are obscured by overlapping sprites. We
use our oracle for sprite positions to mark these partially
obscured tiles as indeterminate; indeterminate tiles are not
used to extend or update maps (although each room is ini-
tialized assuming it is full of indeterminate tiles). See Fig. 5
for a visual explanation of the mapping process, where each
tile is visualized based on its ID.

The map itself is not stored as a screenful of tiles, but
as a screenful of tile changes: observations that we have
gone from a tile with ID a to a tile with ID b (for example,
from brick to sky). Like tiles, we remember every distinct
observed tile transition, and phrase maps as grids of IDs of
particular known transitions. This leads to an asymptotic re-
duction in memory usage compared to the original Mappy,
which tracked every instantaneous state of every tile every
frame.

This indirection is important to account for levels with
dynamic elements—in e.g. Super Mario Bros., if Mario at-
tempts to break a brick while small, the brick tile will dis-
appear and be replaced by a sprite stand-in that plays an
animation before returning the tile to its place. If we only
stored instantaneous tiles instead of tile changes, we might
be forced to conclude that any sky tile could arbitrarily trans-
form into a brick tile; instead, we observe that we can only
transition from sky to brick if we had previously transitioned
from brick to sky. This strikes an effective balance between
storing all the recorded states of a tile (which makes a com-
pact representation impossible) and preserving too little in-
formation to disambiguate complex tile transitions.

Tile observations of a room could grow arbitrarily in x, y,
and time, so we store rooms internally as a vector of 32×30
tile-transition screenfuls and their locations in world space.

69



Very wide and very tall rooms only use the minimum neces-
sary RAM to store their map data, and RAM usage does not
depend on how long the player spends in the room.

Tile mapping takes amortized constant time, only incur-
ring a linear memory copy when the number of observed
tiles or tile transitions exceeds the allocated space. The time
taken to read the screen pixels from memory dominates the
actual mapping; combined, both account for under a hun-
dredth of the total overhead due to the mapping system.

Sprite Tracking
The NES PPU stores a vector of sprite data; at the end of
each frame we read in this vector to know where sprites are
on the screen. The role of sprite positions in mapping was
explained in the previous section, but there are some quirks
of the hardware and game software that we must address.

First, since most game characters are larger than 8×8 pix-
els, game developers build complex characters out of many
simpler pieces. This is evident in the rightmost panel of
Fig. 5, where we see several trace lines extending leftwards
from the player character; some of these make up Mario’s
body, while others occupy the blank space above Mario—
during certain animations or when Mario changes size, these
too might be part of the visible character.

Second, there are certain hardware limits that come into
play: on a given scanline, the NES can only render 8 sprites
(any subsequent sprites overlapping that scanline are not
drawn); moreover, the hardware can only store 64 total
sprites in its memory. Game developers therefore do things
like reversing the vector of sprites on alternating frames to
give the appearance of more than eight sprites on a scanline
(thanks to the slow recovery time of CRT phosphors). Since
there are a limited number of sprite slots available, the same
slot will in general be used for multiple distinct entities.

Altogether, this means that we need some trick to decide,
for each hardware sprite, whether it is a new entity or a con-
tinuation of an existing one (possibly with a new visual ap-
pearance, e.g. due to an animation cycle). This is in essence a
minimum-weight bipartite matching problem, where on one
side we have the known live entities and a special new node
and on the other we have the new sprite observations. To
solve it, we employ a greedy matching algorithm based on
our strong prior of temporal and spatial coherence (sprites
rarely move more than a few pixels per frame). This mini-
mizes the number of candidate matches.

The cost of a match is related to the distance between the
entity’s last known position and the sprite’s position; the pa-
rameters of the sprite (e.g. whether it is flipped horizontally
or vertically during rendering); and the pattern and palette
IDs used to render it. We create new entity tracks when the
penalty of assuming a new entity has been created is cheaper
than forcing a poor match, and delete old tracks when they
have not had a match for several frames in a row. Otherwise,
we extend tracks to which we can assign new observations.

Since the number of sprites is bounded, the cost of this
step is also bounded; it grows quadratically with the number
of active sprites, but in practice this only happens if many
sprites occupy the same region of the screen. Tracking ac-
counts for around a hundredth of the system’s overhead.

Figure 6: The first few rooms of The Legend of Zelda form a
strongly connected graph.

