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Abstract 
AI techniques are already widely used in game software to 
provide computer-controlled opponents for human players.  
However, game design is a more-challenging problem than 
game play.  Designers typically expend great effort to 
ensure that their games are balanced and challenging.  
Dynamic game-balancing techniques have been developed 
to modify a game-engine’s parameters in response to user 
play.  In this paper we describe a first attempt at using AI 
techniques to design balanced board games like checkers 
and Go by modifying the rules of the game, not just the rule 
parameters.  Our approach involves the use of a commercial 
general game-playing (GGP) engine that plays according to 
rules that are specified in a general game-definition 
language. We use a genetic algorithm (GA) to search the 
space of game rules, looking for turn-based board games 
that are well balanced, i.e., those that the GGP engine in 
self-play finds equally hard to win from either side and 
rarely draws.  The GA finds better games than a random-
search strategy that uses equivalent computational effort.   

Introduction & Overview  
 The earliest examples of computer-controlled game play 
were AI programs that were specific to a particular game 
like chess.  More recently, General Game Playing (CGP) 
has emerged as its own area of research: CGP software is 
capable of playing any game whose rules are specified in a 
given scripting language (Pell 1992, Reference B, 
Genesereth 2005).  Much research has gone into making 
both specific and general game-playing software as 
capable as possible. 
 
However, there is more to making a game interesting than 
just providing a capable opponent.  The qualities of the 
game itself are important.  In particular, most good games 
are balanced in the sense that they provide just enough 
challenge to make play enjoyable, but not so much that 
play is frustrating (Adams 2007).  The notion of using AI 
techniques to dynamically change game-play parameters to 
achieve dynamic game balancing (DGB) has recently been 
investigated by several research teams (Demasi 2002, 
Hunicke 2004, Spronck 2004, Andrade 2005). 
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Another way to automatically achieve balance in computer 
games is to not just adjust the game parameters, but to 
change the actual rules of the game.  We call this 
Automatic Game Design (AGD).  AGD has not yet been 
studied systematically.  In 2004 it was reported in the press 
that Jim Lewis, an inventor from New Jersey, had used a 
computer to develop an especially difficult form of the 
well-known sliding-block puzzle (Reference A).  Lewis 
computed the trees of all possible moves from the initial 
configurations of multiple candidate puzzles.  The puzzle 
that produced the broadest and tallest tree he dubbed 
Quzzle, which can now be bought at various sites on the 
Internet. However, Lewis’s general approach of comparing 
games by considering the shape and size of the 
corresponding move trees is not a practical approach for 
AGD, nor is it backed by any theory equating game quality 
purely to the size of its search space.  Puzzle aficionados 
consider Quzzle to be less interesting than many other 
sliding-block puzzles that were designed by hand (Pegg 
2004). 
  
In contrast, our approach to AGD is to generate well-
balanced board games that are won evenly by both the 
first-moving and second-moving players and that result 
infrequently in a draw. Our work is based on a 
commercially available GGP called Zillions of Games 
(ZOG).  ZOG is a universal gaming engine that allows the 
creation of many kinds of board games (Reference C). 
Games rules are specified in a custom scripting language. 
A collection of scripting commands is called a Zillions 
Rules File (ZRF). There are three major components of a 
ZRF: the board, the pieces, and the victory condition. 
 
The board definition specifies the players, turn order, the 
board dimensions, the number of pieces that each player 
has at the beginning of the game, and the initial placement 
of pieces on the board.  The piece definition characterizes 
the allowable behavior of game pieces. Here each piece’s 
movement options are enumerated.  Last, the victory 
condition defines the possible outcomes of the game. Here 
is an example of a ZRF for a simple game, Tic-Tac-Toe: 
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(players White Black) 
(turn-order White Black) 
(board 
 (image "images\TicTacToe\TTTbrd.bmp") 
 (grid 
  (start-rectangle 16 16 112 112) ; top-left position 
           (dimensions ;3x3 
               ("a/b/c" (112 0)) ; rows 
               ("3/2/1" (0 112))) ; columns 
    (directions 
      (n 0 -1) (e 1 0) (s 0 1) (w -1 0) 
     (ne 1 -1) (nw -1 -1) (se 1 1) (sw -1 1)))) 
(board-setup 
 (White (disk off 10)) 
 (Black (disk off 10))) 
 
