
A Testbed for Evaluating AI Research Systems in Commercial Games

David W. Aha1, Matthew Molineaux1,2 and Philip Moore1,2

1Intelligent Decision Aids Group; Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5515); Washington, DC 20375

2ITT Industries; AES Division; Alexandria, VA 22303
<first.last>@nrl.navy.mil

Abstract
Many AI researchers want to test the utility of their
prototypes in complex task environments, such as those
defined by commercial gaming simulators. Also, many
developers of commercial games need to solve tasks (e.g.,
game balancing, providing rational agent behaviors) that
can be addressed by these systems. However, integrating
them with gaming simulators requires substantial effort. We
will demonstrate TIELT, a testbed designed to assist with
evaluating research prototypes in these task environments.

System Specification
One of our goals in developing TIELT (Testbed for
Integrating and Evaluating Learning Techniques) is to
provide researchers with the ability to more easily evaluate
research systems in comprehensive task environments; we
hope that this will facilitate the development of agents that
can address knowledge-intensive tasks. This contrasts with
popular empirical studies of knowledge-poor machine
learning techniques that use only static databases for their
experiments. As argued by many researchers (e.g., Laird &
van Lent, 2001), commercial games provide excellent
environments for this purpose, and our work with TIELT
to date has focused on these environments.

TIELT is also intended to provide practitioners with
facilities for more easily evaluating the utility of AI
research prototypes in their products. Game developers
(e.g., Rabin, 2004) are aware of the potential of using
certain AI technology in their systems, and wish to conduct
such evaluations in an effort-efficient manner.

To fulfill these goals, TIELT has been designed to have
the following characteristics:

1. Integration functionality: TIELT must support separate,
interchangeable descriptions of game environments and
agent programs. These descriptions are compatible with
a variety of game genres (e.g., RTS, TBS, RPG, team
sports, FPS), and a variety of learning techniques,
including supervised, unsupervised, and reinforcement;
and online and offline algorithms. Agents should be
able to learn models of task, players, and environments.
During a game, TIELT mediates communications
between the environment and agent program.

2. Evaluation support: TIELT must input, represent, and
execute a variety of empirical studies to test an AI
system’s utility for a range of tasks. Also, it allows

users to run studies that compare the utility of multiple
AI systems on multiple tasks.

3. Use cases: TIELT must support AI systems that
embody either agent programs or agent subprograms
(i.e., to study game environment subtasks).

4. Multi-platform and multi-access: TIELT must work on
all major systems, and provide support for testing
slower algorithms.

System Use
A TIELT integration requires a user to develop or reuse
four knowledge bases (KBs) and design an experiment (see
Figure 1). First, the Environment Model (EM) encodes a
declarative description of objects in the game state,
operators that describe the possible actions, and observable
models that describe what an agent can perceive.

Second, the Simulator Interface Description (SID)
defines how TIELT communicates with a game engine. It
includes definitions of message templates, specifies an
underlying protocol, and fulfills the contract with an agent
program implied by an Environment Model. TIELT
supports communication via several standard protocols
(e.g., Java method calls, network protocols, console I/O).
Separating this communication from the EM gives the
agent an implementation-independent view of the game,
frees the agent from the game engine’s timetable, and
allows an EM to be used for multiple games.

Third, the Agent Program Interface Description uses
message templates similar to the SID’s and a dialogue
model to define communications with an agent program.
Finally, an optional Performer Description (PD) is defined
when the agent program is intended to address only a
subtask within the environment. The PD encodes a
hierarchical executable representation of environment
tasks, any of which can be taken on by an agent program.

Given these, a procedure can be selected/defined for
conducting an empirical evaluation. For example, users can
command TIELT to train an agent program for a specified
number of gaming sessions, and then test in a “non-
learning” mode. Experimental results can be stored in a
database for subsequent analysis.

Users define these KBs through the TIELT GUI, which
provides a form fill-in interface for each KB, supplemented
by the simple TIELT scripting language (TSL). The TIELT
GUI has recently been rewritten to be more user-friendly,
adopting characteristics of the popular Java Development

137

Figure 2: A Snapshot of TIELT’s New GUI

Figure 1: TIELT’s Integration Architecture

Reusable
Knowledge

Bases

Game Engines

...

