
Automatic Story Generation for Computer Role-Playing Games

Curtis Onuczko, Duane Szafron, Jonathan Schaeffer, Maria Cutumisu, Jeff Siegel,
Kevin Waugh and Allan Schumacher

Department of Computing Science, University of Alberta
Edmonton, Canada

{onuczko, duane, jonathan, meric, siegel, waugh, schumach}@cs.ualberta.ca

Abstract

Scripting the plot in a computer role-playing game requires
a large number of scripts that are difficult to track and main-
tain. Game adventures often have simple plots, called sub-
quests, that are independent from the main plot. Sub-quests
are important, as they add value to the open-world appeal of
the game, but they still have to be scripted. We have created
a prototype of a tool that helps by automatically producing
design pattern specifications for sub-quests. The specifica-
tions can be entered into an existing tool, called ScriptEase,
to generate scripting code for Neverwinter Nights adventures,
without doing any manual scripting. The sub-quest patterns
produced are logically consistent, ensuring the story can be
completed by the player. The sub-quests are also designed to
produce a better story by having the author adjust the amount
of interactivity between the sub-quests. The entire process is
done with little input from the author.

Scripting Sub-Quests With Patterns

The plot in computer role-playing games (CRPGs) has be-
come quite complex. It is common for CRPGs to have com-
plex story lines that allow for multiple story-arcs. Plot in
CRPGs also involves the player character (PC) interacting
with multiple game objects over time. Examples of interac-
tion include the PC having a conversation with a character,
unlocking a door, or acquiring an item. All of these inter-
actions must be scripted, requiring expensive programmer
time.

Often in CRPGs, a simple plot will occur that is inde-
pendent of the main story line. These simple plots, called
sub-quests, are usually included to give the player a sense of
a vast open world with unlimited opportunities and are often
optional. Sub-quests are of vital importance to CRPGs. In
the most popular games, a player can choose to take a break
from the main plot and perform an optional sub-quest at any
time.

Sub-quests greatly add to the breadth of choices in a
CRPG and provide motivations for a player to explore the
game world. This increases a player’s sense of customiza-
tion and ownership of PCs. The influence of the player on
the main plot is often constrained, as specific plot options

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

are necessary to keep the game on track. Without any sub-
quests, the player will feel constrained in their ability to in-
fluence the story. With sub-quests, the player can make more
unconstrained choices, since the main plot is protected.

Sub-quests are generally simple compared to the com-
plexity of the main plot, but CRPGs will often have a large
number of sub-quests. Several sub-quests that all have a
small amount of complexity can exhibit connections among
them and maintain recurring patterns. These recurring pat-
terns provide a theme that increases motivation, excitement
and a sense of importance to activities that would otherwise
be meaningless in the game.

An example sub-quest pattern is to retrieve an item. This
involves the PC needing to retrieve an item for some pur-
pose. Examples of the retrieve an item pattern include the
PC being asked by a non-player character (NPC) to retrieve
a stolen amulet, the PC encountering a locked door requir-
ing that a key be retrieved to unlock it, and the PC needing
to retrieve a gear in order for a machine to work.

A pattern can be represented as a sequence of roles. Each
role in the pattern is played by an object in the game other
than the PC. A role also has an action associated with it.
This action represents the interaction between the PC and the
object associated with the role that must take place in order
for the role to be fulfilled. Examples of roles are: reaching
a specific point in a conversation with an NPC, unlocking a
door, and acquiring an item. Figure 1 shows a sequence of
roles for a sample retrieve an item pattern.

Reach hear about stolen amulet dialog on Silk

Acquire stolen amulet from Orc Shaman

Reach return stolen amulet dialog on Silk

Figure 1: An example retrieve an item pattern.

147



These roles can also serve as a specifications for program-
mers. Each role in the plot pattern corresponds to a script
that has to be written. Each script handles the action between
the PC and the object in each role. Each script also contains
control structures that ensure the PC must fulfill each role in
the same order as they are presented in the pattern.

Using a tool such as ScriptEase (McNaughton et al.

