Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE 2021)

Tile Embedding: A General Representation for Level Generation

Mrunal Jadhav and Matthew Guzdial

Department of Computing Science, Alberta Machine Intelligence Institute (Amii)
University of Alberta, Canada
{mrunalsu, guzdial } @ualberta.ca

Abstract

In recent years, Procedural Level Generation via Machine
Learning (PLGML) techniques have been applied to gener-
ate game levels with machine learning. These approaches rely
on human-annotated representations of game levels. Creating
annotated datasets for games requires domain knowledge and
is time-consuming. Hence, though a large number of video
games exist, annotated datasets are curated only for a small
handful. Thus current PLGML techniques have been explored
in limited domains, with Super Mario Bros. as the most com-
mon example. To address this problem, we present tile em-
beddings, a unified, affordance-rich representation for tile-
based 2D games. To learn this embedding, we employ au-
toencoders trained on the visual and semantic information of
tiles from a set of existing, human-annotated games. We eval-
uate this representation on its ability to predict affordances
for unseen tiles, and to serve as a PLGML representation for
annotated and unannotated games.

Introduction

Procedural Content Generation via Machine Learning
(PCGML) is the generation of game content using Ma-
chine Learning (ML) models trained on existing data (Sum-
merville et al. 2018). Unlike when machine learning is ap-
plied to image generation, PCGML models cannot train only
on raw pixel representations of game content like levels.
Game content obeys structural and functional constraints to
ensure playability. This creates a need for secondary repre-
sentations that capture the behaviour of game objects outside
of pixels alone. Converting level screenshots to a parseable
format requires annotations by experts or fan communities
(Summerville et al. 2016). Thus PCGML applications are
limited to a handful of domains where annotations exist.

A level is a space the player travels through, interacting
with objects like enemies and collectibles. A common ap-
proach to representing a game level is to map the pixel rep-
resentation of game objects to a set of characters called tiles.
Each tile is associated with a set of in-game affordances.
Affordances convey the conceptual idea of the object and
capture the possible interactions of the player with the ob-
ject (Bentley and Osborn 2019). For instance, the Goomba

& in Super Mario Bros(SMB) has the affordances Enemy,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

34

Damaging, Hazard, Moving in a common PCGML repre-
sentation (Summerville et al. 2016). Curating these datasets
requires manual effort and the representations are game-
specific. Consider the problem of training a PCGML model
for generating levels of the game Bubble Bobble. Since no
annotated representation of its levels exists, we would have
to parse the levels ourselves. This typically involves a series
of tasks including processing images with OpenCV, human
editing, extracting a reduced set of representative tiles, and
tagging them with appropriate affordances based on their be-
haviour (Summerville et al. 2016). This represents a signifi-
cant amount of work.

While each tile character is mapped to a set of affor-
dances, the affordances are not directly included in the rep-
resentation. For instance, the Goomba & s represented
with character ‘E’ in the above-mentioned representation,
and affordance-mapping is present in a separate JSON file.
Hence, at their core, the level generation tasks that lever-
age these representations address problems as a character
generation process. Appropriate visual reconstruction also
impacts the choice of tiles to include. This enforces the re-
quirement of position-specific tags in the affordance set of
the tile/character. For instance, in SMB there are repeated
pipe objects of different heights. They are often represented
with four different tiles, ‘[, ‘]’, ‘<’, >’ representing the
bottom-left [, bottom-right K. top-left [ and top-right [
of a pipe respectively. In other instances, PCGML practition-
ers must author secondary processes to visualize levels, such
as mapping different characters/tiles to different images de-
pending on their y-position (Summerville et al. 2016).

The current, state-of-the-art PCGML level representation
has a number of drawbacks, requiring substantial human
effort when collecting data, game-specific representations,
and extra processing to visualize generated levels. To
address these challenges, we present a domain-independent,
affordance-rich representation of game levels, reducing the
reliance on manual translations and domain expertise. We
draw inspiration from word embeddings (Mikolov et al.
2013) and present tile embeddings, which integrate visual
and semantic information. !

The main contributions of this paper are :

1. We propose tile embeddings as a representation for Proce-



dural Level Generation via Machine Learning (PLGML).

2. We demonstrate that our tile embeddings can approximate
the affordances of tiles from unseen games.

3. We apply this representation to level generation and
demonstrate equivalent or better performance compared
to the current, state-of-the-art representation.

