Memory-Efficient Abstractions for Pathfinding

Nathan R. Sturtevant
Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada T6G 2E8
nathanst@cs.ualberta.ca

Abstract The concept of using some sort of abstraction for
pathfinding is a natural one, as humans often use abstrac-
tions to reason about the world. A long car trip does not be-
often does not directly address the needs of the game develop- ing with mlnute-by—mlnL_Jte planning of the gxpected route.
ment community, specifically for mechanisms that will fit the Instead, a 9’_3”6“'1" plan 1S composed which includes the_s_tart
paper we bring together several related pieces of work onus- ~ One may, for instance, decide whether to travel from Los
ing abstraction for pathfinding, showing how the ideas canbe ~ Angeles to San Francisco by taking the faster but less scenic

From an academic perspective there has been a lot of work on
using state abstraction to speed path planning. But, this work

implemented using a minimal amount of memory. Our tech- interstate or to take the scenic drive up the coast at the cost
niques use about 3% additional storage to compute complete of additional time. Once this high-level decision has been
paths up to 100 times faster than A*. made, it is up to the driver of the car to make low-level de-
cisions such as which lane to drive in and how and when to
Introduction and Overview pass other cars on the road.

e . o . . Once a high-level route is known, pathfinding becomes
Pathfinding is a key task in many domains, including video 5 |ocql operation. It is sufficient to plan the next few steps
games. In games in particular, computers must compute a |gading along the high-level abstract route as they guaran-
path between two points as efficiently as possible, as there {gq that the goal will be reached. This is an ideal feature
many are many other demands on the CPU, such as physics,yhen running in environments which tightly limit computa-
graphics, and even additional pathfinding tasks from other on costs.
units (agents). We present a new method to build automated, * The gpproach of first planning an abstract path before re-
minimal-memory state abstractions to speed pathfinding. fining it has been considered in a variety of forms (Holte
With just 3% additional storage, we show large reductions ot 5" 1996h: Sturtevant & Buro 2005 Botea, iifer, &
in computational costs. - Schaeffer 2004) and in a variety of domains (G.R. Jagadeesh

State abstractions for pathfinding have been explored by 5(2- Yang, Tenenberg, & Woods 1996). In this paper we
in a variety of different settings using a variety of methods a4qress the issue of automatically building a state abstrac-
for abstraction (Holteet .aI. 1996a; 1996b; Tozour 2003; tion from an underlying map representation in a memory
Sturtevant & Buro 2005; Botea, bller, & Schaeffer 2004). efficient manner. We then demonstrate the performance of

This paper describes in detail how state abstraction tech- o, jmplementation in terms of memory used, pathfinding
nigues can be optimized for use in games which have tight speed, and resulting path optimality.

memory constraints. Specifically, this work is the product
of a successful collaboration between BioWare @rand Efficient Abstraction Implementation

our university. According to Mark Brockington, Program-) , ,
y g g g We first describe how we can represent a map in a memory

ming Fellow for BioWare Corf®), “Our collaboration with Hici d then d h h
the University of Alberta on this project has been successful, €fficlent manner, and then demonstrate how the representa-
tion can be used for pathfinding.

and we are pleased with the performance and implementa-

tion of their pathfinding research within Dragon AYe’ Computing Abstract Map

Abstraction For Pathfinding One common representation of a map is a simple grid, where
a grid cell is the smallest unit of space that can be occupied
by a single unit within the world. This is the underlying
representation that BioWare C@pdecided to use for their
maps in Dragon Age'. In one respect this representation
is efficient, as there is a simple mapping betwe#n co-
Copyright(© 2007, Association for the Advancement of Artificial ~ ordinates and grid cells, avoiding the memory cost of using
Intelligence (www.aaai.org). All rights reserved. pointers. But for large maps, the total memory usage and

Automatic state abstractions are able to take a high-
resolution map of the world and automatically transform
it into a smaller, more abstract map, which can be used to
speed pathfinding in the actual world environment.