2004), allows plot patterns to be represented by generative
design patterns. A user would then only have to instanti-
ate pattern instances and all of the scripts for the sub-quest
would be generated automatically. Other systems generate
scripts at a low level, while ScriptEase uses patterns to gen-
erate scripts at a high level of abstraction. This allows com-
plex stories to be created quickly and efficiently.

Generating Sub-Quests
A plot pattern for a sub-quest only requires an object and an
action to be specified for every role. Once these objects and
actions are specified, the pattern can be easily transformed
into scripts. The objects and actions can be automatically
chosen such that the process of producing a sub-quest pat-
tern instance requires no creative input from the user.

Our sub-quest generator (SQUEGE) is written in prolog
and generates sub-quest pattern instance specifications. A
user needs to provide a list of objects available in the game
that can be used in the sub-quests. SQUEGE then logically
chooses the objects and actions needed to specify a sub-
quest pattern, by ensuring that the resulting sub-quest can be
completed by the player. This process can then be repeated
multiple times to generate the number of patterns desired.

It is important for the generated sub-quests to be logical,
otherwise the player will become quite frustrated at attempt-
ing to follow sub-quests that are impossible to complete. An
example of an illogical sub-quest would be a retrieve an item

quest, where the player needs to acquire a key to unlock a
chest, and the key is inside the chest. Generating sub-quests
requires each pattern to have constraints that must be satis-
fied. The constraint that would solve the illogical example
mentioned previously would be to ensure that the key being
acquired is not located in the chest that needs to be unlocked.

Generated sub-quests can also interact with each other to
create a more engaging experience for the player. Two sub-
quests interact with each other if they share one or more
identical roles. An example of this would be a role that oc-
curs at the end of a sub-quest and at the beginning of an-
other sub-quest. This would require the player to complete
the first sub-quest before being allowed to start on the sec-
ond sub-quest. This interaction between sub-quests makes
sub-quests more complex. The increase in complexity en-
riches the player’s experience as the sub-quests available are
not just a set of simple independent activities.

Rather than having interactivity between sub-quests be-
ing a by product of the sub-quests generated, SQUEGE can
add more or less sub-quest interactivity based on heuristics.
The interactivity can be adjusted depending on a number
given to the program that specifies the amount of interac-
tivity desired between sub-quests. A low number results in
most quests being independent while a high number results
in most quests interacting with one another.

Demonstration Overview

The demonstration creates a game adventure in BioWare
Corp.’s popular CRPG, Neverwinter Nights. The game ad-
venture takes place in a castle setting commonly found in
fantasy games. The adventure lacks a main plot so as to fo-
cus on sub-quests, and will initially be unscripted.

A list of all the game objects that can be scripted are given
to SQUEGE. The initial states of the game objects, such as
whether a door is locked or the location of an item, are also
given to SQUEGE. SQUEGE then outputs a specification of
the sub-quest patterns generated. Figure 2 shows the output
of a generated retrieve an item pattern instance.

Figure 2: Output for a retrieve an item pattern.

When a pattern role involves a conversation, the intent of
the conversation is given, but the conversation itself must
be written by the author. SQUEGE will tell the author that
the PC must reach a point in the conversation, but does not
specify the location or the text, only the intent (context) of
the conversation, such as retrieve the magic ring.

In the demo, one of the sub-quest pattern specifications
will be instantiated using ScriptEase. Although SQUEGE

only generates a sub-quest pattern specification, manually
instantiating a sub-quest pattern in ScriptEase from a spec-
ification is simple and straightforward. The demo will then
show how ScriptEase generates the scripts corresponding to
the outline. The demo will end with the sub-quest being
played in Neverwinter Nights. Additional game adventures
that have all of their sub-quest pattern specifications instanti-
ated before the demonstration will be available for viewing.

References

McNaughton, M.; Cutumisu, M.; Szafron, D.; Schaeffer,
J.; Redford, J.; and Parker, D. 2004. Scriptease: Generative
design patterns for computer role-playing games. In ASE,
88–99. IEEE Computer Society.

148