Control Checking
By far, the most expensive aspect of our system is determin-
ing whether the player is presently in control of the game.
A human player develops an intuition for this based on ex-
perience with the game and consistency between their given
inputs and the game’s response; in our case, we exploit the
determinism of the emulator. To know if the player has con-
trol at a given frame, we take a memory snapshot of the em-
ulated system state (its RAM and registers), then run the em-
ulator forwards to pursue two alternative futures for T = 17
frames each: one where the player holds up and right, pe-
riodically pressing one button on the controller; and one
where the player holds down and left, periodically pressing
the other button. If these two lead to worlds that are the same
in terms of the playfield layout and the sprites on the screen,
then we assume that the player’s inputs don’t matter at the
moment and that the player therefore doesn’t have control.
This branching of history is possible because of the mem-
ory snapshot saving and loading features and because we
have an emulator in the loop. After determining control, we
reload the original state and continue with mapping.

Because control checking requires that we emulate a large
number of frames for every one observed frame, this deter-
mination is made every skip = 7 frames. The computational
cost is linear in the number of emulated frames, and when
averaged across all frames it accounts for all but a few per-
cent of the system’s overhead.

This cost is necessary because we do not want to record
map updates when the player has no control, and we need to
know when control is lost and regained to determine whether
the player has moved from one room to another (and to de-
termine which characters, if any, the player controls).

Room Change Detection
Videogame spaces are not real, and they are often non-
Euclidean; doorways serve as portals, and spaces can even
loop back on themselves. Moreover, moving between rooms
can change the game’s state (for example, the monsters in

70



a room might be reset if the player leaves and re-enters a
room). For these reasons, any attempt at mapping must rec-
ognize that game worlds are made of networks of linked
rooms—and we need a means to determine whether we have
moved or are moving from one room to another.

Just as cinematography has certain conventions for ex-
plaining that a scene change has taken place (the establish-
ing shot, the wipe or fade), so do videogames. On the NES,
the two main sorts of scene transition are what we call in-
stantaneous—a fade-out and fade-in—or scrolling, where
the player observes (but does not control!) a smooth slid-
ing transition from the character being at, say, the right edge
of one room to the same character being at the left edge of
a new room. This is distinct from regular scrolling since this
transition takes control away from the player for a time while
the camera pans to the new room. Games like The Legend of
Zelda use both types of transition (Fig. 6): the dark room is
entered and exited through a cave mouth via instantaneous
transitions, while the other rooms use scrolling transitions.

In fact, the temporary loss of control (lasting more than
our empirical parameter R = 45 frames) is a hallmark of
game room transitions that distinguishes them from regular
scrolling movement. During the period between losing and
regaining control, one of two things must happen for our
system to view it as a room transition: either the new screen’s
tiles are substantially different from the previous screen’s (a
Hamming distance of more than D = 400 tiles, out of a
possible 32 × 30 = 960), or more than a screen’s worth of
scrolling has happened since control was lost.

While control is lost, no mapping takes place; if control is
regained and no transition has happened, mapping resumes;
and if control is regained and a transition has concluded, the
old room is finalized (its local coordinate system’s origin is
set to (0, 0)) and a new room is created. A transition from the
old room to the new room is also recorded. Finally, the old
room is merged into any previously seen rooms if possible.

The overhead of this step is negligible and bounded by
a small constant (the calculation of the Hamming distance
between two screenfuls). Room registration is inexpensive
even for large rooms because of the data model we use—for
any registration, no more than four screenfuls of the room
data are read or written, putting a hard bound on the num-
ber of memory accesses needed to update the room. While
sometimes reallocation of the vector of room screenfuls (or
rooms) leads to a linear memory copy, this amortizes to a
constant cost and doesn’t effect the analysis.

Room Merging
Since every transition might result in a new room, we as-
sume that even if our first glimpse of a room is similar to a
previously seen room, it might in fact be a different room we
have never seen before. On the other hand, if we enter what
seems like a novel room, it could be a previously-unseen
part of a room we’ve been in before. We divide the task
of remembering places the system has seen before into two
phases: matching and merging. Instead of storing just a vec-
tor of seen rooms, we also maintain a partial order of meta-
rooms. In this ordering relation, a metaroom has an edge to
another metaroom if it could be part of that room. Meta-

rooms are defined by an unique ID and a vector of registra-
tions—room and coordinate pairs.

After finalizing a room, matching computes the optimal
matching score and offset (if any) to register the room in
question against each metaroom. Since rooms contain dy-
namic tiles that can be destroyed or changed, matching must
take into account not only the currently observed tiles, but
whether the tiles of each room could in principle transition
into the presently observed tiles of another. Moreover, since
one room might have valid registrations in several meta-
rooms, we need to maintain those relationships in case later
information disambiguates the situation.

