
Automatic Design of Balanced Board Games

Vincent Hom, Joe Marks

Harvard University Extension School
Cambridge, MA 02138

Contact: joseph.w.marks@gmail.com

Abstract
AI techniques are already widely used in game software to
provide computer-controlled opponents for human players.
However, game design is a more-challenging problem than
game play. Designers typically expend great effort to
ensure that their games are balanced and challenging.
Dynamic game-balancing techniques have been developed
to modify a game-engine’s parameters in response to user
play. In this paper we describe a first attempt at using AI
techniques to design balanced board games like checkers
and Go by modifying the rules of the game, not just the rule
parameters. Our approach involves the use of a commercial
general game-playing (GGP) engine that plays according to
rules that are specified in a general game-definition
language. We use a genetic algorithm (GA) to search the
space of game rules, looking for turn-based board games
that are well balanced, i.e., those that the GGP engine in
self-play finds equally hard to win from either side and
rarely draws. The GA finds better games than a random-
search strategy that uses equivalent computational effort.

Introduction & Overview
 The earliest examples of computer-controlled game play
were AI programs that were specific to a particular game
like chess. More recently, General Game Playing (CGP)
has emerged as its own area of research: CGP software is
capable of playing any game whose rules are specified in a
given scripting language (Pell 1992, Reference B,
Genesereth 2005). Much research has gone into making
both specific and general game-playing software as
capable as possible.

However, there is more to making a game interesting than
just providing a capable opponent. The qualities of the
game itself are important. In particular, most good games
are balanced in the sense that they provide just enough
challenge to make play enjoyable, but not so much that
play is frustrating (Adams 2007). The notion of using AI
techniques to dynamically change game-play parameters to
achieve dynamic game balancing (DGB) has recently been
investigated by several research teams (Demasi 2002,
Hunicke 2004, Spronck 2004, Andrade 2005).

 Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Another way to automatically achieve balance in computer
games is to not just adjust the game parameters, but to
change the actual rules of the game. We call this
Automatic Game Design (AGD). AGD has not yet been
studied systematically. In 2004 it was reported in the press
that Jim Lewis, an inventor from New Jersey, had used a
computer to develop an especially difficult form of the
well-known sliding-block puzzle (Reference A). Lewis
computed the trees of all possible moves from the initial
configurations of multiple candidate puzzles. The puzzle
that produced the broadest and tallest tree he dubbed
Quzzle, which can now be bought at various sites on the
Internet. However, Lewis’s general approach of comparing
games by considering the shape and size of the
corresponding move trees is not a practical approach for
AGD, nor is it backed by any theory equating game quality
purely to the size of its search space. Puzzle aficionados
consider Quzzle to be less interesting than many other
sliding-block puzzles that were designed by hand (Pegg
2004).

In contrast, our approach to AGD is to generate well-
balanced board games that are won evenly by both the
first-moving and second-moving players and that result
infrequently in a draw. Our work is based on a
commercially available GGP called Zillions of Games
(ZOG). ZOG is a universal gaming engine that allows the
creation of many kinds of board games (Reference C).
Games rules are specified in a custom scripting language.
A collection of scripting commands is called a Zillions
Rules File (ZRF). There are three major components of a
ZRF: the board, the pieces, and the victory condition.

The board definition specifies the players, turn order, the
board dimensions, the number of pieces that each player
has at the beginning of the game, and the initial placement
of pieces on the board. The piece definition characterizes
the allowable behavior of game pieces. Here each piece’s
movement options are enumerated. Last, the victory
condition defines the possible outcomes of the game. Here
is an example of a ZRF for a simple game, Tic-Tac-Toe:

25

(players White Black)
(turn-order White Black)
(board
 (image "images\TicTacToe\TTTbrd.bmp")
 (grid
 (start-rectangle 16 16 112 112) ; top-left position
 (dimensions ;3x3
 ("a/b/c" (112 0)) ; rows
 ("3/2/1" (0 112))) ; columns
 (directions
 (n 0 -1) (e 1 0) (s 0 1) (w -1 0)
 (ne 1 -1) (nw -1 -1) (se 1 1) (sw -1 1))))
(board-setup
 (White (disk off 10))
 (Black (disk off 10)))

(piece
 (name disk)
 (image White "images\Reversi\WDisk.bmp"
 Black "images\Reversi\BDisk.bmp")
 (drops (add-to-empty)))

(define add-to-empty ((verify empty?) add))

(draw-condition (White Black) stalemated)

(win-condition (White Black)
 (or (relative-config disk n disk n disk)
 (relative-config disk e disk e disk)
 (relative-config disk ne disk ne disk)
 (relative-config disk nw disk nw disk)))

Searching for Balanced Games
Our approach to AGD is to search for balanced games in
the space of board games that can be described by
combining independent elements for board, piece, and
victory specifications that are derived from known games
and variations thereof. A search algorithm combines
different elements to form new games that are then tested
in self-play using the ZOG game engine. As an
approximation to what constitutes challenge and interest,
we seek games in which each player has roughly equal
chances and that rarely end in draws.