(piece 
 (name disk) 
  (image White "images\Reversi\WDisk.bmp" 
              Black "images\Reversi\BDisk.bmp") 
 (drops (add-to-empty))) 

 
(define add-to-empty  ((verify empty?) add) ) 
 
(draw-condition (White Black) stalemated) 
  
(win-condition (White Black) 
 (or  (relative-config disk n disk n disk) 
    (relative-config disk e disk e disk) 
     (relative-config disk ne disk ne disk) 
    (relative-config disk nw disk nw disk))) 

Searching for Balanced Games 
Our approach to AGD is to search for balanced games in 
the space of board games that can be described by 
combining independent elements for board, piece, and 
victory specifications that are derived from known games 
and variations thereof.  A search algorithm combines 
different elements to form new games that are then tested 
in self-play using the ZOG game engine.  As an 
approximation to what constitutes challenge and interest, 
we seek games in which each player has roughly equal 
chances and that rarely end in draws. 
 
Even for a simple game space like the one described 
below, exhaustive search of all possible games is not 
feasible.  We therefore use a genetic algorithm (GA) to 
perform a more-efficient search (Holland 1975, Goldberg 
1989).  Because our GA is searching in a space of game 
rules or programs, it can be thought of as a form of genetic 
programming (Koza 1992). 
 
Search Space.  The game elements we consider are those 
that are used in common games like Checkers, Reversi 
(also known under the brand name of Othello), Tic-Tac-

Toe, and some of their simple variants. The different 
elements are: 
 
8 board types :  3x3, 4x4, 5x5, 6x6,7x7, 8x8, 9x9, 10x10 
3 piece types : Tic-Tac-Toe, Reversi, Checkers 
6 victory conditions: 3 in row, 4 in row, 5 in row, 6 in row, 

most men win, no men remaining 
 
A total of 144 different games can be generated from these 
traditional elements alone. Additional complexity is 
achieved by incorporating nontraditional game elements 
that we specified by hand.  These elements can be 
separated into two categories: elements that can be applied 
once and elements that can be applied repeatedly. 
 
The six game elements that can only be applied once are:  
Recall Last Move, Recall Any Move, Move For You, 
Double Move, Scoring, and First Hybrid Disk. The 
remaining two elements that can be applied multiple times 
are Hybrid Disk and Non-Flipping Disk. We imposed a 
limit of no more than two nontraditional elements per 
game.  A total of 5,616 games can therefore be specified 
using combinations of the traditional and nontraditional 
game elements.  The nontraditional elements are: 
  

• Recall Last Move allows a player to take back his 
opponent’s last move and force him to make a 
different move. 

 
• Recall Any Move is similar to Recall Last Move.  

The difference is that a player can recall any of 
his opponent’s moves up to that point in the game. 

 
• Move For You allows a player to make a move for 

his opponent once during the course of game.  
 

• Double Move allows a player to perform two 
moves in succession once during the game.  

 
• The mutation of Scoring decides the winner of the 

game by counting the number of tokens that each 
player has in a row. For scoring, six in a row is 
awarded six points, five in a row is awarded five 
points, etc.  

 
• First Hybrid Disk is a single special piece given to 

each player that counts as a piece for both players. 
The disk must be the first piece used by each 
player.  

 
• Hybrid Disk is similar to First Hybrid Disk. The 

difference is that a player can use this disk any 
time during the course of the game, but the hybrid 
disk must be used in order for the player to win.  
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• Non-Flipping Disk is a disk that cannot change 
color or ownership through capture (for those 
games that have such a concept). 

 
Search Algorithm. Our search algorithm is a simple 
genetic algorithm (GA) that iteratively refines a population 
of games.  To generate a new child game, three parent 
games are randomly chosen.  Each one donates the board, 
the pieces, and the victory condition, respectively, to the 
definition of the new child. In addition, mutations -- one of 
the eight nontraditional game elements from the previous 
section – can be inherited from the parent games or 
randomly added to the child game. If the new child game 
has not been generated previously, it is tested by self-play 
with the ZOG game engine.  The new game is played 100 
times with a time limit of one second per move and the 
results are used to generate a fitness score.  The fitness 
score is the sum of balance and diversity terms.  The 
formula for the balance term is: 

 
100 – ( |Player A wins – Player B wins | - Draws ) 

 
Thus a game that conferred no advantage to the first or 
second mover and that generated no draws would get a 
maximum balance score of 100 points.  The diversity value 
is the number of unique differences that a new game has 
relative to its closest neighbor in the game population.  Its 
inclusion in the fitness function promotes a broader search 
of the game space.  The maximum diversity score is 11 
points: two games could differ in all three basic game 
elements and in all eight nontraditional game elements. 
  