The match penalty of a room R at some position against
a metaroom is the sum of the minimum change cost of each
tile in R against the corresponding tile (if any) of each room
already in the metaroom. This is defined as 0.0 if the ob-
served tile change is the same or if this tile is absent in either
R or the currently known metaroom; as 0.1 if the target tile
of the change is the same; or as 0.25 if the tile changes point
to each other (one’s from is the other’s to or vice versa).

Whenever a tile in R has a corresponding tile in any room
of the metaroom, we increment a counter. If the number of
comparisons exceeds half the size in tiles of the smaller of
R and the metaroom, and if the net cost is less than some
threshold (determined empirically, presently 16.0), then this
merge position is valid; the best valid merge is committed to
our partial order.

To motivate this complexity, consider Fig. 7, which maps
World 1-1 of Super Mario Bros. This level features a pipe
through which the player can reach a secret coin room and
then re-emerge several screens to the right—skipping nearly
the whole stage! Since the player cannot scroll the camera
left, it is impossible to observe the complete stage in a sin-
gle play. On one trip the player might take the pipe, and on
another trip the player might not; only then could they see
that the main part of the stage is one continuous room! Con-
versely, if the player first played the stage straight through
and then reset and took the pipe, they would recognize on
emerging from the pipe that they had re-entered the same
level and not gone to some different third room. Metarooms
give us a mechanism to account for visiting parts of rooms
in different orders, remembering the individual visits but still
aggregating them into a map.

There is a fundamental ambiguity in room merging, ex-
hibited neatly in the early stages of Metroid. Observe that in
the partial map of Fig. 8, the corridor in the middle is en-
tered from the top room, exited through the bottom room,
and then entered again from the bottom and exited again
to the bottom-right. In fact the middle room is two distinct
rooms, one of which is one screen high and the other several
screens high. These two different rooms are merged since
they are substantially similar, and while in this visualization
it seems that the room exits nondeterministically to one or
another room, the underlying data structures have not forgot-
ten that the two rooms are indeed distinct. In the future, we
might augment this system to leverage the room exit graph
to further disambiguate rooms that seem otherwise identical.

All this flexibility comes at a cost: although merging is in-
frequent, it is slow enough that it ought to be done in a sepa-

71



Figure 7: Super Mario Bros. World 1-1 cannot be fully observed in a single playthrough.

Figure 8: Metroid shows an interesting ambiguity in game
mapping: the middle corridor is really two distinct rooms.

rate thread or possibly off-line. The template matching algo-
rithm is linear in the number of rooms and quadratic in their
dimensions, but is easily parallelizable and offers opportu-
nities for early exit (effectively bounding the average case
performance to a constant). In a longer experiment in The
Legend of Zelda (roughly 10 minutes of play emulated and
mapped in 52.3 seconds), the time spent calculating merges
among 52 rooms (inducing 73 metarooms), averaged across
all emulation frames, was only a few percent of the time
spent computing control checks—although it only needed to
happen 56 times, as opposed to 4,931 control checks. The
net time spent computing merges (3.6s) was about half of
the net time spent determining control (7.7s).

Conclusion and Future Work
We have presented an efficient automatic mapping system
which derives accurate maps from gameplay. We have al-
ready used this system to produce training data for a con-
volutional neural network model classifying camera move-
ments in games; the kinds of maps MappyLand creates have
also been employed in previous research, so this should fa-
cilitate the production of high-quality game level datasets.

The key limitation of our system from a knowledge rep-
resentation standpoint is that it mainly applies to 2D spaces
with a single physical layer—while effects like bridges over
walkable floors are possible to represent (a bridge tile might
imply walkability whether above or below a character), we
cannot yet address cases where parts of the level scroll inde-
pendently of each other. While we could represent a room as
a sort of stack of room layers (each of which with its own co-

ordinate transformation), properly segmenting the room lay-
ers from pixels alone is difficult. Some game hardware (no-
tably the Super Nintendo Entertainment System) has built-in
support for such layers and in principle we could interrogate
the hardware for help there, but in general the problem re-
quires a robust computer vision model.

Immediate future work includes coalescing hardware
sprites into game entities and determining which of these
are controlled by the player. This will involve looking for
hardware sprites which tend to accelerate in the same direc-
tions as nearby neighbors and noticing which entities tend
to accelerate according to the player’s directional input. This
avatar detection could reduce the cost of control checking.