Even for a simple game space like the one described
below, exhaustive search of all possible games is not
feasible. We therefore use a genetic algorithm (GA) to
perform a more-efficient search (Holland 1975, Goldberg
1989). Because our GA is searching in a space of game
rules or programs, it can be thought of as a form of genetic
programming (Koza 1992).

Search Space. The game elements we consider are those
that are used in common games like Checkers, Reversi
(also known under the brand name of Othello), Tic-Tac-

Toe, and some of their simple variants. The different
elements are:

8 board types : 3x3, 4x4, 5x5, 6x6,7x7, 8x8, 9x9, 10x10
3 piece types : Tic-Tac-Toe, Reversi, Checkers
6 victory conditions: 3 in row, 4 in row, 5 in row, 6 in row,

most men win, no men remaining

A total of 144 different games can be generated from these
traditional elements alone. Additional complexity is
achieved by incorporating nontraditional game elements
that we specified by hand. These elements can be
separated into two categories: elements that can be applied
once and elements that can be applied repeatedly.

The six game elements that can only be applied once are:
Recall Last Move, Recall Any Move, Move For You,
Double Move, Scoring, and First Hybrid Disk. The
remaining two elements that can be applied multiple times
are Hybrid Disk and Non-Flipping Disk. We imposed a
limit of no more than two nontraditional elements per
game. A total of 5,616 games can therefore be specified
using combinations of the traditional and nontraditional
game elements. The nontraditional elements are:

• Recall Last Move allows a player to take back his
opponent’s last move and force him to make a
different move.

• Recall Any Move is similar to Recall Last Move.

The difference is that a player can recall any of
his opponent’s moves up to that point in the game.

• Move For You allows a player to make a move for

his opponent once during the course of game.

• Double Move allows a player to perform two
moves in succession once during the game.

• The mutation of Scoring decides the winner of the

game by counting the number of tokens that each
player has in a row. For scoring, six in a row is
awarded six points, five in a row is awarded five
points, etc.

• First Hybrid Disk is a single special piece given to

each player that counts as a piece for both players.
The disk must be the first piece used by each
player.

• Hybrid Disk is similar to First Hybrid Disk. The

difference is that a player can use this disk any
time during the course of the game, but the hybrid
disk must be used in order for the player to win.

26

• Non-Flipping Disk is a disk that cannot change
color or ownership through capture (for those
games that have such a concept).

Search Algorithm. Our search algorithm is a simple
genetic algorithm (GA) that iteratively refines a population
of games. To generate a new child game, three parent
games are randomly chosen. Each one donates the board,
the pieces, and the victory condition, respectively, to the
definition of the new child. In addition, mutations -- one of
the eight nontraditional game elements from the previous
section – can be inherited from the parent games or
randomly added to the child game. If the new child game
has not been generated previously, it is tested by self-play
with the ZOG game engine. The new game is played 100
times with a time limit of one second per move and the
results are used to generate a fitness score. The fitness
score is the sum of balance and diversity terms. The
formula for the balance term is:

100 – (|Player A wins – Player B wins | - Draws)

Thus a game that conferred no advantage to the first or
second mover and that generated no draws would get a
maximum balance score of 100 points. The diversity value
is the number of unique differences that a new game has
relative to its closest neighbor in the game population. Its
inclusion in the fitness function promotes a broader search
of the game space. The maximum diversity score is 11
points: two games could differ in all three basic game
elements and in all eight nontraditional game elements.

If the fitness score of a new game is higher than the score
of the least-fit member of the game population, then the
new game replaces the least-fit game, otherwise it is
ignored.

In our experiments, the initial game pool was populated
with 32 traditional games like Tic-Tac-Toe, Reversi,
Checkers, and minor variants thereof. We chose these
games by hand to take advantage of what is already known
to be good: these games have evolved through human play
over the ages. The GA starts by determining the fitness
score for each game in the initial population. In our tests
we then ran the GA for 500 iterations, which required
several hundred hours of computation on a PC cluster.

To measure the effectiveness of the GA, we compared it to
a random sampling strategy. The results are reported in the
next section.

Results

Table 1 describes the five games from the initial
population with the highest fitness scores. (“Bal” denotes
balance; “Div” denotes diversity.) Since these games

mostly follow rules that were designed and tested by
people over time, it is not surprising that some of them
score quite well.

