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Abstract
Imagine agents repeatedly playing a bimatrix game against
opponents drawn from a population of assorted skill levels.
This paper studies how agents strategize in such a metagame
and the population distributions that result. Specifically, we
investigate how an agent should adjust its strategy as it also
learns to play the game, that is, as the agent improves its skills
(from novice to expert) with repeated exposure to the game.
To perform this task, we introduce a dynamic game-theoretic
model of learning in metagames. We use it to explain the
learning dynamics and character selection exhibited in data
from the game Super Smash Bros. Melee. Indeed, the pri-
mary motivation behind this work is the application of game
theoretic methods in video game balancing.

1 Introduction
The video games market is worth over 150 billions dol-
lars per annum. Of interest here is the significant class of
the multiplayer competitive games, a sector growing rapidly
at both the general consumer level and the elite level. An
illustration of this lies in the increasing popularity of e-
sport events with respect to both the number of competitors
and the number of viewers. For example, 60 million unique
viewers watched the 2018 Mid-Season Invitational tourna-
ment, a League of Legends tournament.

A characteristic of e-sport events, such as fighting game
competitions, is that the technical skill of a participant is not
the only determinant of success: the success-rates of even
the best players are greatly influenced by factors outside of
the actual game itself. Indeed, the most important determi-
nant is the exogenous choice of character. Consider the fol-
lowing two simple facts. One, a character may have a in-
herent advantage in a fight against another character. Two,
some characters are intrinsically more popular than other
characters. Together, these imply that, in order to have a
chance of winning a tournament, the character selected by
a player must have abilities that matchup favourably against
the most popular characters. Such community-driven effects
form what players call the metagame.

More formally, the term metagame in game theory was
introduced by Howard (1971) in the study of arms control,
where the purpose of the metagame was to endow the agents
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with more contextualized strategies extending beyond those
implied simply by a Prisoner’s Dilemma bimatrix. A stan-
dard modern interpretation is given in (Tekinbas and Zim-
merman 2003) which defines a metagame as “the relation-
ship between the game and outside elements, including ev-
erything from player attitudes and play styles to social repu-
tations and social contexts in which the game is played”; see
also (Boluk and Lemieux 2017).

From our perspective the most pertinent aspect of the
metagame is that of character selection in an environment
where agents repeatedly play a game against different op-
ponents. This motivates the question: how should an agent
learn to strategize optimally whilst, at the same time, learn-
ing to play and master the game (“learning-by-doing”)? In
this paper, we formulate a game theoretic model to study the
dynamics of this learning process.

In addition to fighting games, our methodology gives in-
sights into how agents may learn to play and strategize in
more general games played by populations. Furthermore, for
the specific application of gaming, our model has direct im-
plications to the important practical issue of game balanc-
ing. As alluded to above, an essential aspect in creating a
playable and enjoyable game is that the characters matchup
well with each other – specifically, a wide range of charac-
ters should be competitive and certainly no character should
be “OP ” (overpowered). Moreover, this balance must ap-
ply at all skill levels including hobbyists and expert players.
Furthermore, this does not just concern pair-wise character
balance but also the more complex issue of balance at a pop-
ulation level. Indeed huge efforts are made by game devel-
opers before and after game release to correct imbalances.
Interestingly, we will see that our model provides a system-
atic way to diagnose imbalances and to test the effectiveness
of potential balance corrections, both before and after game
release.

Overview of Paper We introduce a game-theoretic model
of dynamic learning in metagames and test it empirically
using data from the very popular game Super Smash Bros.
Melee. Our work builds upon the ground-breaking model
of Jaffe (2013); see also Jaffe et al. (2012), which is essen-
tially a static model that studies strategy selection for expert
game players. The format of the paper is as follows. In Sec-
tion 2, we present the fighting game model of Jaffe (2013).
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In Section 3, we apply his model using real data from Super
Smash Bros. Melee. In doing so, we will see the necessity
of formulating a dynamic model incorporating both time and
variations in skill-levels. In Section 4 we build such a model
by incorporate learning curves into the strategy selection dy-
namics. We then show how this model can explain strategic
dynamics seen in the Super Smash Bros. Melee data and de-
scribe how it can be used in metagame balancing.