31

©

(2]

Figure 1: Computing sectors. Figure 2: Computing edges.

cost of planning on such a grid can still be expensive. This _
is particularly true because we must store information for add edges between sector 3 and other sectors. Region 3.a,
every grid cell, whether or not it can ever be occupied or for instance, has four edges: to region 2.c, region 0.a, and
traversed. The overhead of the high-resolution map means regions 1.a and 1.b.
that our abstraction mechanism must use a minimum amount In addition to the cardinal directions, we add diagonal
of memory. We propose an abstraction mechanism which edges to the abstraction. This increases the size of the ab-
maintains memory efﬁciency by using a |arge-sca|e gr|d It Straction, but if dlagonal moves are pOSSIb'e in the W0r|d,
is also effective in reducing planning costs. We call this a having them in the abstraction results in higher quality paths.
minimal-memory (MM) abstraction. We distinguish the ab- ~ The final abstract graph is shown in Figure 3. While the
straction representation from the techniques which use the original map had approximately 900 states (foux16 sec-
abstraction for pathfinding. Although much of a MM ab- tors) and thousands of edges (not stored explicitly), the ab-
straction can be built quickly, we expect that the abstraction Stract map has 9 states, one for each region, and 10 edges.
will be built offline and stored with the map.

The first step in building a MM abstraction is to place
a lower-resolution grid over the map. This grid implicitly
breaks the world up into sectors; the sector of any unitin the
world can quickly be calculated given its actu#l coordi-
nate. However, sectors are not guaranteed to be contiguous,
so we need to do more than just divide the map into sectors.

Sectors are further divided into regions. There is one re-
gion for each connected component within a sector, that is,
we require all nodes within a region to be reachable with-
out leaving the sector. The nodes in a region are identified
by performing a breadth-first search within a sector. We
demonstrate sectors and regions in Figure 1, which shows
a simple map. Black areas are considered blocked. In this
figure there are 4 sector®, . . 3. Sector 2 has three regions
(2.4, 2.b, 2.c), while sector 3 only has two regions (3.a, 3.b). Memory Allocation

Each region within a sector is represented by a single pemory for the abstraction is allocated in two portions. The

point or node within the sector. Initially we place this point st hortion is fixed-size, based on the size of the map being
at the weighted center of the region, although we will later - 5pstracted. This memory references the number of regions

Figure 3: The final abstract graph.

discuss how these points can be optimized. in each sector and the memory address in which the regions
. d and edges are stored. The second piece of memory is vari-
Computing Edges able sized and depends on the complexity of the map being

Once the sectors and regions have been established, we musabstracted. This memory contains the abstract regions and
compute edges between regions. During this process we as-the edges between them. To store an abstract region we need
sume that all cells in the original map are marked with their the location of at least one node within the abstract region
respective regions. Once the MM abstraction is built, we lift and the number of edges.
this assumption. To make this presentation more concrete we make a few
Edges are computed by iterating along the border of each assumptions about sector sizes and density, and then com-
sector, comparing the region for states on either side of the pute the exact memory needed to store such an abstraction.
border. We add an edge to the abstraction for each unique First, we will assume that the maximum sector size ig 16
pair of values between adjacent sectors and regions. This or 256 grid squares. We will also assume that the number of
is illustrated in Figure 2, which is a closer view of sector 3 regions inside a sector is limited. It is fairly simple to con-
and its borders. We must iterate through the marked cells to struct worst-case examples where there could be 32 or more

32

Sector Data Example cial value which indicates that they are ‘default’ sectors, and

o |— - Regions 2 then avoid storing these sectors explicitly to save memory.
5 [Memory Address 0 Note also that edges are directed, so we store them twice. It
o p—" is possible to eliminate half of the edges, however this would
increase the computation costs of finding edges as well.
Region Data Example .) . .
£ center 196 Pathfinding Using Abstraction
= # edges 3 A pathfinding problem is typically defined by start and goal
center 142 locations. These locations are in the actual world, so the first
f# edges 4 step is to transform them into abstract space. In sectors with
uﬁiﬁl only one region this is trivial. But, in sectors with more than
variable-sized up:l one region, the process is a bit more complicated. If extra
edge storage up:2 memory is available, cells in the world can be annotated with
up:1 their abstract region. Otherwise, a small search will find the

current region center. The abstract location of a unit in the
Figure 4: Memory layout for storing abstraction and exam- world can be cached so that this process does not have to be
ple data. repeatedly applied.