Game Bal Div A B Draws
Reversi_10x10 96 2 50 47 3
Reversi_8x8 81 1 53 40 7

Checkers_10x10 64 0 38 32 30
Reversi_6x6 59 1 29 70 1

Checkers_8x8 49 1 24 31 45
Average 69.8 1 38.8 44.0 17.2

Table 1. The five fittest games in the initial population

for the GA.

The results from 500 iterations of the GA are shown in
Table 2. They are a clear improvement over the starting
population of games. They are also significantly better
than the best of 500 randomly generated games, as shown
in Table 3. Note that random sampling fails to match the
hand-picked games used to seed the GA, let alone the final
results achieved by the GA: most games in the space
defined by our game elements are not very interesting.

Game Fit Div A B Draws
GameA 95 1 47 50 3
GameB 91 1 45 47 8
GameC 91 1 45 53 2
GameD 87 1 50 43 7
GameE 63 2 34 31 35

Average 85.4 1 44.2 44.8 11

Table 2. The five fittest games in the population after

500 iterations of the GA.

Game Fit Div A B Draws
SampleA 70 0 35 60 5
SampleB 68 0 34 64 2
SampleC 66 0 33 64 3
SampleD 62 0 31 68 1
SampleE 61 1 30 70 0
Average 65.4 0.2 32.6 65.2 2.2

Table 3. The five fittest games from 500 random

samples of the game space.

The behaviors of the GA and random-sampling strategy
over time are shown in Figures 1 and 2. Figure 1 plots the
average fitness score over time of both approaches, and
Figure 2 the average diversity. As can be seen from the
plots, the GA appears to be reaching a plateau after 500
iterations.

27

Average Fitness

0
10
20
30
40
50
60
70
80

1 79 157 235 313 391 469 547

Number of Games

Fi
tn

es
s

Genetic
Algorithm

Random
Sample

Figure 1. Average fitness scores over time of the GA
and random-sampling algorithms.

Average Diversity

0

0.2
0.4

0.6
0.8

1

1.2
1.4

1.6

1 68 135 202 269 336 403 470 537

Number of Games

D
iv

er
si

ty Genetic
Algorithm
Random
Sample

Figure 2. The average diversity of the games generated
by the GA and random-sampling approaches over time.

The best games generated by the GA are described next:

Game A
Fitness: 95 Balance: 94 Diversity: 1
A 5x5 board using Go-Moku pieces. The objective is to get
3 men in a row. The mutation of recalling any one of the
opponent’s moves can be performed once only by each
player. Although this game has a high fitness value, it is
undeserved. Victory is trivial because the first player to
move can win the game in less than five moves. Using
ZOG to test this game, each computer-controlled player
was given one second to complete a move. This length of
time is insufficient for the computer to find the decisive
course of action. So given the time limit of one second, the
game is a balanced game. However, giving ZOG a time
limit of three seconds, the game becomes a lopsided win

for the opening player. This is an example of the oft-
noticed ability of GAs to find anomalous or buggy
solutions!

Game B
Fitness: 91 Balance:90 Diversity:1
A 6x6 board using Reversi pieces. The game is like
Reversi only the objective is to have no pieces on the
board, or to stalemate your opponent. To help clarify the
rules of the game, it is helpful to consider the victory
condition:

(or (loss-condition (White Black) (pieces-remaining 0)

(loss-condition (White Black) Stalemate))

Thus a player loses if he has no moves or he is the last
player to place a disk on the board. In self-play, ZOG’s
search strategy tends to favor the first condition by trying
to minimize the number of pieces on the board.
Nevertheless, it’s still sometimes possible to win via the
stalemate criterion, so having fewer pieces doesn’t
guarantee a win.

Game C
Fitness: 91 Balance: 90 Diversity: 1
This game uses an 8x8 board and Reversi pieces. The
objective is to get 5 pieces in a row. Each user is given
one non-flipping disk to use during the game. This piece
remains the same color throughout the game.

Game D
Fitness: 87 Balance: 86 Diversity: 1
This game uses a 10x10 board and Reversi pieces. The
goal is to have the most pieces on the board at the end of
the game. As in Game C, each player has one non-flipping
disk.

Game E
Fitness: 63 Balance: 62 Diversity:1
A 10x10 board using Tic-Tac-Toe pieces. The goal is to
attain 5 pieces in a row. Recalling the opponent’s last
move can be performed once only. This nontraditional
game rule allows a player to undo his opponent’s last move
and force another course of action. Introduction of this
rule reduces the number of draws in ZOG self-play by half
for this game.