If the fitness score of a new game is higher than the score 
of the least-fit member of the game population, then the 
new game replaces the least-fit game, otherwise it is 
ignored. 
 
In our experiments, the initial game pool was populated 
with 32 traditional games like Tic-Tac-Toe, Reversi, 
Checkers, and minor variants thereof.  We chose these 
games by hand to take advantage of what is already known 
to be good: these games have evolved through human play 
over the ages.  The GA starts by determining the fitness 
score for each game in the initial population. In our tests 
we then ran the GA for 500 iterations, which required 
several hundred hours of computation on a PC cluster. 
 
To measure the effectiveness of the GA, we compared it to 
a random sampling strategy.  The results are reported in the 
next section. 
 

Results 
 
Table 1 describes the five games from the initial 
population with the highest fitness scores.  (“Bal” denotes 
balance; “Div” denotes diversity.)  Since these games 

mostly follow rules that were designed and tested by 
people over time, it is not surprising that some of them 
score quite well. 
 

Game Bal Div A B Draws 
Reversi_10x10 96 2 50 47 3 
Reversi_8x8 81 1 53 40 7 

Checkers_10x10 64 0 38 32 30 
Reversi_6x6 59 1 29 70 1 

Checkers_8x8 49 1 24 31 45 
Average 69.8 1 38.8 44.0 17.2 

 
Table 1.  The five fittest games in the initial population 

for the GA. 
 
The results from 500 iterations of the GA are shown in 
Table 2.  They are a clear improvement over the starting 
population of games.  They are also significantly better 
than the best of 500 randomly generated games, as shown 
in Table 3.  Note that random sampling fails to match the 
hand-picked games used to seed the GA, let alone the final 
results achieved by the GA: most games in the space 
defined by our game elements are not very interesting. 
 

Game Fit Div A B Draws 
GameA 95 1 47 50 3 
GameB 91 1 45 47 8 
GameC 91 1 45 53 2 
GameD 87 1 50 43 7 
GameE 63 2 34 31 35 

Average 85.4 1 44.2 44.8 11 
 
Table 2.  The five fittest games in the population after 

500 iterations of the GA. 
 
 

Game Fit Div A B Draws 
SampleA 70 0 35 60 5 
SampleB 68 0 34 64 2 
SampleC 66 0 33 64 3 
SampleD 62 0 31 68 1 
SampleE 61 1 30 70 0 
Average 65.4 0.2 32.6 65.2 2.2 

 
Table 3.  The five fittest games from 500 random 

samples of the game space. 
 
The behaviors of the GA and random-sampling strategy 
over time are shown in Figures 1 and 2.  Figure 1 plots the 
average fitness score over time of both approaches, and 
Figure 2 the average diversity.  As can be seen from the 
plots, the GA appears to be reaching a plateau after 500 
iterations. 
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Figure 1.  Average fitness scores over time of the GA 
and random-sampling algorithms. 
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Figure 2.  The average diversity of the games generated 
by the GA and random-sampling approaches over time. 
 
The best games generated by the GA are described next: 
 
Game A 
Fitness: 95   Balance: 94   Diversity:  1 
A 5x5 board using Go-Moku pieces. The objective is to get 
3 men in a row. The mutation of recalling any one of the 
opponent’s moves can be performed once only by each 
player.  Although this game has a high fitness value, it is 
undeserved.  Victory is trivial because the first player to 
move can win the game in less than five moves.   Using 
ZOG to test this game, each computer-controlled player 
was given one second to complete a move. This length of 
time is insufficient for the computer to find the decisive 
course of action.  So given the time limit of one second, the 
game is a balanced game. However, giving ZOG a time 
limit of three seconds, the game becomes a lopsided win 

for the opening player.  This is an example of the oft-
noticed ability of GAs to find anomalous or buggy 
solutions! 
 
