
Modeling Self-Adapting and Multicultural Non-Player Characters in Artificial
Worlds

Samuel Marin
Computer Science Institute

University of Namur, FUNDP
Rue Grandgagnage 21, B-5000 Namur, Belgium

sma@info.fundp.ac.be

Abstract

Modeling the behavior of Non-Player Characters
(NPCs) so that they can act properly in an artificial
world is a difficult, yet essential task in the develop-
ment of modern computer games, often requiring never-
ending adjustments of handwritten rules in a way to en-
able NPCs to perform well in the game world. This pa-
per introduces an evolutionary method relying on high-
level rule-based behaviors, genetic algorithms and spe-
ciation. By interconnecting these three areas, we pro-
pose a technique that has the potential to provide multi-
cultural NPCs with the ability to adapt themselves to an
artificial world.

Introduction

At a time when players are always expecting more realis-
tic game worlds, we propose a technique aiming at creating
interesting and appealing societies of multicultural and self-
adapting NPCs. We define the “multicultural” concept as the
ability for our NPCs to belong to different kinds of social
groups, each group adopting a distinct strategy, permitting
their members to adapt themselves to the world. Indeed, we
are convinced this diversity can raise realistic worlds.

In order to create NPCs that can live in such worlds, a
simple solution would be to add manually a large number of
realistic interactions between NPCs and objects of the world.
However, this process can lead to the creation of enormous
finite state machines that are difficult to manage and main-
tain.

Our idea is to develop an evolutionary method aiming
at providing realistic artificial worlds populated by multi-
cultural NPCs with the ability to adapt themselves to their
world.

This paper is organised as follows: first, we present our
method, describing the various techniques that we will use,
and explaining why they are relevant to reach our goal. The
following section presents the experiments and their results.
We then take a look at the related works. The last section
gives some concluding remarks and plans for future work.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Method Description

This section describes the different concepts we combine to
implement our approach, i.e. high-level rule-based behav-
iors, genetic algorithms (GAs) and speciation. It also moti-
vates this choice.

High-Level Rule-Based Behaviors

We assume that each NPC is based on a specific behavior
which is simply a set of ‘If condition - Then action’ rules.
Each rule is evaluated in a specific order and the first fulfilled
condition triggers the corresponding action, thus ending up
the evaluation process until the next time step. Even though
this technique is simple, it has the potential to provide com-
plex and realistic behaviors.

We also want to incorporate in NPC behaviors as much
prior and well-defined knowledge as possible. As mentioned
in (Manslow 2002), this prevents NPCs from having to learn
behaviors for which non-evolutionary implementations al-
ready exist in the literature.

Genetic Algorithms

We now explain why using GAs is suitable for our study.
We want a powerful tool to explore a large amount of pos-

sible NPC behaviors and only grab those that are really rele-
vant for our world. GAs are known to perform well in poorly
understood and complex search spaces.

We hope our NPCs will adapt themselves to our world and
show interesting behaviors. However, finding the best pos-
sible ones is not an absolute requirement. With this respect,
using GAs seems to be appropriate since it is a promising
technique for finding solutions that do not have to be neces-
sarily the best ones.

We only focus on the behavior of NPCs as a whole. We
do not want to evaluate each rule separately, like classifier
systems do for instance. Even if our approach may lead to
strange combinations of rules, we think that creating possi-
bly unexpected but interesting emergent behaviors is a sig-
nificant requirement. Our GAs approach meets this require-
ment since each genome represents a complete behavior, i.e.
the whole set of ‘If-Then’ rules.

All these reflections convinced us to use GAs in the im-
plementation of our technique.

There are two important points to note. First, both the
condition and the action of each rule may evolve. We think

124



that such a level of granularity is the best way to be surprised
by the system, providing us interesting emergent behaviors.
Of course, to prevent a too large search space, we limit the
process by providing a kind of grammar that specifies what
a “legal” genome is. We then also combine this search for
the appropriate value for each behavior rule with the mod-
ification of the behavior structure itself, thus favoring the
emergence of varied behaviors through generations. This
last technique was inspired by the EANNs (Evolutionary Ar-
tificial Neural Networks) which aim at providing a way to
evolve the weights of a neural network along with the topol-
ogy of the neural network itself, i.e nodes or links. Since the
structure of a neural network plays an important role in how
effective the network is, those methods perform very well.
Of course, we do not use here a neural network but we are
convinced that the idea behind this evolving topology can be
mapped to our structure of ‘If-Then’ rules.