4. We demonstrate the ability to apply our representation
to level generation for an unseen game, allowing for
PLGML applications for any tile-based 2D game.

Related Work

In this section we discuss autoencoders and current level
representation practices in PCGML, overview word embed-
dings, and cover prior work on game embeddings.

Autoencoders Prior research has successfully employed
autoencoders (Hinton and Salakhutdinov 2006) and Vari-
ational Autoencoders (VAEs) (Kingma and Welling 2013)
for PCGML tasks (Thakkar et al. 2019; Sarkar, Yang, and
Cooper 2020). An Autoencoder is an unsupervised model
that learns to transform data into a compact vector repre-
sentation while a Variational Autoencoder (VAE) maps data
to a probabilistic distribution. Jain et al. (Jain et al. 2016)
were the first to demonstrate that autoencoders could learn
representations useful in downstream PCGML tasks. Guz-
dial et al. (Guzdial et al. 2018) presented an explainable co-
creative tool using an autoencoder by learning existing level
structures and associated design pattern labels. While these
works do not directly focus on embeddings, the essence of
our approach is in learning and optimizing a latent represen-
tation. Alvernaz and Togelius (Alvernaz and Togelius 2017)
trained an autoencoder to generate a low dimensional repre-
sentation of a videogame environment which was then used
in a reinforcement learning framework. This is similar to our
approach as we learn a level representation using level struc-
ture and affordances. However, it focused on automating
gameplay while our focus is automating design. Addition-
ally, all these previous approaches are based on representa-
tions of chunks of levels or entire levels. In our work, we
focus on a representation for tiles, a level’s building blocks.

Level Representation Most PCGML approaches address-
ing level design tasks rely on datasets of annotated images
(Summerville and Mateas 2016; Snodgrass and Ontanén
2017; Beaupre et al. 2018; Sarkar, Yang, and Cooper 2020),
or gameplay videos (Guzdial and Riedl 2016). A notable
contribution to the current Game Al research community is
the Video Game Level Corpus (VGLC) (Summerville et al.
2016). It presented a training corpus for 12 games consist-
ing of level images and parseable text files in three differ-
ent formats: tiles, graphs, and vectors. This work has gained
popularity with 77 citations at the time of this writing.

How one determines a set of affordances for tilesets is an
open area of research. While most PCGML approaches rely
on the hand-authored set from the VGLC or similar repre-
sentations, there has been some effort to try to derive these

'The implementation is available at https://github.com/js-
mrunal/tile_embeddings

35

in a more grounded way. Summerville et al. (Summerville
et al. 2017) attempted to learn the semantic properties of
tiles from gameplay. Snodgrass (Snodgrass 2018) clustered
potential tiles into groups and estimating their quality based
on levels generated using these potential tiles. For cluster-
ing, the neighbouring tiles surrounding a tile played an im-
portant role. We incorporate a similar concept by training
on the combination of the visual context of neighbouring
tiles with the affordances from the VGLC. For level blend-
ing tasks (Sarkar et al. 2020), which combine different game
representations, there’s a need to come up with a joint set of
affordances across games, but this is typically done by hand.
Bentley and Osborn (Bentley and Osborn 2019) presented
an annotation tool and a common set of nine affordances.
We leverage the affordances from this tool.

Embedding Vectors Word embeddings (Mikolov et al.
2013) are extensively used in modern NLP tasks. Each word
is represented as a continuous d-dimensional vector de-
noted by w® € R? The low-dimensional representation
captures the word’s meaning (semantics) from streams of
text. Words related to each other are placed closer in the
vector space, and relationships between words are encoded
as the differences between these points. A popular word
analogy that can be demonstrated by this vector space is

k:i?zg — quéen + woman = quéen, which demonstrates
an understanding of concepts and context by the model.

World models represent a novel approach to learning to
represent an entire game or similar virtual environment as
a neural network (Ha and Schmidhuber 2018; Kim et al.
2020). Related to this, Yousefzadeh Khameneh and Guz-
dial (Khameneh and Guzdial 2020) used a VAE to extract
embeddings of the entities in a game, which they call en-
tity embeddings, which encoded information of gameplay
elements. We instead focus on capturing the level struc-
ture in our representation and define tile embeddings as a
d-dimensional vector in an embedding space encoding the
semantic information of a tile.