Related Work The dynamics of learning in metagames
broadly relates to several fundamental areas of game the-
ory. The concept of multiple agents playing a bimatrix game
bears close resemblance to the field of evolutionary game
theory instigated by Maynard Smith (Maynard Smith and
Price 1973; Maynard Smith 1974, 1982), and the conver-
gence of population distributions in animals to equilibria.
There, rather than rationality, the primary driver of strategy
(population) change is evolutionary fitness, and rather than a
Nash equilibrium the standard stability concept is an evolu-
tionary stable strategy (Bishop and Cannings 1976; Hines
1987; Apaloo et al. 2015). Replicator and other dynam-
ics (Taylor and Jonker 1978; Schuster and Sigmund 1983;
Samuelson 1988) have been studied to model the under-
lying convergence processes. The ideas from evolutionary
game theory have also directly impacted computer science
in the form of genetic algorithms (Goldberg 1989; Mitchell
1998). In addition to evolutionary game theory, the field of
mean field games (Lasry, Lions, and Gueant 2010) also stud-
ies equilibria produced by populations, from an asymptotic
perspective.

Learning in game theory is becoming of fundamental im-
portance (Fudenberg and Levine 1998; Cesa-Bianchi and
Lugosi 2006). The learning of equilibria dates back to the pi-
oneering work of Brown and Von-Neumann (1950), Brown
(1951) and Robinson (1951). Most notably the fictitious
play method of Brown (1951) is the precursor to the ubiq-
uitous multiplicative weights algorithm in machine learn-
ing (Grigoriadis and Khachiyan 1995; Arora, Hazan, and
Kale 2012).

On the practical and experimental side, game-theoretic
concepts have been widely studied in sports, not just e-
sports! Of particular relevance is whether professional ath-
letics use equilibrium strategies either as a group or individ-
ually. Examples include penalty kicks in soccer and serves
in tennis (Chiappori, Levitt, and Groseclose 2002; Palacios-
Huerta 2003; Walker and Wooders 2001; Yee, Rodrı́guez,
and M. 2014).

We remark that there is a fundamental distinction between
these works and our study of metagames. In the aforemen-
tioned areas, the primary task is to learn an equilibrium of
the game, in particular, optimal strategy selection. For exam-
ple, how should expert soccer players take and save penalty
kicks against each other. In contrast, we have two objec-
tives. In addition to learning optimal strategy selection, we
are interested in how the agents learn to effectively use these
strategies in the first place (“learning-by-doing”). Specifi-
cally, we model the dynamics arising as agents learn to play
a game (from novice to expert) when repeatedly competing
against a population of players.

2 A Game Theoretic Metagame Model
In innovative work, Jaffe (2013) presented a game the-
oretic model for the metagame of a competitive fighting
game. This framework has subsequently become influential
in game design; in particular, it proffers tools by which to
balance a game by predicting how a community of com-
parable players (experts) should stabilize based on the rel-
ative strength of the characters. In this section, we present
Jaffe’s model. As we will see, his model is essentially a static
model. The aim of this paper is to design a dynamic model
that more accurately captures the evolution of a metagame,
specifically, how the players learn and adapt over time. Our
model is very general as it abstracts the complexity of a
fighting game into a simple mathematical formulation while
still being powerful enough to make predictions. In addition,
our model is not game specific and can be applied beyond
competitive gaming to more general applications where pop-
ulations learn to play “games”.