Each genome (Figure 1) must be encoded to represent the
entire behavior of a NPC.

}Gene (rule)}
Entire genome (behavior)

Condition ID

Condition

Action

Priority

Condition ID

Condition

Action

Priority

Condition ID

Condition

Action

Priority

Figure 1: Example of a NPC genome made of three genes.

The behavior contains several rules. Each gene (rule) is
composed of a condition and an action. In addition, each
rule has also a priority number which defines in which order
the rule will be evaluated within the set of rules of the behav-
ior. Finally, the condition ID is a special information integer
helping us to deal while evolving our behavior through our
evolutionary method. More on this later.

We then need mechanisms to make our set of rules evolve
through crossover and mutation, thus creating offsprings for
the next generation. However, due to our specific encoding
style, classical crossover systems might not provide valid
offsprings. Indeed, our genomes are not necessarily the
same length. Moreover, care must be taken as each genome
can not simply recombine with another one using traditional
approaches. For example, consider two genomes. The first
has two rules with first condition A and second condition B
while the second has also two rules but with first condition B
and second condition A. Then, using typical crossover oper-
ations and using the crossover operator at the middle of the
genome, we might face an undesirable situation in newly
created offsprings because the second rule is duplicated and
therefore useless.

A solution, largely inspired by NEAT (Stanley & Miikku-
lainen 2002) historical markings, but applied to our con-
text, is to maintain a global database for all the conditions.
Each condition now owns a unique identification number,
the condition ID. Each time a rule is added to a behavior,

the database is checked to verify if the rule condition has
previously been added to it. If so, the rule containing the
condition is assigned the existing condition ID. Otherwise,
a new entry is created into the database, corresponding to
this new condition and the rule containing the condition is
assigned the new condition ID. This database remains alive
during the entire execution of the evolutionary process.

This condition ID thus comes in handy and provides an
easy way to deal with crossover. We simply sort genomes
according to their condition IDs so as to reach the array-
shaped alignment of Figure 2. Then, we iterate through
each genome, applying our crossover policy. The policy we
choose for our method is for an offspring to inherit genes
from their fittest parent. However, actions of matching genes
(meaning with the same condition) are randomly inherited
from one of the two parents. Figure 2 depicts two genomes
making the crossover operation to generate an offspring.

Condition ID 0

Condition B

Action C

Priority 0

Condition ID 1

Condition E

Action B

Priority 3

Condition ID 4

Condition A

Action D

Priority 1

Condition ID 8

Condition C

Action D

Priority 2

Genome 2 (fittest)

Resulting offspring

Genome 1

Condition ID 3

Condition C

Action A

Priority 0

Condition ID 4

Condition A

Action B

Priority 1

Condition ID 3

Condition C

Action A

Priority 0

Condition ID 4

Condition A

Action B

Priority 1

Condition ID 0

Condition B

Action G

Priority 2

Condition ID 0

Condition B

Action C

Priority 2

Figure 2: Performing the crossover.

As regards mutation, we have selected four operators in
our implementation: add a rule, remove a rule, change the
action associated with a rule and finally change the priority
number associated with a rule.

Speciation

In addition to self-adapting NPCs, we also want multicul-
tural NPCs. Speciation can help us. Indeed, as mentioned
in (Buckland 2003), speciation is a niching technique that
groups similar genomes into species (niches), only allowing
genomes to mate with other genomes of the same species.
Speciation thus provides an easy way to retain diversity
among our population of genomes, permitting to converge
towards multiple solutions at the same time. Since our
genomes represent behaviors, we can expect the creation of
distinct groups of behaviors among our population, each rep-
resenting a cultural group with its own strategy permitting
their members to adapt themselves to the world.

About the implementation, we group similar genomes
into species with the help of a compatibility function. Again,
the use of condition IDs eases the comparison between genes
while iterating through genomes, and rapidly reports which
genes are matching together. Then we adjust the fitness of
each genome by sharing it amongst all the members of that
species, preventing one species from taking easily over the
rest of the population. This technique is known as explicit
fitness sharing (Goldberg & Richardson 1987).

125



Experiments

Testbed Description

Our testbed is based on a set of rule-controlled NPCs which
are living in a 2D world. NPCs can perceive information
from their environment and can perform actions accordingly.
All our experiments are inspired by a fairly simple ecology.
We considered two kinds of NPC types: predators and preys
and two kinds of objects: apple trees and apples.