Game B 
Fitness: 91   Balance:90   Diversity:1 
A 6x6 board using Reversi pieces.  The game is like 
Reversi only the objective is to have no pieces on the 
board, or to stalemate your opponent.   To help clarify the 
rules of the game, it is helpful to consider the victory 
condition: 
 
(or  (loss-condition (White Black) (pieces-remaining 0) 

(loss-condition (White Black) Stalemate)) 
 
Thus a player loses if he has no moves or he is the last 
player to place a disk on the board.  In self-play, ZOG’s 
search strategy tends to favor the first condition by trying 
to minimize the number of pieces on the board.  
Nevertheless, it’s still sometimes possible to win via the 
stalemate criterion, so having fewer pieces doesn’t 
guarantee a win. 
 
Game C 
Fitness: 91   Balance: 90   Diversity:  1 
This game uses an 8x8 board and Reversi pieces.  The 
objective is to get 5 pieces in a row.  Each user is given 
one non-flipping disk to use during the game. This piece 
remains the same color throughout the game. 
 
Game D 
Fitness: 87   Balance: 86   Diversity:  1 
This game uses a 10x10 board and Reversi pieces. The 
goal is to have the most pieces on the board at the end of 
the game. As in Game C, each player has one non-flipping 
disk.  
 
Game E 
Fitness: 63   Balance: 62   Diversity:1 
A 10x10 board using Tic-Tac-Toe pieces. The goal is to 
attain 5 pieces in a row. Recalling the opponent’s last 
move can be performed once only.  This nontraditional 
game rule allows a player to undo his opponent’s last move 
and force another course of action.  Introduction of this 
rule reduces the number of draws in ZOG self-play by half 
for this game. 
 
 

Conclusion 
 

The use of AI techniques to design challenging and 
interesting games is a relatively new line of inquiry.  Initial 
investigations have focused on dynamic modification of 
game parameters to match the computer’s playing ability to 
that of its human opponent.  In this paper we propose the 
idea of automatically designing the rules of a game to 
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make it intrinsically more interesting.  We have shown 
how novel games can be tested through self-play with a 
general game-playing engine using a very simple notion of 
challenge and interest: how much advantage moving first 
of second confers, and how likely the game is to be drawn.  
And we have shown how a GA can be used to find games 
that are optimal with respect to these criteria. 
 
Our work could be extended in many ways.  First, the 
fitness function could incorporate a broader notion of 
challenge and interest.  For example, we could give ZOG 
more time to compute the moves for one side and then 
measure how well this extra time translates to improved 
results: the more interesting the game, perhaps the greater 
the advantage conferred by having more time to think.  
(Thanks to an anonymous reviewer for this suggestion.)  
Alternatively, the number of times in which the initiative 
shifts from one player to another over the course of a game 
could be an important characteristic: this could be captured 
by the number of zero crossings in the derivative of the 
game engine’s scoring function over time.  Or like Lewis’s 
work on Quzzle (Reference A), characteristics of the game 
search tree could factor into the fitness function.  In 
particular, we would like to have used a dynamic search 
strategy in the game engine that continues searching until a 
quiescent position is reached: this might allow us to detect 
anomalous games that appear to be balanced only because 
the game engine could not find a winning sequence of 
moves (e.g., Game A from our experiment).  However, 
exploring such ideas will require access to the source code 
for a general game-playing engine, which we did not have 
for the ZOG game engine. 
 
A second direction to explore is the automatic design of 
new game elements.  In our work all the game elements 
were inherited from known games or designed by hand; the 
GA was used to find novel combinations of these game 
elements.  A more-fundamental approach would involve 
the automatic design of new boards, pieces, or victory 
conditions, which is a much harder problem. 
 
A third direction is to investigate the automatic design of 
game rules for other than simple board games.  As one 
anonymous reviewer noted, automating the design of 
balanced card games could be a logical next step.  The 
commercial payoff of this research is likely to lie in the 
automatic design of game rules for strategy games like 
Civilization or SimCity.  Ralph Koster’s ideas for game 
grammars (Reference D) could be a useful starting point 
for this line of inquiry. 
 
 
Finally, the true test of this approach will be to follow 
Andrade et al. in performing human experiments to 
determine if people at different skill levels find the 

automatically designed games challenging and interesting 
(Andrade 2006). 
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