Character Selection and Nash Equilibria The most fun-
damental decision in a fighting game is character selection.
Note this decision is made before a game begins and is thus
part of the metagame. A natural way to model a fighting
game is then to only consider the choice of character of both
players and to consider their payoff as the winning probabil-
ity of each character in the matchup. These probabilities de-
pend on the options available to each character and how well
they counter each other. These probabilities are commonly
collected by the communities of players and presented in
matchup charts. These charts are simply matrices containing
information about each matchup. Moreover, these matrices
induce payoff matrices for the game. Observe that the game
is symmetric because both players in a fight choose from
the same set of characters. The game is constant-sum (the
winning probabilities always sum to one) and can be repre-
sented by a single payoff matrix M given by the matchup
chart. Specifically, when x and y are the chosen strategies
of players 1 and 2, respectively, the payoff functions are
Π1(x, y) = xTMy and Π2(x, y) = yTMx = 1−Π1(x, y).
We can then find a Nash equilibrium via the following linear
program (LP):

max α s.t.
∑
r

xr = 1

xr ≥ 0 ∀r∑
r

Mrc · xr ≥ α ∀c (1)

Because the game is symmetric, it must be that both play-
ers have a 50% win rate at the equilibrium. Furthermore,
there exists a Nash equilibrium where both players play
exactly the same strategy. An immediate objection to this
approach is that the Nash equilibrium will typically be a
mixed strategy and this is not representative of the reality
in which players essentially use pure strategies. In particu-
lar, game players mostly practice a single character for years
to learn all the intricacies of their “main”. This practical ob-
servation is incompatible with mixing over a collection of
characters. We remark that this observation, that a charac-
ter takes time to master, has an important consequence: a

3



player cannot be expected to obtain the win rates indicated
in the matchup chart as soon as he starts playing a charac-
ter. We will study in detail the implication of this, namely
the learning process of the character, in later sections. For
now we return to the issue of mixed Nash equilibria. We
claim the Nash equilibrium of this game is meaningful not
in analyzing a single two-player fight but rather in analyzing
the entire community of players. Indeed, imagine the for-
mation of a community of players as an iterative process
where each player chooses a pure strategy (a single charac-
ter) which maximizes his win rate against the pre-existing
community and is then locked to this character from this
point on. This process exactly simulates the classical ficti-
tious play method for finding a Nash equilibrium introduced
by Brown (1951). In this setup, a Nash equilibrium corre-
sponds to an absorbent stationary point of the usage propor-
tion of each character. Indeed, Robinson (1951) proved that
this process always converges to a Nash equilibrium in finite
constant-sum two-player games such as ours. This suggests
the community distribution of players should resemble the
Nash equilibrium found by LP (1).

Approximate Nash equilibria Naturally, it is unrealistic
to expect the community distribution to mimic exactly the
Nash equilibrium. For example, the matchup charts them-
selves cannot be taken as absolute truth: the matchup charts
extracted from data are often noisy and the matchup charts
issued by experts are approximations as they arise from
qualitative discussions. As a result, it would be preferable
to not only obtain the exact Nash equilibrium induced by
the matchup chart, but also approximate equilibrium as well.
For example, a strategy that allows a player to achieve a win
rate of, say, 49.5% can be considered as potentially a realis-
tic equilibrium of the game.

In particular, as described by Jaffe (2013), this viewpoint
allows us to obtain constraints upon any approximately sta-
ble community. To wit, suppose we want to know the fre-
quencies at which each character can appear in a stable com-
munity. It is then easy to design a linear program that can be
used to determine the interval within which a character’s fre-
quency must appear if a strategy is to reach a targeted win
rate. Specifically, to test if player 1 can successfully play
character i with probability fi we add the constraint xi = fi
into LP (1). Of course, previously a winning rate of α = 0.5
was achievable. Now, by imposing the additional condition
xi = fi we restrain the strategies available for the player 1
and thus his win rate will necessarily be at most 0.5. The key
point however is that this expands the set of strategies that
are consider stable (provided their use is within a bounded
frequency range) and allows for noise in the matchup charts
and for small errors in character selection by the players. We
remark that, throughout the paper, we will consider a win
rate of (50± 0.5)% as a stable win rate.