Note that only predators have learning abilities and so use
our evolutionary process. Each prey will receive a prede-
termined set of rules which can not evolve, giving them the
ability to flee before predators and eat the apples that they
can see.

Simulation and Results

Our main scenario was simply to initialize the world with
preys, apple trees giving apples at random interval and some
learning predators. We then ran the evolutionary process
and checked what happened. During the first 2000 genera-
tions, we isolated various strategies among the population of
predators. For instance, some of them learned to walk at ran-
dom through the world seeking for preys. Another group of
predators learned to stay near apple trees (obviously preys
eat apples fallen from apple trees). Finally, another group
learned that apples can feed them and thus constitutes a com-
munity of vegetarian predators. All of these cultural groups
dynamically co-evolve, new cultures appear while others die
out. Of course, various cultures can co-exist at the same
time.

Related Works

NEAT: A large part of our ideas and implementation have
been inspired by NEAT (Stanley & Miikkulainen 2002)
and rtNEAT (Stanley, Bryant, & Miikkulainen 2005). The
authors also use a GA and speciation, thus providing co-
evolving groups of solutions, qualifying a multicultural ecol-
ogy. The big difference between NEAT and our work is
that NEAT deals with agents controlled by a neural network
while we investigate rule-based controlled behaviors. An-
other difference is they focus their experiments on action-
based games for which neural networks seem to be partic-
ularly suited while we investigate the creation of artificial
societies for which rule-based behaviors seem to be more
appropriate.

Growing Artificial Societies: Starting from simple rule-
based agents, Epstein and Axtell (Epstein & Axtell 1996)
build complex artificial societies reproducing such impor-
tant sociocultural phenomena like segregation, trade, culture
etc. We also have the ambition to raise realistic artificial so-
cieties of NPCs. Epstein and Axtell use agents with a pre-
determined set of rules which can not evolve. Instead, our
system is based on evolving rules.

Evolutionary Tactics: In (Ponsen & Spronck 2004), the
authors use a GA to find tactics for RTS games. Their
genomes also represent a set of ‘If-Then’ rules. The main

difference is that they are looking for one promising tactic at
a time while we try to make evolve different solutions at the
same time.

Conclusion
We presented our evolutionary method. We exposed how it
works by means of its underlying components: high-level
rule-based behaviors, GAs and speciation. We also devel-
oped a testbed aiming at supporting relevant properties and
helping us to produce first promising results.

Future Work
In the near future, we would like to complexify the world
and our NPCs in a way to develop more realistic multicul-
tural societies of NPCs that can adapt themselves to their
world. After that, we will think about its actual applicability
in a computer game.

Acknowledgments
Special thanks to Stephane Bura who provided us with a rich
stream of original ideas which has inspired us in this paper.

Our testbed implementation would not have been so effi-
cient without the help of Mat Buckland’s books (Buckland
2002; 2004) which provided us with a good background in
genetic, game AI programming and NEAT implementation.

References
Buckland, M. 2002. AI Techniques for Game Program-
ming. Premier Press.

Buckland, M. 2003. Building better genetic algorithms.
In Steve Rabin (Ed.), AI Game Programming Wisdom 2.
Charles River Media. 649–660.

Buckland, M. 2004. Programming Game AI by Example.
Wordware Publishing, Inc.

Epstein, J. M., and Axtell, R. 1996. Growing Artificial
Societies. The MIT Press.

Goldberg, D. E., and Richardson, J. 1987. Genetic algo-
rithms with sharing for multimodal function optimization.
In Grefenstette, J. J., (Ed.), Proc. of the Second Intl. Conf.
on Genetic Algorithms, San Francisco, CA: Morgan Kauf-
mann. 148–154.

Manslow, J. 2002. Learning and adaptation. In Steve Ra-
bin (Ed.), AI Game Programming Wisdom. Charles River
Media. 557–566.

Ponsen, M., and Spronck, P. 2004. Improving adap-
tive game ai with evolutionary learning. In Q. Mehdi,
N.E. Gough, S. Natkin, and D. Al-Dabass (Ed.), Com-
puter Games: Artificial Intelligence, Design and Educa-
tion (CGAIDE 2004), Wolverhampton, UK. University of
Wolverhampton. 389–396.

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
computation, 10(2).

Stanley, K. O.; Bryant, B. D.; and Miikkulainen, R. 2005.
Real-time neuroevolution in the nero video game. IEEE
Transactions on Evolutionary Computation, Vol.9, No. 6.

126