The next step of any pathfinding process is to use
A* (Hart, Nilsson, & Raphael 1968) to find a path through
abstract space. We use the octile-distance between region
centers both as our heuristic value, and as the g-cost of ab-
stract edges. Given a complete abstract path, there are many
different ways to use this information for computing paths
in the actual world. We will describe a strategy for refining
an abstract path as RJ[t, ¢, s].

The most simple way to use the abstract path is to follow
the abstract region centers exactly. That is, plan from the
start location to the first region location. Then, successively
plan between each region along the abstract path, and finally
plan between the final region center and the goal location.
This can be generalized so that we refine longer portions in
each step by skipping some segments of the path. The first

: fthe ab . 256 ed | dparameter of R}, t, ¢, s], n, is the number of abstract edges
mentation of the abstraction to edges per sector. Instead, refine in each step. So, the above approach is R[L, -, -, -].

of storing the number of edges explicitly, we store the cu- ¢ 5 parameter is unused, we will replace it with a dash ‘-'.
mulative number of edges thus far in the abstraction. This R[L, -, -, -] has sevefal drawbacks. If we always plan
optimizes the time needed to extract the edges for a region. paths between region centers along the abstract path, we of-
After the region center and edge information for each sec- ten travel much further than required. We demonstrate this
tor, we store edge data. The start sector and region of an iy Figure 5. If we start at the node labelednd first proceed
edge are implicitly known and do not need to be stored. We g the region centers along the abstract path before proceed-
just store the edge direction, which implicitly specifies the jyq to the goal, the distance travelled will be much further
target sector. There are eight possible edge directions, which than the optimal distance, which is a single step. The first
can be stored in 3 bits. The remaining 5 bits store the region gng |ast steps of basic refinement can be optimized by not
which can be reached by the edge. This limits the number of pjanning a path through the region centers, but just traveling
regions in a sector to 32. directly to the goal. This same problem manifests itself, to
The right portion of Figure 4 shows the actual data layout a lesser extent, when traveling to each region center along a
for sector 3 from Figure 1. This sector is:166 and has 2 path. One partial solution is to implement a trimming pol-
regions. Because we haven't stored other sector information jcy. After reaching each region center, trim the returned path
here, the memory address in our table is 0. In the region using some policy. For instance, we might always remove
data, the center of region 3.a is offset 196 cells (12 rows, the last 5 nodes from our path. Or, we can trim off the last
4 columns) from the top left of the sector, and this region 10% of the computed path. After trimming, plan from the
has 3 edges. The center of region 3.b is offset 142 cells (8 end of the current path to the next region center. So, the
rows, 14 columns) from the top left of the sector and has actual path executed will not be forced to travel through all
only one edge. The last edge for this region is offset four region centers. Refining 1 step at a time and then subse-
bytes from the first edge. The first edge for each region can quently trimming the path by 10% would be R[1, 10%, -, -].
be computed from the previous region. We use both of these techniques together whenever we trim.
In some maps there may be large regions of open space for The next option is to limit the refinement process to some
which there will always be 8 edges, one in each direction. As corridor,c defined by the abstract path. That is, do not allow
a further optimization, we can mark these sectors with a spe- A* to expand nodes which fall outside the sectors on the

regions inside a sector with as many edges. But these exam-
ples should not occur in real-world game maps.

The description of our data structures as well as an ex-
ample are found in Figure 4. Sectors contain the number
of regions (8 bits) and their memory address (16 bits). For
memory efficiency, we pad them to 32 bits. Using a small
secondary lookup table it is possible to squeeze this data into
16 bits, although we haven’t done so for this implementa-
tion. We leave these bits free for other sector information
that we might want to store (eg. occupancy information).