3 A Case Study: Super Smash Bros. Melee
As a case study, we consider Super Smash Bros. Melee, a
game with several desirable properties. First, Super Smash
Bros. Melee is a fighting game with one of the biggest com-
munities, based on the number of tournament viewers. Sec-

ond, the game is twenty years old. Consequently, there has
been plenty of time for the players to learn and for the com-
munity to stabilize. Thirdly, although originally an offline
game, last year a community-made online version of the
game was developed. The database for the online game al-
ready contains a large number of matches, over 1.3 million.
The model we develop is tested using this database.

To begin, we calculate the character distribution of the
Melee community empirically. This distribution of the 26
characters is shown in Figure 1. Next, we find the empirical

Figure 1: The Community Distribution

matchup chart using the 1.3 million matches. Figure 2 il-
lustrates the resultant matchup chart using a heatmap. Here,
the bluer the square the higher the probability the row player
wins the fight; the redder the square the higher the probabil-
ity the column player wins.

Figure 2: The Empirical Matchup Chart

The matchup chart immediately yields several interest-
ing observations. Note that some characters are clearly very
poor, for example, Pichu (Character #25). Thus, we should
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not expect Pichu to be played much in the Nash equilibrium.
Indeed, we can see this in the community distribution of Fig-
ure 1. More remarkably, Peach (Character #13) wins ev-
ery possible matchup; she has a greater than 50% win rate
against every other character! But this means that if we find
the Nash equilibrium using LP (1) for the empirical match-
up chart it must be a pure strategy with Peach. In particular,
we expect Peach to dominate the metagame and this is em-
pirically not the case as shown by the community distribu-
tion. Nor does Peach dominate in higher level competitions
of expert players.

This appears to render the game theoretic model of the
metagame invalid. Let’s investigate why this is not the case.

Data Filtering Despite the aforementioned advantages of
Super Smash Bros. Melee as a case study, it does have some
drawbacks. In particular, the online game consists predomi-
nantly of fights between players without regard to skill level.
This creates noise in the data in two ways. First, in reality the
matchup chart changes according to the general skill level of
the participating players. Of particular relevance here is that
Peach is known to be an excellent character choice among
low-level players. This is primarily because her down-smash
attack is hard to counter but easy to learn and apply in a ver-
satile manner. Now, relating to the Pareto principle, a large
portion of the players in Melee are not strong and there-
fore add a lot of noise to the data (Newman 2005). Sec-
ond, a good player can beat a bad player regardless of their
character matchup. Together, this means that the empirical
matchup chart of Figure 2 does not accurately represent the
actual chance of victory in any specific game.

To address these issues, we filtered the database to capture
only good players. Specifically, if we consider only players
with at least a 50% win rate the corresponding filtered com-
munity distribution is shown in Figure 3. This, in turn, in-

Figure 3: The Filtered Community

duces a matchup chart that is based only on games in which
both players are good. This reduces the number of fights
from 1.3 million to 150,000. The resultant matchup chart
is shown in Figure 4. However, in the filtered matchup chart
Peach still appears dominant. To verify this, we must cal-
culate the stable frequency intervals for each character. The
results are shown in Figure 5 (a distribution is considered vi-

Figure 4: The Filtered Empirical Matchup Chart

able if it results in a stable win rate). Ergo, Peach dominates

Figure 5: Viable Frequency Intervals for Stable
Distributions using the Filtered Empirical Matchup Chart.

even in any approximate equilibrium for the metagame – she
must be played at least 88% of the time in any approximate
equilibrium! Thus, the same problem arises and the standard
model of Jaffe is still unable to explain the community dis-
tribution.