MadRTS

Development GUI

Internal
Communication

Modules

Game Player(s)

Selected
Simulator

Selected
Agent

Program

Application
GUI TIELT

User

Environment
Model

Performer
Description
(Optional)

Simulator
Interface

Description

Agent Program
Interface

Description

Development GUI

Internal
Communication

Modules

Game Player(s)

Selected
Simulator

Selected
Agent

Program

Application
GUI TIELT

User

Environment
Model

Performer
Description
(Optional)

Simulator
Interface

Description

Agent Program
Interface

Description

Civilization IV

Poker
Academy

Environment Eclipse (2006) (Figure 2). By accessing
libraries of KBs, agent programs, and game engines that
have been integrated with TIELT previously, users can
integrate an agent program and compare its performance
against selected alternatives on selected tasks.

System Status and Planned Tasks
TIELT is freely available, documented, comes with an “as-
is” license, and is supported via our www site (TIELT,
2006). It has been integrated with over a dozen gaming
simulators, including classic board games (e.g., chess),
Unreal Tournament™, a clone of Warcraft II™ named
Wargus, and MadRTS − Mad Doc Software’s adaptation
of the engine that underlies Empire Earth II™.

Several agent programs have also been integrated with
TIELT, including the SOAR cognitive architecture (Laird
et al., 1987) and CAT, a case-based planner that we
designed for learning to defeat Wargus opponents (Aha et
al., 2005).

TIELT has been downloaded by 124 people from 68
organizations, including 18 commercial organizations. Its
most significant use has been through the DARPA/IPTO
Transfer Learning program, in which TIELT supports
evaluations of state-of-the-art transfer learning technology.
We are also supporting several academic and industry
personnel on focused projects involving TIELT. As we
release new challenge problems, we hope to attract more
of the research community to TIELT. Additionally, TIELT
will be used in the proposed reinforcement learning
competition and benchmarking event to be held at the 2006
International Conference on Machine Learning.

While TIELT has begun to demonstrate utility in a few
research investigations, it has not been adopted for serious
use by many commercial game developers. However,
based on work they performed during our collaboration,
Mad Doc Software has plans to develop products for future
release. We plan to continue making TIELT available for
use by game developers, with the goal of providing a suite
of agent programs that can be quickly and easily tested in a
game as it is being developed. We expect that, if a
technique proves useful, then the developers would
reimplement and incorporate the agent’s functionality in
their product.

Upcoming extensions to TIELT include speed
enhancements from compiling TSL scripts to Java, a
system for packaging and installing agents and
environments, and the addition of wizards to help with
common tasks.

Demonstration
Our demonstration shows how TIELT can be used to
integrate a gaming simulator and an agent program, and to
define and perform experiments on them. This will involve
defining TIELT’s four knowledge bases and an experiment
procedure. A version of this demonstration can be found at
http://nrlsat.ittid.com/ISD05MolineauxM.html.

Acknowledgements
TIELT is being developed through sponsorship of the
DARPA/IPTO Transfer Learning program. We gratefully
acknowledge DARPA’s support for this project. The
views, opinions, and/or findings contained in this paper are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects
Agency or the Department of Defense.

References
Aha, D.W., Molineaux, M., & Ponsen, M. (2005). Learning to

win: Case-based plan selection in a real-time strategy game.
Proceedings of the Sixth International Conference on CBR (pp.
5-20). Chicago, IL: Springer.

Eclipse (2006). [http://www.eclipse.org]
Laird, J.E., Newell, A., & Rosenbloom, P.S. (1987). Soar: An

architecture for general intelligence. Artificial Intelligence
33(3), 1-64.

Laird, J.E., & van Lent, M. (2001). Interactive computer games:
Human-level AI’s killer application. AI Magazine, 22(2), 15-
25.

Rabin, S. (Ed.) (2004). AI game programming wisdom 2.
Hingham, MA: Charles River Media.

TIELT (2006). Testbed for integrating and evaluating learning
techniques. [http://nrlsat.ittid.com]

138