Each region is defined by a representative node (8 bits)
and edge information (8 bits). The node is stored as the off-
set from the top-left corner of the sector, and so this limits
the sector size to at most £86. This also limits this imple-

33

[A abstraction. First, if the changes are localized, the abstrac-
tion can just be dynamically rebuilt after these changes oc-
cur. This only has to occur locally in the sectors which were

. ‘ ,,-. changed. A second approach, which can handle changes
! R j even more quickly, is to apply the changes to the map dur-
T SiG ing preprocessing, and then build the abstraction a second

time. This abstraction can be compared to the original ab-
Figure 5: Paths through region centers are suboptimal. straction, and any sectors which do not change can be dis-
carded. Then, the region data for the sectors that do change

abstract path. This can prevent the cost of any single step ¢an be appended to the end of the region data for the original
from getting too large, but it may result in strange paths, as abstraction. When the changes occur in-game, we only need
units are forced to stay within bounds which aren't visible t0 change the memory address of the region data for these
to the user. A better approach seems to be to optimize the regions, and the abstraction will effectively be updated.
region locations, which we will discuss in the next section. . .
Finally, after a path is complete, we can optionally apply a Optlmlzmg. Reglc.Jn.Ce.nter.s]
smoothing algorithns to smooth the final path. This is par- One potential optimization is to choose appropriate loca-
ticularly useful if our units walk on real-valued coordinates tions for region centers to minimize the computational cost
instead of on our pathfinding grid. So, in our experimen- Of pathfinding. This computation can be performed differ-
tal results and description of related work we will refer to ently depending on which refinement approach we are us-
refinement algorithms as R[¢, ¢, s]. ing. For simplicity, we assume we are using R[1, -, -, -].
The refinement process can be performed in several in- Note that while we want to minimize the cost of traveling
dependent operations, which means it is ideal for the tight Petween region centers, we actually want to minimize the
time bounds of computer games. Given a time bound for Maximum cost, that is the worst-case performance.
path planning in each frame, successive portions of the ab- ~ We first place region centers as close to the center of the
stract path can be refined until that time bound is exceeded. egion as possible. Then, for each possible location where
If one refinement step is not finished, the partial work can the region center can be placed, we compute the maximum
be discarded and re-computed on the next frame, as each re.-number of nodes expanded by A* to reach each of the neigh-
finement step is small. Only a minimal amount of state must Poring region centers. The region center of the current re-
be carried over between frames, just the current and abstractdion is placed in the location which minimizes this cost.
path, making this approach well-suited for time and mem- ~ We demonstrate the usefulness of this approach in the ex-
ory constrained environments. Additionally, it is possible to Perimental results. In fact, any in-game parameters can be

begin executing the path before planning is finished. used to optimize the region centers in this way. For instance,
we may also want to optimize the distance from walls, etc.
Pathfinding Cost

In this section we analyze the total cost of pathfinding using Rela_ted_Wo_rk

the abstraction and the R[1, -, -, -] refinement policy. Thatis, The approach we describe in this paper can be seen as a
what is the cost of computing an entire path when we refine combination of HPA* (Botea, Mller, & Schaeffer 2004)

one abstract step at a time without trimming, corridors or and PRA* (Sturtevant & Buro 2005). We make tradeoffs

smoothing. Assume that we are trying to find a path length between thgse two approache_s to decrease the memory used
¢, with sector sizez. The length of the abstract path, for abstraction. These algorithms both use A* at an ab-
will be approximately//~. Assuming that it is simple to stract level to find an initial, abstract path, and then refine
plan paths between region centers, the cost of refining one it, however, they use muluple levels of refinement and dif-
portion of the actual path will be (the distance between ferent types of abstraction.

sector centers), and the cost of refining the complete path HPA* uses a sector-based abstraction similar to our MM
(all abstract steps) will bea = . This means that the cost abstraction, however it has multiple entrance points in each

of refinemenusing this policy is independent of the sector ~S€ctor, and itcomputes and uses optimal paths between these
size. Thus, because larger sector sizes decrease the cost oPOINtS. It then uses a simple smoothing mechanism once the
finding an abstract path, thetal work required to find a ~ Paths are complete, so HPA* can be described as R[1, -, -,
complete path will decrease as the sector sizes increase. WeSimpld. When HPA* caches optimal paths within the world

verify this prediction in the experimental results. it will use much more memory than the MM abstraction.
The HPA* abstraction also stores many more points in the
Abstraction Enhancements map, and so must use more memory for storage.