Expert Advice Game balance is extremely important for
all player standards, but is arguably most important at the
novice level to encourage participation and at the expert
level to drive community and competition interest. Further-
more, based upon their collective experience, a committee
of expert players have created a theoretical matchup table.
This table gives the matchup chart shown in Figure 6. Of
course, we can now calculate a Nash equilibrium using this
matchup chart. But now the Nash equilibrium is the pure
strategy of playing Fox (#3). Again, this bears absolutely
no resemblance to the community distribution. On the other
hand, let’s consider approximate equilibria. Using the theo-
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Figure 6: Theoretical Matchup Chart

retical matchup chart, the stable frequency intervals for each
character are then:

Figure 7: Viable Distributions with Theoretical Matchups

Observe that the frequency intervals shown in Figure 7
are very promising. Comparing with the empirical commu-
nity distribution of Figure 3, we see that for 25 of the 26
characters their empirical usage lies within their stable fre-
quency interval. Thus, by incorporating expert advice, we
have, to a degree, successfully captured the general distri-
bution of the community. We remark that the one character
whose empirical usage lies outside its stable frequency inter-
val is Captain Falcon (#1). Ability-wise, Captain Falcon
is extremely fast with spectacular and fun to perform com-
bos. Indeed, he is the most popular character to watch in
e-competitions even through only one major tournament has
been won by this character in the last decade. Consequently,
it is also unsurprising that his usage, in practice, goes beyond
that which could be expected based upon win-rate alone.

Still a degree of scepticism is justified here. We have
seen that low skilled plays should select Peach and high

skill players should select Fox. It is easy to verify this for-
mally by calculating the best response of a player using
the filtered empirical (low level) and theoretical (high level)
matchup charts, respectively. How and when does this tran-
sition arise? Our study of approximate best responses, whilst
providing a possible explanation of the community distribu-
tion does not answer this; it was based solely on the theo-
retical matchup charts of expert players and so provides no
understanding of the community dynamics as players learn.
We address this important issue by incorporating learning
into the game theoretic model of the metagame.

4 A Learning Model
Our discussion so far implies that novices should take one
action (namely, select Peach) and experts should take a dif-
ferent action (namely, select Fox). Implicit in this conclu-
sion is that players learn. However, this argument relies on a
neat division of players into novices and experts. Consider-
ing only those two levels is essentially equivalent to repre-
senting player skill as a bi-level step function. This of course
is entirely unrealistic. But the fundamental idea of a transi-
tion from novice to expert is realistic. However, this is more
likely to be a smooth progression based on the time invested
playing a character – that is, the players learn to play the
game!

Learning Curves Consequently, we now develop a learn-
ing model of metagames. Our first task is to incorporate
learning curves. There are two structural properties these
learning curves should possess. First, practical research on
the learning of skills concludes that typically learning curves
exhibit diminishing returns. This concept is very well cap-
tured by the power law of practice which has been studied in
depth (Lee and Kirlik 2013; Crossman 1959). In particular,
the skill progression obtained with a character on the one-
thousandth game hour is not the same as in the opening hour.
Second, different characters have different learning curves.
Specifically, some characters are easier to master than others
inducing steeper learning curves and lower skill barriers.

We can now model this phenomenon. Under the basic as-
sumption that each player wishes to win as much as possible
after playing the game for a fixed amount of time, say t thou-
sand hours, the utility of our player is then: U1(x, y) =∑

i Lri(x)(My)i. Here Lri is the learning curve of the
character i, x is the proportion distribution of the t hours
spent on each character, and y is the actual population dis-
tribution of the community. Unfortunately, the natural op-
timization problem induced by this choice is a non-linear
program (NLP) because the objective function is not linear.
To deal with this we transform the NLP into a mixed-integer
linear program (MILP) which approximates it. Specifically,
because the objective function is separable over its variables,
we can simply approximate each Lri using univariate piece-
wise linear functions. To complete the learning model we
incorporate our linearization for every character in the game.