System Overview

The goal of our work is to learn an affordance-rich embed-
ding of a tile as a Procedural Level Generation via Machine
Learning (PLGML) representation. We employ the widely-
used autoencoder framework to learn this embedding. Our
training data consists of five classic Nintendo games- Super
Mario Bros, Kid Icarus, Legend of Zelda, Lode Runner and
Megaman, which are all 2D, tile-based games. Figure 1 il-
lustrates our architecture, described in detail below.

We draw on local pixel context and affordances asso-
ciated with the tiles from the VGLC (Summerville et al.
2016). We incorporate affordances as an input since the vi-
sual similarity between tiles can be deceptive. Tiles that
differ in pixel appearance may have the same behaviour,
such as the recoloured tiles in Figure 2. Further, when af-
fordances are not known, the neighbourhood context could
be crucial for the embedding vector. For instance, a brick
may depict a [‘solid’, ‘breakable’] object in one game, but
a background pattern in another game with the affordances
[‘empty’, ‘passable’]. However, in this case, the bricks in the



Candidate Tile : E Affordances: Passable, Collectible ‘

(256,) Tile Embedding

Convolution
Network
Jgf_fgé Flatten
0,1.0,0,...,0]
Input 2: (13,)

Multi-hot encoding of Layer
affordances
Dense Layers  jmage and
Affordance

Concatenation

feature vector

l

Deconvolution

Network
Qutput 1:
Reshape 16*16*3
0 Candidate tile
1
v]
sigmoid .
=0.5
Dense Layers 0

Output 2: (13,)

Figure 1: Network Architecture.

Lode Runner

| Legend of Zelda ’ |

Figure 2: Neighbourhood Context for Tiles.

latter case would repeat in a way similar to solid coloured
sky tiles in other games. Thus the placement of a tile’s em-
bedding value in the latent space is influenced not only by
the visuals of the tile but also by its behaviour and relation-
ship with the neighbouring tiles.

Local Pixel Context

One part of the input to our autoencoder is the pixel repre-
sentation of a tile and its neighbouring tiles as demonstrated
in Figure 2. For this, we use the level images from the VGLC
Corpus. To capture local context, we slide a 48%48 pixel
window, as we use a 16¥16 tile representation, over the im-
ages to extract all unique contexts. By unique we indicate all
possible combinations of VGLC tile types in the neighbour-
hood of the candidate tile, it does not matter if the tiles differ
in terms of their pixel appearance. We made this choice to

36

reduce class imbalance in tile types, as “empty” background
tiles occur much more frequently than all others.

Semantic Context and Unified Affordances

The other input to our model is the affordances of the can-
didate tile. The annotations for each of the tiles are obtained
from the JSON files stored in the VGLC Corpus (Sum-
merville et al. 2016). However, these are all game-specific,
thus it is necessary to map the different game affordances
to a single, unified set. Based on prior work (Bentley and
Osborn 2019; Sarkar et al. 2020), we employ the following
13 common tags: Block, Breakable, Climbable, Collectable,
Element, Empty, Hazard, Moving, Openable, Passable, Pipe,
Solid, Wall. For example, Climbable, Passable refers to tiles
such as stairs, ropes, and ladders. The player can use these
tiles to move in the vertical direction or can choose to pass
the tile and continue on their original path. Hazard covers all
harmful obstacles to the player such as spikes, cannons, and
enemies. The affordances for each tile are then expressed as
a multi-hot vector, with 1 at the index of features that are
present for this tile, and 0 otherwise.

Model Architecture

An autoencoder is a feedforward multilayer neural network
architecture that learns a compressed representation of the
input to capture key structures. In our work, we adapt the
X-Shaped VAE architecture proposed by Simidjievski et
al. (Simidjievski et al. 2019). The encoder consists of two
branches that process the individual inputs. The outputs of
the two branches are merged and compressed into a single
embedding vector which we employ as our tile embedding.



The decoder network again splits into two branches to re-
construct the desired outputs.