])) PRA* uses a more fine-grained abstraction based on
. map. PRA* avoids smoothing the final path by doing multi-
Dynamic Maps ple refinements using a small refinement window around the
In many games, designers would like to see changes madeabstract pathp. The length of refinement; is a parameter
to the map during play which may affect pathfinding. We for PRA*, so PRA* can be described as repeated applica-
present two possible approaches for handling this inthe MM tions of R[, -, p™, -]. The clique abstraction which PRA*

34

Dynamic v. Static Centers
(1-Step Planning)
250

== Static (95th percentile)
—#= Dynamic (95th percentile)

150

100

— P
Figure 6: An example of a map used for our experiments. ¥ 6_/’*/
5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16
uses explicitly stores parent and child information and is not Sector Size
memory-efficient at all. Figure 8: Dynamic or static region centers.
An overview of other pathfinding methods can be found
in, eg (Botea, Miller, & Schaeffer 2004). An longer discus- . L
sion of many types of abstraction and their use for search Region Center Optimization
and robotics can be found in (Fernandez & Gonzalez 2001). Next we analyze the gains from optimizing regions centers
in the abstraction. We run the same experiment on the MM
Experimental Results abstraction with and without optimized regio_n centers and
In our experiments we used a set of 120 maps taken from compare the work that is done. For this experiment, we com-
a popular role-playing game. We scaled these maps to pare the work done on the largest bucket of problems in our

- 0 - - i
512x512 grid cells and then selected 93,235 total paths over 92ta Set (length 508 5123 bﬁ' R[1, 10%, -, -] asbthe ?ect(cj)r size
these maps ranging in length from 1 to 512. An example creases. We measured the maximum number of nodes ex-

map is shown in Figure 6. When experiments depend on panded for any single refinement operation, and then graph

path length, the problems are divided into 128 buckets, each tme 95hhpergent|lel over all paths ":j Flgurhe 8.I This graph
bucket size 4. shows that dynamic centers can reduce the planning cost of

an individual step by a factor of two or more.

Nodes Expanded

Memory

. Total Work
We first look at the amount of memory needed to store ab- . .
stract maps as the sector size increases. Note that if we use] ird, we look at the total work performed when pathfind-
8 bits of storage for each grid cell, a 51812 map will take ing using abstraction. We again use R[1, 10%, -, -] to re-
256k of memory. We present the average memory used for fine abstract paths. In Figure 9 we show the_ total Wo_rk in
the abstraction in Figure 7. With ¥8.6 sectors, the abstrac- N°des expanded, needed to compute an entire path, includ-
tion uses 6-7k, less than 3% of the cost of the full map. The INg the abstract path and all portions of the actual path. We
top line is the amount of memory used when the abstraction 9raph the 98 percentile of the number of nodes expanded
stores all nodes and edges in the map. The bottom line is the IN this figure. As expected in our theoretical analysis, in-
amount of memory used when we mark the default sectors créasing the sector size decreases the total number of nodes
and do not store them. Because the maps in our experiments€xPanded, although there are diminishing returns. In fact, if
are scaled from smaller maps, this may be an over-estimate e plot the same curves without optimizing region centers,

of the amount of the memory savings, but for larger sector We do the least work at sector size 14, and slightly more
sizes the gain from compression is minimal. work with larger sector sizes. With larger sector sizes it is

no longer easy to travel from one region center to the next,
unless the region centers are optimized.
Maps Size 512x512 In Figure 10 we compare the total nodes expanded when
planning an entire path using the MM abstraction and R[1,
@ 10%, -, -] to the nodes expanded by A*. Note that we are
N With Compression plotting on a log-axis. The maximum number of nodes ex-
panded using the MM abstraction even on the longest paths
is just over 1,000. But, A* averages over 10,000 nodes for
long paths and may expand nearly 100,000 nodes in the
worst case. The minimum number of nodes expanded by
each algorithms is similar, so we only plot one curve, al-
] though A* expands up to 100 fewer nodes.
5 6 7 8 9 10 11 12 13 14 15 16 Our implementation of A*, which is entirely generic and
Sector Size not optimized for any domain specific features, takes an av-

erage of 12s to expand a node (83,000 nodes per second)
Figure 7: Memory used to store the abstraction. on a 1.5Ghz PPC with 1GB of memory.