Implementation Due to space constraints the technical
details of our MILP are deferred to the full paper which
can be found on arXiv. (The complete implementation of
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our model is also on github at https://github.com/Codsilla/
MeleeMetagame). Importantly, the MILP can be solved al-
most instantly even on large data-sets. For our purposes,
there is, however, a basic flaw in the Melee online data-set.
As discussed, most of the players have up to 20 years experi-
ence in the offline version of the game. Thus it is impossible
to deduce from the data-set the experience level of any spe-
cific player. But this information, is required to estimate the
learning curves as described in the previous section.

In practice, we remark that game developers can easily
obtain estimates of these curves even before game release
through extensive game testing. Moreover, again applying
expert advice, we can demonstrate proof of concept. Specif-
ically, using learning curves estimated from community be-
liefs, our model illuminates how the transition from a low
skill character (Peach) to high skill character (Fox) hap-
pens. So what are our estimated character learning curves?
Based on the literature concerning the learning of learning
curves (Leibowitz et al. 2010), it is natural to predict the
learning curves are sigmoid functions. Specifically, let σ be
a sigmoid function σ(x) = (1 + e−x)−1. Now we know
Peach is an easy character to learn. So we will give Peach
a steeper learning curve than the other characters. In partic-
ular, for each character i except Peach we use the learning
curve: Lri(x) = Lr(x) = Lr = 2σ (3xt) − 1. For the
character Peach we use the learning curve. LrPeach(x) =
2σ (6xt)− 1. Thus, to model the low skill barrier in playing
Peach, we simply use a learning rate that is twice as fast as
the other characters. That is, one hour of practice with Peach
is equivalent to two hours practice with another character.

We remark that the choice of the constant 3 in Lr(x) is
irrelevant in principle; its selection is simply to ensure that 1
unit of time, corresponding to 1000 training hours, is suffi-
cient so that a player may learn enough to reach a very good
(but not expert) level. In addition, for our learning model,
we must linearize the learning curves. To do this, we used a
dedicated package (Codsi, Gendron, and Ngueveu 2021) to
enforce a maximum relative error of 1% between the linear-
piecewise approximation and the learning curve. As relative
errors are preserved through error propagation in our model,
this suffices to ensure output solutions that are also within at
most 1% of the optimal solution.

Our Results We can now present our results. Specifically,
for the task of character selection, how should a player al-
locate a fixed amount of training time? Moreover, how does
the choice of character selection vary as the player evolves
from a novice all to way up to an expert? We can quantify
this by making the assumption that a novice will have only
a small amount of training time, an expert a large amount of
training time, and intermediate players assorted amounts of
time between the corresponding lower and upper bounds.

To do this we consider players with a minimum of 100
hours available training time (novice) up to a maximum of
15,000 available training time (expert). Using, our MILP
model, we then found the optimal character selection strate-
gies that should be used given the empirical matchup table.

The results, shown in Figure 8 are illuminating. It ex-
hibits a natural transition from the prescription that a novice

(Fig.8(a) 100 and (b) 250 hours) should only play Peach
(#13) to the prescription that an expert (Fig.8(h) 15,000
hours) should only play Fox (#3). Even more interesting is
the evolution we see between these two extremes. As the
number of available training hours increases new characters
begin to appear in the optimal strategy selection. For exam-
ple, Fox and Falco (#21) should be used during 500 hours
training (Fig.8(c)) and Jigglypuff (#16) should be used
during 750 hours training (Fig.8(d)), etc. Moreover, as can
be seen, at intermediate skill levels, the optimal strategy is
not to play a single character as at the novice and expert
levels. Rather, during the learning transition, it is optimal to
train on multiple characters.