The 48*48 pixel input is fed to a three-layer encoder con-
volutional network - the first with 32 (3*3), then 32 (3*3)
and finally 16 (3*3) filters. Each layer is followed by Batch
Normalization and then Tanh Activation. Batch normaliza-
tion applied before a non-linear activation function stabilizes
the distribution of the input and reduces the divergence risk
(Ioffe and Szegedy 2015). This output is flattened to form a
one-dimensional image feature vector. In parallel, the multi-
hot feature vector of affordances is passed through two fully
connected layers of sizes 32 and 16 with Tanh activation for
a feature vector encoding of the affordances.

We concatenate the output of both branches and pass
it through a fully connected layer to get a (256,) dimen-
sional tile embedding. This captures the relationships be-
tween branches in a common latent representation. This
merging of information is crucial in cases where the affor-
dance information is unknown, such as when we wish to
derive tile embeddings for a new game. We hypothesize in
these cases that we can approximate reasonable affordances
based on pixel data alone.

The decoder is close to an inverse of the encoder. A three-
layer deconvolutional network upsamples the embedding
vector to reconstruct the pixel portion of our output. Given
that we want an embedding for individual tiles, we recon-
struct just the 16*16 centre tile. In parallel, in order to recon-
struct the affordances, we include two fully connected layers
of sizes 16, and 32. The output of these layers is finally con-
nected to a dense layer with Sigmoid activation representing
the affordances of the centre tile.

We trained this model with the adam optimizer and two-
loss functions. For the image output, we use mean square
loss. The multi-label prediction task for our N affordances
can be formulated as N independent binary classification
problems and so we use binary cross-entropy loss as our sec-
ond loss function. However, our training dataset does not
have equal instances of each label. To counter this prob-
lem of class imbalance, we derived a TF-IDF vectorizer to
compute an importance score for each label based on its fre-
quency. We use this as the weight for each label and define
our binary cross-entropy as,

N
Weighted BCE = — Z yilog(P(y;)) *w; (1)
i=1

where, y; is the ground truth, P(y;) is the predicted proba-
bility for label 7 in N, and w; is the TF-IDF weight for label
1. The objective function combines the two above loss func-
tions with a weighted linear combination. We use the weight
0.8 for the image loss and 0.2 for the affordance loss, which
we derived empirically. During training, we employ 20% of
our training data as a validation set and apply early stopping
to avoid overfitting (Prechelt 1998; Hawkins 2004).

We include a t-SNE (Van der Maaten and Hinton 2008)
visualization of our learned latent space (Figure 3). It shows
a good mix of our tile embeddings across different games.
Lode Runner is over-represented as it has the most samples
of any game. However, even games like Legend of Zelda,

37

*.

lede_runner megaman m legend_of zelda 4 smb ¢ kid_icarus

Figure 3: t-SNE Visualization of Embedding Space.

which are very different from the other games, are fairly
evenly distributed across this latent space, indicating it has
been able to generalize across the different games.

Evaluation

In this section, we discuss the three evaluations of our sys-
tem. First, we approximate affordances for tiles of unseen
games. Second, we compare tile embeddings and the VGLC
tile representation on a level generation task. Finally, we
demonstrate the application of tile embeddings for gener-
ating levels of a game with no annotated data.

Cross-fold Affordances Analysis

We employ a cross-fold analysis over our five games: Super
Mario Bros, Kid Icarus, Legend of Zelda, Lode Runner, and
Megaman. Our model is trained on four games with the fifth
game held out as test data. We extract and pass 48*48 pixel
contexts from test levels as the input to our trained model.
We act as though their affordances are not known and pass a
(13,) array of zeros as the second input. This allows us to ap-
proximate a situation in which we are attempting to predict
the affordances for an unseen game.

Evaluating the predicted affordances is a multi-label pre-
diction task where the predicted output may be fully correct,
partially correct, or fully incorrect. We therefore employ a
number of metrics. Exact Matching Ratio (EMR) indicates
the percentage of test examples where the predicted labels
are exactly correct. EMR can be harsh in a multi-label set-
ting. Hence we adopt example-based and label-based evalu-
ations from (Sorower 2010) with the metrics: Precision, Re-
call, Accuracy to evaluate our model for partial correctness.
We include Example-based versions of these metrics, which