Opportunities for the present work include connecting it
with previous research in learning game design informa-
tion from observations of play, notably CHARDA which de-
rives hybrid automata models of game characters and infers
causal relationships between game events and character be-
haviors (Summerville, Osborn, and Mateas 2017). Using our
system as a feature extraction step for a reinforcement learn-
ing algorithm is also a natural move, as would be leveraging
its representations for automated exploration in the vein of
Go-Explore (Ecoffet et al. 2019).

Generalizing to other game consoles with similar con-
straints (i.e., a single background layer beneath sprites)
should also be straightforward. Examples include the Nin-
tendo Game Boy, Sega Master System, and MSX platforms
among others. On the other hand, the Super Nintendo or
Sega Genesis would require solutions to the problems of
multi-planar rooms and parallax scrolling backgrounds.

Ethical Considerations
An important application of this work is to improve the ac-
cessibility of older games: our approach reveals the positions
of characters on the screen and distinctions between differ-
ent sorts of terrain tiles. In exciting recent work, Aytemiz
et al. suggest the use of AI techniques for making games
more inclusive (Aytemiz et al. 2020), and we feel that our
work could be a means to that end. Mapping is also impor-
tant for problems of preservation and archiving, especially
for games which are difficult to emulate correctly.

By the same token, automatic mapping could pose some
copyright concerns since it facilitates the extraction of game
assets including images and maps from games. We argue
that the potential benefits to accessibility outweigh these is-
sues, since there are plenty of ways to extract such assets
already and sufficient mechanisms for enforcing copyright
employed by game publishers.

72



References
Ackermann, F. 1984. Digital image correlation: perfor-
mance and potential application in photogrammetry. The
Photogrammetric Record 11(64): 429–439.

Aytemiz, B.; Shu, X.; Hu, E.; and Smith, A. 2020. Your
Buddy, the Grandmaster: Repurposing the Game-Playing AI
Surplus for Inclusivity. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment.

CaH4e3; and FCEU Team. 2020. Nintendo - NES/Famicom
(FCEUMM). URL https://docs.libretro.com/library/
fceumm/.

Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995 .

Guzdial, M.; and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Hansen, K. 2017. Metroid Level Data Explained. URL http:
//www.metroid-database.com/m1/lvldata.php.

Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2019.
Deep learning for video game playing. IEEE Transactions
on Games 12(1): 1–20.

Kim, C.; Kim, J.; and Osborn, J. C. 2020. Synthesizing
Retro Game Screenshot Datasets for Sprite Detection. In
2020 Experimental AI in Games Workshop.

Krähenbühl, P. 2018. Free supervision from video games.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2955–2964.

Leung, J. 2017. The Videogame Atlas. URL https://vgmaps.
com/Atlas/.

Mandelin, C. 2021. Wanderbar SNES v1.0 + Wanderbar
NES v1.0 + Wanderbar GB/GBC/GBA v.10. URL {http:
//tomato.fobby.net/wanderbar/}.
NESDev. 2017. NESDev Wiki: NES Reference Guide. URL
http://wiki.nesdev.com/w/index.php/NES reference guide.

Osborn, J.; Summerville, A.; and Mateas, M. 2017. Auto-
matic mapping of NES games with Mappy. In Proceedings
of the 12th International Conference on the Foundations of
Digital Games, 1–9.

Osborn, J. C.; Wardrip-Fruin, N.; and Mateas, M. 2017. Re-
fining Operational Logics. In Proceedings of the 12th Inter-
national Conference on the Foundations of Digital Games.

Prilik, D. 2020. WideNES. URL https://prilik.com/ANESE/
wideNES.html.

Richter, S. R.; Vineet, V.; Roth, S.; and Koltun, V. 2016.
Playing for data: Ground truth from computer games. In Eu-
ropean conference on computer vision, 102–118. Springer.

Smith, R. C.; and Cheeseman, P. 1986. On the representa-
tion and estimation of spatial uncertainty. The international
journal of Robotics Research 5(4): 56–68.

Summerville, A.; Osborn, J.; and Mateas, M. 2017. Charda:
causal hybrid automata recovery via dynamic analysis. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 2800–2806.
Summerville, A.; Snodgrass, S.; Mateas, M.; and Ontanón,
S. 2016. The VGLC: The video game level corpus. In Pro-
ceedings of the 7th Workshop on Procedural Content Gen-
eration.
Ullman, S. 1979. The interpretation of structure from mo-
tion. Proceedings of the Royal Society of London. Series B.
Biological Sciences 203(1153): 405–426.

73


