
Figure 1. Partially built wall plan 

AI Wall Building in Empire Earth® II 

Tara Teich, Dr. Ian Lane Davis 
 

Mad Doc Software 
100 Burtt Rd, Suite 220 

Andover, MA 01810 
 
 

Abstract 
Real-Time Strategy games are among the most popular 
genres of commercial PC games, and also have widely 
applicable analogs in the field of “Serious Games” such as 
military simulations, city planning, and other forms of 
simulation involving multi-agent coordination and an 
underlying economy.  One of the core tasks in playing a 
traditional Real-Time Strategy game is building a base in an 
effective manner and defending it well.  Creating an AI that 
can construct a successful wall was one of the more 
challenging areas of development on Empire Earth® II, as 
building a wall requires analysis of the terrain and 
techniques from computational geometry.  An effective wall 
can hold off enemy troops and keep battles away from the 
delicate economy inside the base. 

Introduction   
The ultimate goal of the AI in a Real-Time Strategy (RTS) 
game is to put up a good fight and seem to be a human 
opponent.  To this end, the AI in Empire Earth® II (EE2) 
constructs bases of buildings in tight clusters and seeks to 
defend these bases by enclosing them with a wall for 
protection.  Starting with a very basic initial plan, we 
attempted to create a system that could dynamically alter 
its plans as obstacles cropped up and use a modified 
convex hull algorithm to maintain a smooth and minimal 
wall plan.  Interesting challenges arose from taking this 
simple algorithm from paper into a constantly changing, 
unpredictable environment. 

Walls 
Walls are static defenses that surround bases to slow down 
attackers.  They are invaluable in protecting from quick 
raids against a player’s citizenry, as the opponent will need 
a larger force to breach the walls, and will allow for 
advance warning of the impending attack.  The ideal wall 
will surround as much of a base as possible, and will take 
advantage of terrain to provide obstacles where possible, 
so as to only build the minimal wall sections…but at the 
same time, it will leave some room for growth within the 
walls.  The EE2 AI does not build ideal walls (due to the 
                                                 
Copyright © 2006, American Association for Artificial Intelligence.  All 
rights reserved. 
 

inherent complexities of even defining optimal), but 
instead attempts to wall in the base at a tight radius around 
its starting layout.  Our goal is to make a tight wall so as to 
minimize costs in resources and time to construct. 

We start with a plan of a box at a fixed distance from the 
starting base location.  The algorithm steps along each 
edge of the plan and checks if the edge is valid.  
Intersections with terrain elements are considered valid, 
intersections with other buildings are not.  If the edge is 
invalid, it takes the location of the obstacle intersection and 
creates a new edge node by stepping out 1/2 the length of 
the original edge on the normal pointing away from the 
interior of the plan.  The original edge is removed and two 
new edges are created between the original end nodes and 
the newly created node. 

This process is repeated until all edges are valid.  We are 
left with a very jaggy wall plan.  We need to smooth it out, 
so we find the convex hull for our edge nodes.  We chose 
the Graham Scan (Sedgewick 1992) method.  For our 
initial wall plan, this yields very favorable results. 
 

In Figure 1, the AI has just begun its wall plan.  One 
edge is under construction, and the rest are shown via 
debug displays.  Edges marked splittable can be split by 
the method described above. 

Walls tend to be very expensive and also require a high 
commitment of citizens to build them.  We build the wall 
one edge at a time to help spread out the cost and 
workforce burden.  The result of this was that walls also 
tend to take a very long time to be completed and buildings 

133



were sometimes placed smack in the midst of a planned 
wall edge.   

Fortunately, we can use our smoothing algorithm to 
compensate for this.  Before building an edge, the wall 
builder checks its validity.  If it is no longer valid, it will 
repeat the process it used at creation, splitting the edge and 
ultimately re-smoothing the graph.  This results in vast 
complications as we can have a partially built wall.  This 
means that the convex hull algorithm cannot treat all nodes 
equally, as some of them are not removable. 

The first part of the Graham Scan algorithm involves 
finding the bottom most node and then sorting all nodes by 
their rotation from that point.  Because some edges are 
already built, we need to fix up the order after the sort is 
complete.  We loop through all edges and for each edge 
that is already built we make sure that the tail node 
immediately succeeds the head node.  This is further 
complicated by the possibility that multiple adjacent edges 
are already completed, so nodes must be moved to ensure 
that all connections are maintained.  Following is the 
algorithm for the Graham Scan with our additions in bold. 

 
1. Find bottom most edge node 
2. Sort all nodes at their angle from 

this minimum point 
3. Loop through all edges in wall plan 
4. If edge is already built, move the 

two nodes of the edge adjacent in the 
sorted list 

5. Loop through sorted node list 
6. Look at nodes in groups of three 
7. while the angle between these nodes 

is counter-clockwise and the middle 
node is not on a started edge drop 
the middle node and use last node and 
two nodes before the middle as the 
group of three 

 
We do not want to remove any nodes that are part of an 

existing edge.  Our AI never destroys wall segments it has 
already built as this is both a waste of money and would 
make a player who observes the behavior think the AI was 
not being smart (in commercial games these perceptions 
are significant).  Unfortunately this yields some non-
optimal wall layouts when new obstacles make existing 
edges lie on the interior of the convex hull. 