Most notable is Figure 8(e) with 1000 training hours.
Compare this with the filtered community distribution
shown in Figure 3. In particular, we see at 1000 hours the ap-
pearance in the optimal character selection of six (#3, #10,
#13, #16, #20, #21) of the top-7 characters in the filtered
community distribution. This comparison group is fair; re-
call the filtered group consists of players with at least a 50%
win rate, that is, a mix of good players and above, whom
one would expect have invested a reasonable amount, such
as 1000 hours, of training time in the game.

So we have a near perfect match of characters. But what
about the missing top-7 character. For the aforementioned
reasons, the reader will not be surprised to see that this char-
acter is again Captain Falcon (#1). Indeed, our model pre-
dicts that Captain Falcon should appear slightly later. Specif-
ically, it shows that Captain Falcon should be the ninth char-
acter to appear, as shown in Figure 8(f) at 1500 hours.

Recall, for these results, we have made only one major
assumption: Peach has a fast learning rate. We have made
no distinguishing assumptions for the other 25 characters.
With just this simple assumption on one character, we obtain
a plausible explanation of the evolution of strategy selection
and of the population distribution across all characters in the
metagame.

We do not claim this is an exact representation of real-
ity. For example, our analysis explains how a player may
most productively allocate time whilst learning to master the
game and accurately predicts which characters are the most
important. But the probability distribution for the characters
generated in the model do not exactly match the true popu-
lation distribution. Of course, this is unsurprising given we
have made only one distinguishing learning assumption (for
Peach). In the future we hope the database is enhanced to
allow each learning curves to be learned directly from the
data using the methods described. If so, we anticipate even
stronger results may be obtainable.

Interestingly, the recommendation, inherent in Figure 8,
that intermediate level players partition their training time
among a group of characters counters the conventional wis-
dom that players focus solely on their main. This recommen-
dation is reasonable when the group is reasonably small. But
when the group is large, as in Figure 8(g), the recommenda-
tion is somewhat unrealistic. This is because additional fac-
tors (such as attachment to favourite characters, aversion to
change, unmodelled fixed time-costs incurred in learning a
new character, etc.) mean that one can only expect a player
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Figure 8: Evolution of the playtime distribution

to change their character during training a small number of
times. On the other hand, applying a classical argument we
may interpret a recommendation to play a group of many
characters during training as being a recommendation made
to a large number of players on entering the game. Assum-
ing each of these players actually only selects a small num-
ber (say, 3 or 4) of the recommended characters to use while
training, we see a natural way in which the relevant charac-
ter distributions may arise. (Such an argument is analogous
to that of evolutionary game theory, where a mixed strategy
is induced by populations of agents playing only pure strate-
gies.)

As stated, we estimated the learning curve on Peach based
upon expert advice. There is one major benefit that arises
from the approach taken here. Specifically, our results show
that game balancing can be studied methodically before
game release without an exact learning curve for each char-
acter. Theoretical matchup charts and conjectured learning
curves created during testing by experts and game designers
can successfully be used to predict and correct imbalances!

Finally, our model omits other learning effects that may
be relevant in practice, such as group learning effects. For
example, in training with Kirby (#5), say, one learns gen-
eral games skills that will increase the learning speed with
other characters. Similarly, training with Kirby (#5) will not
only improve your win-rate with Kirby but also likely im-
prove your win-rate in fights against Kirby. Incorporating
such correlation effects into the learning model is straight-

forward in principle.

5 Conclusion
The model presented in this paper gives promising results
on how game-theoretic techniques with learning can be
used to make accurate short to long-term predictions for the
metagame of a fighting game. This is particularly impor-
tant in the context of game developers designing balanced
games, where every character is viable to some extent.

Furthermore, in the near future, the additional feature of
rank-mode will be made available for Super Smash Bros.
Melee online. This will allow for less noisy data, as it will
induce a player skill metric, and induce better estimates of
the learning curves. In the long term, the most beneficial en-
hancement to the database would be a feature to track new
players of Super Smash Bros. Melee. This would produce
data that can be used to calculate the learning curves for each
character precisely using the methodology described in the
paper.
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