are applied on each instance and averaged over the num-
ber of instances in the dataset. For the Label-based version
of these metrics, we investigate their values for individual
labels and compute the average on each label’s precision,
recall and accuracy independently. The example-based met-
rics allow us to determine our performances in terms of all
the labels (affordances) of each tile, whereas the label-based
metrics capture the performance in terms of individual labels
(empty, hazard, etc.). Accuracy provides an intuition of the
model’s correctness in predicting true positives(TP) and true
negatives(TN). However, for a sparse prediction vector, ac-
curacy may be misleading. To understand the performance
of the model at predicting positives accurately, we employ
Precision and Recall. Of all the labels that the model pre-
dicted (TP+FP), precision indicates the percentage of labels
that were actually true (TP). On the other hand, Recall is the
percentage of true labels that the model was able to capture
(TP/ (TP+FN)). To further investigate misclassification and
missing-label errors, we adopt a more robust metric: Alpha
Evaluation (Boutell et al. 2004). Alpha Evaluation weights
missing-label errors (M) and misclassification errors (F),)
separately using parameters [ (for missing-label) and ~y (for
misclassification). v controls the forgiveness for errors. Al-
pha Evaluation is given by the formula,

|BM, + VFy| .,
AT R )

such that « > 0, 0 < 3,8 = 1|y = 1, where Y, is the
ground truth and P, are the predicted labels.

alpha score = (1

LSTM for Level Generation-Annotated Game

In this evaluation, we directly compare our tile embed-
ding representation to the state-of-the-art VGLC represen-
tation for one game. LSTMs are a special type of RNN
with a memory mechanism at the heart of their architec-
ture. LSTMs have been extensively used in PLGML. We
adapt the work of Summerville and Mateas (Summerville
and Mateas 2016) and train two similar LSTM networks, one
with the VGLC tile representation and the other with our tile
embeddings to generate levels for the game Lode Runner.
We chose Lode Runner due to the results of the first eval-
vation. Lode Runner tiles are 8*8 pixels in size. To fit this
to our autoencoder architecture, we upscaled the level im-
ages using the Python Imaging Library (PIL) such that each
tile has a dimension of 16*16 pixels. We trained our model
to consider a history of the last 3 rows (approximately 100
tiles) and generate the next 3 rows at a time. Similar to Sum-
merville and Mateas’ work, to track the progression of the
level, we include column depth as an input to the network.
The only differences between the two network implementa-
tions are in the input and output layer due to the differences
in representation.

Input Layer: Before training an LSTM on tile embed-
dings, each level is converted to an embedding representa-
tion with our trained autoencoder model using context win-
dows and affordances. For instance, a (512 * 352*3) level
image of Lode Runner is converted to a (32*%22%256) repre-
sentation. The other LSTM is trained on the (32*22) charac-
ter representation obtained from the VGLC dataset.

38

Output Layer: For the LSTM trained on our embedding
representation, the output layer predicts the embedding di-
rectly. It is modelled as a (256,) Dense layer with Tanh acti-
vation. Before visualizing a level, we map the predicted em-
bedding to the nearest actual embedding. We use the mem-
ory efficient Annoy library? to index the embeddings and
find the nearest neighbor based on the Manhattan distance.
For the VGLC representation, the output of the LSTM is
connected to a dense layer with Softmax activation indicat-
ing the probability of a tile character. We perform an expres-
sive range analysis of generated levels with the metrics: Lin-
earity and Leniency (Summerville 2018; Smith et al. 2010;
Marifio, Reis, and Lelis 2015).

* Linearity profiles the structure of a level in terms of how
well it fits to a line. Linearity is computed by performing
linear regression on centre points of all the platforms. We
then compute the average distance between each centre
point and its projection on the regression line. The score is
normalized between [0,1] by dividing by the total number
of centre points.

* Leniency measures the difficulty of the level. We assign
rewards with weight 1 and enemies with weight -1. We
then calculate the sum of leniency values and average it
with the total number of tiles.

LSTM for Level Generation- Unannotated Game

As our third evaluation, we apply tile embeddings for gen-
erating levels for the game Bubble Bobble. We chose this
game because no annotated dataset for it currently exists.
We download 100 Bubble Bobble level images as our train-
ing dataset.> We extract tile embeddings by passing the
48*48 pixel context and a (13,) zero vector to an autoen-
coder trained on all five NES games. We employ the same
architecture as we did for Lode Runner to train an LSTM
on the embedded level representation. The majority of the
Bubble Bobble levels are vertically symmetric, and so we
parse the levels column-wise. Our model is trained to gener-
ate the right half of the level when the left half is fed as an
input. During inference, we mirror the generated right half
to produce an entire level.