-
IS
I

(V=N
SIS

W
S o

Total Memory (KB)
[
=]

o

o

35

Total Work

2500

%

5

Sector Size

Total Nodes Expanded

Bucket (Path Length/4)

Figure 9: Total work required to compute paths.

Savings Over A*

100000 -

£ 10000 /ﬂ’////

=

=3

Z 1000 .

3

E 100 A

3 l/l// — Max (A% —= Max (MM)

& 10 , — Average (A*) — Average (MM) | |
Minimum

1 T T T T T T T
32 48 64 80 96 112
Bucket (Path Length/4)

Figure 10: A* nodes expanded v R[1, 10%, -, -].

Optimality

The speed that comes with using an abstraction technique
comes at the cost of optimality. We show the suboptimal-
ity introduced by the MM abstraction and R[1, 10%, -, -]
refinement in Figure 11. These are the results only for the
largest bucket, with paths of length 508-512. This illustrates
that using larger sectors results in better optimality. For a
sector size of 16, 90% of paths are between 5% and 12%
suboptimal. All paths are between 4% and 18% suboptimal.

Suboptimality can be decreased in several ways. For in-
stance, using R[2, 15%, -, -] refinement with sectors size
16x 16, 90% of the paths will be just 2-6% longer than op-
timal, although this will increase the total pathfinding cost.
Note that these results are on the longest paths from our ex-
periments. Paths which only span one or two sectors will
just use A* and be optimal. Paths that span a few sectors
can have a higher percentage of suboptimality because they
are so short. In practice, smoothing is applied as a post-
processing step to further reduce suboptimality and to en-
hance the visual quality of the paths.

Conclusions

In this paper we have shown how known abstraction tech-
niques can be adapted to domains with tight memory
bounds. With roughly 3% more memory, pathfinding and re-
finement using the MM abstraction is up to 100 times faster

36

Optimality
25

—95%
— Average|[|
5%

20

15

~—

I
—~—

10

% Suboptimal

10 11 12 13 14 15 16
Sector Size

9

Figure 11: Suboptimality over sector sizes.

than using A*. The MM abstraction is similar to other meth-
ods used in computer games, such as navigation meshes (To-
zour 2002). This can be seen as a specialized type of navi-
gation mesh, optimized for grid-based maps.

The MM abstraction has been implemented
BioWare’sR upcoming title Dragon Age' (due out
in Winter 2007/2008), and has thus been proven to meet the
needs of the games industry.

in

References

Botea, A.; Miller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-findingJ. of Game Develofd.(1):7-28.

Fernandez, A., and Gonzalez, J. 208ulti-Hierarchical
Representation of Large-Scale Spakguwer.

G.R. Jagadeesh, T. Srikanthan, K. Q. 2002. Heuristic tech-
nigues for accelerating hierarchical routing on road net-
works. IEEE Transactions on Intelligent Transportation
System8:301-309.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cyb&r00-107.

Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996a. Hierarchical A*: Searching abstraction hierarchies
efficiently. InAAAI/IAAI Vol. 1 530-535.

Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996b. Speeding up problem solving by abstraction:
A graph oriented approachArtificial Intelligence 85(1-
2):321-361.

Sturtevant, N., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement. Proceedings of
AAAI, 47-52.

Tozour, P. 2002. Building a near-optimal navigation mesh.
In Steve Rabin, editor, Al Game Programming Wisdom
171-185. Charles River Media, Inc.

Tozour, P. 2003. Search space representatiorsl Game
Programming Wisdom,B5-102. Charles River Media.

Yang, Q.; Tenenberg, J.; and Woods, S. 1996. On the im-
plementation and evaluation of ABTweakomputational
Intelligence Journal 2(2):295-318.