Roads pose a particular challenge to wall plans.  
Because a road is a continuous obstacle, the usual solution 
of stepping away from the obstacle doesn't work unless the 

road and wall are nearly parallel.  We needed to add a 
special case to deal with this intersection. 

The only allowable intersections between roads and 
walls are at a perpendicular, which causes the wall system 
to automatically insert a gate.  The goal of the wall planner 
therefore becomes to insert a segment perpendicular to the 
road and connect the ends of the segment to the existing 
wall plan.  In most cases, this works well. 

Figures 2 and 3 show the wall from Figure 1 in a further 
state of development.  A road is intruding on the leftmost 
portion of the plan, and the edges connecting to this invalid 
edge are both already constructed.  The AI manages to 
successfully create a gate edge, visible in the upper left 
section of the completed wall in Figure 3.  Unfortunately, 
this wall has two problems: a node in the lower right is 
partially overlapping a building, and the plan doesn’t 
handle the small forest very well.  The node inside the 
building cannot be moved because that edge is already 
constructed.  Other than this problem area, the wall is 
successful - it almost completely encloses the base. 

Figure 2. Wall plan with some built segments and a road 
intersecting the plan. 

134



Figure 3. Complete wall with inserted gate 

Close examination of the left hand side of Figure 3 
reveals the problem.  The lower left area is densely packed 
with buildings and terrain elements such as trees.  Given 
our requirement that the AI never destroy an existing 
structure, there is no clear solution to this situation. 

Future Work 
The best results in crafting RTS AI usually come from 
studying what human players do and attempting to mimic 
their behavior.  Our initial algorithm design was flawed, as 
it was not derived from a system that a human would use. 
Human players do a high level terrain analysis and lay out 
a wall plan that encompasses more territory than they 
currently control so as to provide room to grow.  The 
Empire Earth® II AI has no notion of where things will 
go, only where they are.  Humans will also identify 
permanent terrain features that make effect barriers and 
incorporate these into their wall plans.  The EE2 AI makes 
little use of terrain features to minimize the amount of wall 
to build, and doesn't necessarily realize when a wall is 
spread over non-contiguous areas, such as when the wall 
crosses a river.  A more predictive system could avoid 
some of these pitfalls, though the predications can be 
complex, especially when multiple players are involved but 
even within one team’s AI as you cannot be sure when the 
overall plan will change as the current battle conditions 
change. 

In future work on wall building, we would like to start 
with a better initial wall plan.  Beginning with an analysis 
phase that could identify terrain features to incorporate into 
the wall plan would yield walls that require fewer edges 
and therefore cost fewer resources and can be completed 
more rapidly.  We could then apply the techniques 
described here to handle obstacles in planned edges as well 
as a modification of the smoothing algorithm to treat 
terrain features as non-removable edges in the graph and 
ensure the entire plan remains as close to a convex form as 
possible. 

Conclusions 
AI wall building is a challenging problem that has received 
very little industry attention.  Many top-tier RTS titles 
avoid the problem entirely.  We examined recent titles such 
as Age of Empires® III and never saw the AI players 
attempt to construct a wall.  Ultimately, our goal is to 
create a challenging opponent for the human player that 
enables an enjoyable gameplay experience and appears as 
human as possible.  Building a wall is a complex problem 
of computational geometry that is only a small part of 
contributing to this overall goal, yet takes a significant 
contribution from the developer.  As developers place 
more attention on the AI in general, more focus will be 
placed on walls in particular.  Another current title, The 
Battle for Middle-Earth™ II does tackle the challenge.  
The first Empire Earth® AI built walls as well, though it 
simply boxed in its entire corner of the map with no 
consideration of minimizing wall cost.  Future developers 
entering the arena will benefit from understanding the 
techniques presented here, and an expansion of this 
geometric algorithm will create a better, more believable 
AI. 

References 
Davis, I. L. 1999. Strategies for Strategy Game AI. AAAI 
1999 Spring Symposium on AI & Computer Games 
Proceedings. March, 1999 
 
Davis, I. L. 2000. Warp Speed: Path Planning for Star 
Trek: Armada.  AAAI  2000 Spring Symposium on 
Interactive Entertainment and AI  Proceedings. March, 
2000. 
 
Sedgewick, R. 1992. Algorithms in C++.  Reading, Mass.: 
Addison-Wesley. 
 
Preparata, F. P. and Shamos, M. I.  1985.  Computational 
Geometry: An Introduction.  Springer-Verlag 
 

135