Results
Cross-fold Affordances Analysis

Table 1 presents the results of all the evaluation met-
rics for predicted affordances of unseen game tiles.
The most frequent label combination in our dataset is
['empty’,’passable’] accounting for approximately 32% of
the dataset. The Most Frequent Label (MFL) Baseline in-
dicates the value of our metrics if only the most-frequent
label combination is predicted. We include it as a compar-
ison point in the table and in our discussion of the results
below. For all the metrics, the closer the value is to 1, the
better. Bold indicates the highest value and italic indicates
the lowest value across the test games for our model.

Zhttps://github.com/spotify/annoy
*https://www.adamdawes.com/retrogaming/bbguide/



Test Data Example-based Label-based a-Evaluation with a=1
EMR Prec Recall Acc | Prec Recall Acc | 5=0.25,~7=0.75 p=1,v=1 [=0.75,4=0.25

SMB 0.17 052 049 039|022 023 0.11 0.66 0.29 0.63
Kid Icarus 044 063 055 054|027 030 0.14 0.75 0.45 0.69
Megaman 036 060 061 053|025 032 014 0.71 0.40 0.70
Lode Runner 011 044 027 027|026 017 0.05 0.67 0.17 0.50
LOZ 039 078 061 059|034 017 0.10 0.78 0.43 0.65
Mean 029 059 051 046 | 027 023 0.11 0.71 0.35 0.63
MFL Baseline | 032 046 046 042 | 046 0.15 0.07 0.64 0.30 0. 67

Table 1: Results of evaluation metrics for predicting affordances on unseen tiles

—— VGLC Representation
0.5 Tile Embedding
@ —— Lode Runner Dataset
= 04 —
o
c
2
c 02
L
0.0
-0.2 T T . .
—0.2 0.0 02 04 0.6
linearity
(b) ()

Figure 4: (a) Level generated for Lode Runner by training LSTM on tile embeddings. (b) Level generated for Lode Runner by
training LSTM on VGLC tile character representation. (c) Kernel Density Estimation with Linearity and Leniency

FE FEE 1 e mm

Figure 5: Levels Generated for Bubble Bobble

Exact match ratio (EMR) indicates the percentage of label the most common labels.
combinations identified exactly by the model. On average, In all five games of our dataset, Solid, Passable, Empty
EMR is 0.29 with a standard deviation of 0.14. The perfor- tiles occupy a majority of the level as compared to other
mance is mainly because the metric is aggressive and does tiles. Concretely, these labels together account for 70.8%
not attribute any value to partially correct predictions. The of our training instances. Comparatively higher values on
MFL Baseline achieves 0.32 due to the fact that the label the example-based evaluations than label-based evaluations
makes up 32% of the dataset. However, we still outperform demonstrate that the model is capable of predicting frequent
it for three of the five games. labels and struggles to predict rare labels such as Climbable,

We observe stronger performance on example-based mea- Collectibles, Element, Block, Wall, Hazard. For instance, the
sures that evaluate partial correctness. The average values level design for Legend of Zelda has dungeons composed
observed across all example-based evaluations are better in of Solid tiles which our model is good at predicting. Hence
comparison to our MFL baseline. However, if we evaluate metrics for Legend of Zelda have higher values than other
individual labels, we find lower values. These lower values games. In comparison, Lode Runner has the lowest values
on label-based metrics is likely due to the poor performance for most of the metrics as its levels have a well-proportioned
in predicting rare labels, and due to the over-abundance of set of tiles including Enemy, Collectable, Breakable, Solid,

39



Empty, Passable. It also had the largest set of overall data,
and our model clearly struggled when we withheld these
training samples. However, our tile embeddings are able to
effectively represent Lode Runner levels when trained on
this data, as we demonstrate in the next evaluation.

The table also highlights the effect of different values of
[ and ~ on the a-evaluation scores. Lowering the weight
of misclassification errors () and increasing the weight of
missing errors (), increases the «-evaluation score. This
indicates the presence of more misclassification errors and
fewer missing labels i.e more False Positives.