Conclusion

The use of AI techniques to design challenging and
interesting games is a relatively new line of inquiry. Initial
investigations have focused on dynamic modification of
game parameters to match the computer’s playing ability to
that of its human opponent. In this paper we propose the
idea of automatically designing the rules of a game to

28

make it intrinsically more interesting. We have shown
how novel games can be tested through self-play with a
general game-playing engine using a very simple notion of
challenge and interest: how much advantage moving first
of second confers, and how likely the game is to be drawn.
And we have shown how a GA can be used to find games
that are optimal with respect to these criteria.

Our work could be extended in many ways. First, the
fitness function could incorporate a broader notion of
challenge and interest. For example, we could give ZOG
more time to compute the moves for one side and then
measure how well this extra time translates to improved
results: the more interesting the game, perhaps the greater
the advantage conferred by having more time to think.
(Thanks to an anonymous reviewer for this suggestion.)
Alternatively, the number of times in which the initiative
shifts from one player to another over the course of a game
could be an important characteristic: this could be captured
by the number of zero crossings in the derivative of the
game engine’s scoring function over time. Or like Lewis’s
work on Quzzle (Reference A), characteristics of the game
search tree could factor into the fitness function. In
particular, we would like to have used a dynamic search
strategy in the game engine that continues searching until a
quiescent position is reached: this might allow us to detect
anomalous games that appear to be balanced only because
the game engine could not find a winning sequence of
moves (e.g., Game A from our experiment). However,
exploring such ideas will require access to the source code
for a general game-playing engine, which we did not have
for the ZOG game engine.

A second direction to explore is the automatic design of
new game elements. In our work all the game elements
were inherited from known games or designed by hand; the
GA was used to find novel combinations of these game
elements. A more-fundamental approach would involve
the automatic design of new boards, pieces, or victory
conditions, which is a much harder problem.

A third direction is to investigate the automatic design of
game rules for other than simple board games. As one
anonymous reviewer noted, automating the design of
balanced card games could be a logical next step. The
commercial payoff of this research is likely to lie in the
automatic design of game rules for strategy games like
Civilization or SimCity. Ralph Koster’s ideas for game
grammars (Reference D) could be a useful starting point
for this line of inquiry.

Finally, the true test of this approach will be to follow
Andrade et al. in performing human experiments to
determine if people at different skill levels find the

automatically designed games challenging and interesting
(Andrade 2006).

References
A. A Hard, Simple Problem. 2004.
http://www.economist.com/science/displayStory.cfm?story
_id=3445734. The Economist.

B. http://games.stanford.edu/

C. http://www.zillions-of-games.com/

D. http://www.theoryoffun.com/grammar/gdc2005.htm

Adams, E., and Rollings, A. 2007. Fundamentals of Game
Design. Prentice Hall.

Andrade, G., Ramalho, G., Santana, H., and Corruble, V.
2005. Challenge-Sensitive Action Selection: an
Application to Game Balancing. Proc. of the
IEEE/WIC/ACM Intl. Conf. on Intelligent Agent
Technology (IAT-05), pp. 194-200, Compiègne, France.

Andrade, G., Ramalho, G., Gomes, A., and Corruble, V.
2006. Dynamic Game Balancing: an Evaluation of User
Satisfaction. Proc. of the 2nd Artificial Intelligence and
Interactive Digital Entertainment Conf. (AIIDE'06),
Marina del Rey, CA.

Demasi, P., and Cruz, A. 2002. Online Coevolution for
Action Games. Proc. of The 3rd Intl. Conf. on Intelligent
Games And Simulation, pp. 113-120, London.

Genesereth, M. R., Love, N., and Pell, B. 2005. General
Game Playing – overview of the AAAI Competition. AAAI
Magazine (26)2: 62-72.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.

Holland, J. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Hunicke, R., and Chapman, V. AI for Dynamic Difficulty
Adjustment in Games. 2004. AAAI Workshop on
Challenges in Game Artificial Intelligence, pp. 91-96, San
Jose.

Koza, J. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

29

Pegg, E. 2004. Sliding-Block Puzzles. At
http://www.maa.org/editorial/mathgames/mathgames_12_1
3_04.html, Mathematical Association of America.

Pell, B. 1992. Metagame: A New Challenge for Games
and Learning. In van den Erik, H.J. and Allis, L.V., eds.,
Heuristic Programming in Artificial Intelligence 3 – The
Third Computer Olympiad. Ellis Horwood. Related
papers can be found at ftp://ftp.cl.cam.ac.uk/users/bdp.

Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E.
Difficulty Scaling of Game AI. 2004. Proc. of the 5th Intl.
Conf. on Intelligent Games and Simulation, pp. 33-37,
Belgium.

30