Overall, we find these results to be heartening, as our
model outperformed our MFL baseline for seven of our ten
metrics, and always performed better than it for at least two
games. This suggests we can approximate affordances on
unseen games. Additionally, for certain use cases like level
generation, getting the exact correct affordances is not re-
quired as long as the latent space representations of similar
entities are close together. This is due to the fact that iden-
tifying the entities with similar behaviour will ensure they
are appropriately handled in terms of placement during level
generation. For instance, as long as enemy tiles are grouped
together and separate from solid tiles, a secondary model can
be trained to place them in appropriate positions.

LSTM for Level Generation-Annotated Game

Figure 4 gives the results for our second evaluation. We gen-
erated 150 levels with each LSTM: one trained on tile em-
beddings and the other trained with the VGLC representa-
tion. Figure 4 shows the Kernel Density Estimation with Le-
niency and Linearity. While there is a small section of the
plot that the VGLC levels cover that the tile embedding lev-
els do not, overall the levels generated with the tile embed-
dings representation cover more of the original distribution.
In particular, since the VGLC representation did better in
terms of linearity, we expect that the VGLC’s hand-authored
representation was better able to encode structural knowl-
edge. However, the LSTM struggled to model less common
elements with it, including enemies and rewards, which can
be seen in the Kernel Density Estimation and example level.

LSTM for Level Generation-Unannotated Game

Figure 5 shows the Bubble Bobble levels generated by the
LSTM trained on tile embeddings. While we note some odd-
ities (floating enemies) the levels overall are of surprisingly
high quality, indicating the appropriateness of this approach
for generating levels on unseen games. We note that these
levels were output as a tile embedding and then visualized
with Annoy as described above. One benefit of our approach
is that we naturally model tiles with the same affordances
(e.g. solid tiles) with all of the visual variety from the orig-
inal content, leading to the yellow, blue, and pink structures
in the output levels. Approaches like the VGLC representa-
tion cannot due this, and require a secondary process to map
tiles with the same affordances to multiple, distinct output
tiles. To play these levels one would need to map them to
in-game objects (which is also necessary for the VGLC rep-
resentation) or employ the embeddings in a playable, deep
neural network-based game (Kim et al. 2020).

40

Limitations and Future Work

Our first evaluation provided evidence that a trained autoen-
coder can generalize and approximate missing labels on a
majority of instances for an unseen game. However, there is
room for improvement. We suggest the following avenues.
First, expanding the affordances, a set of 13 labels is fairly
limiting for the model to be able to express any 2D tile-based
games. If we expand the affordances, we can include addi-
tional games of different styles and genres, which will enrich
the training corpus. Our second option would be data aug-
mentation, which is related to the challenge of dataset imbal-
ance. While implementing a weighted binary cross-entropy
loss provided a significant improvement, the distribution for
labels with fewer instances needs to be better generalized.
We believe one way to tackle this is by employing sampling
techniques. Third we suggest including the semantic con-
text of neighboring tiles. In our current work, we input affor-
dances of the candidate tile and its surrounding visual con-
text. We believe providing the affordances of the neighbour-
ing tiles will help the model to represent a tile in terms of
the surrounding visuals and their mechanical relationships.

In NLP, a language model captures semantic and syntac-
tic relationships between words. Word analogies are often
demonstrated using algebraic operations on word vectors.
For instance, the example mentioned in the related work,
k:i?zg — quéen + woman =~ quéen. We identify this as a
potential aspect of future research for tile embeddings. Such
experiments would validate the capability of the model in
capturing the semantic relationships between tiles. We could
also leverage this representation for the generation of novel
tiles. By feeding in affordances and visual noise, the VAE
could hopefully transform the noise into a reasonable visual
structure that matched the desired affordances. We hope to
explore these directions for future work.

Conclusion

In this paper, we presented the first instance of tile em-
beddings as a common vector representation for 2D tile-
based games. We trained an autoencoder to extract embed-
dings that constitute the visual and semantic information of
the tile. Further, we evaluated and presented evidence for
approximating affordances for unseen games. We demon-
strated that our embeddings can be successfully applied to
PCGML tasks like level generation.

Acknowledgements

This work was funded by the Canada CIFAR Al Chairs Pro-
gram. We acknowledge the support of the Alberta Machine
Intelligence Institute (Amii). We acknowledge the support
of the Natural Sciences and Engineering Research Council
of Canada (NSERC).

References

Alvernaz, S.; and Togelius, J. 2017. Autoencoder-
augmented neuroevolution for visual doom playing. In 2017
IEEE Conference on Computational Intelligence and Games
(CIG), 1-8. IEEE.



Beaupre, S.; Wiles, T.; Briggs, S.; and Smith, G. 2018. A
design pattern approach for multi-game level generation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 14.

Bentley, G. R.; and Osborn, J. C. 2019. The videogame af-
fordances corpus. In 2019 Experimental Al in Games Work-
shop.

Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004.
Learning multi-label scene classification. Pattern recogni-
tion 37(9): 1757-1771.

Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M.
2018. Explainable PCGML via game design patterns. arXiv
preprint arXiv:1809.09419 .

Guzdial, M.; and Riedl, M. 2016. Game level generation
from gameplay videos. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment, volume 12.

Ha, D.; and Schmidhuber, J. 2018. World models. arXiv
preprint arXiv:1803.10122 .

Hawkins, D. M. 2004. The problem of overfitting. Journal
of chemical information and computer sciences 44(1): 1-12.

Hinton, G. E.; and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. science
313(5786): 504-507.

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift.

Jain, R.; Isaksen, A.; Holmgard, C.; and Togelius, J. 2016.
Autoencoders for level generation, repair, and recognition.
In Proceedings of the ICCC Workshop on Computational
Creativity and Games, 9.

Khameneh, N. Y.; and Guzdial, M. 2020. Entity Embedding
as Game Representation. arXiv preprint arXiv:2010.01685 .

Kim, S. W.; Zhou, Y.; Philion, J.; Torralba, A.; and Fidler,
S. 2020. Learning to simulate dynamic environments with
gamegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 1231-1240.

Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114 .

Marifio, J.; Reis, W.; and Lelis, L. 2015. An empirical evalu-
ation of evaluation metrics of procedurally generated Mario
levels. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 11.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 .

Prechelt, L. 1998. Early stopping-but when? In Neural Net-
works: Tricks of the trade, 55-69. Springer.

Sarkar, A.; Summerville, A.; Snodgrass, S.; Bentley, G.; and
Osborn, J. 2020. Exploring level blending across platform-
ers via paths and affordances. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 16, 280-286.

41

Sarkar, A.; Yang, Z.; and Cooper, S. 2020. Controllable level
blending between games using variational autoencoders.
arXiv preprint arXiv:2002.11869 .

Simidjievski, N.; Bodnar, C.; Tariq, I.; Scherer, P.; An-
dres Terre, H.; Shams, Z.; Jamnik, M.; and Lio, P. 2019.
Variational autoencoders for cancer data integration: design

principles and computational practice. Frontiers in genetics
10: 1205.

Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2010. Launchpad: A rhythm-based level
generator for 2-d platformers. IEEE Transactions on com-
putational intelligence and Al in games 3(1): 1-16.

Snodgrass, S. 2018. Towards Automatic Extraction of Tile
Types from Level Images. In AIIDE Workshops.

Snodgrass, S.; and Ontanén, S. 2017. Procedural level gen-
eration using multi-layer level representations with mdmcs.
In 2017 IEEE conference on computational intelligence and
games (CIG), 280-287. IEEE.

Sorower, M. S. 2010. A literature survey on algorithms for
multi-label learning. Oregon State University, Corvallis 18:
1-25.

Summerville, A. 2018. Expanding expressive range: Evalu-
ation methodologies for procedural content generation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 14.

Summerville, A.; Behrooz, M.; Mateas, M.; and Jhala, A.
2017. What does that?-block do? learning latent causal
affordances from mario play traces. In Workshops at the
Thirty-First AAAI Conference on Artificial Intelligence.

Summerville, A.; and Mateas, M. 2016. Super mario as a
string: Platformer level generation via Istms. arXiv preprint
arXiv:1603.00930 .

Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgérd, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGMVL). IEEE Transactions on Games 10(3): 257-270.

Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tandén, S. 2016. The vglc: The video game level corpus.
arXiv preprint arXiv:1606.07487 .

Thakkar, S.; Cao, C.; Wang, L.; Choi, T. J.; and Togelius,
J. 2019. Autoencoder and evolutionary algorithm for level

generation in lode runner. In 2019 IEEE Conference on
Games (CoG), 1-4. IEEE.

Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research 9(11).



