
Procedural Level Design for Platform Games

Kate Compton and Michael Mateas

Literature, Communication & Culture and College of Computing, Georgia Institute of Technology

kate@gatech.edu michaelm@cc.gatech.edu

Abstract

Although other genres have used procedural level
generation to extend gameplay and replayability, platformer
games have not yet seen successful level generation. This
paper proposes a new four-layer hierarchy to represent
platform game levels, with a focus on representing
repetition, rhythm, and connectivity. It also proposes a way
to use this model to procedurally generate new levels.

Introduction

Procedural level generation has been successfully
implemented in several genres of games. Games have used
level generation since 1980, when Rogue was written.
Rogue is an ASCII graphic role-playing game, but one of
its major innovations was its ability to generate an
unlimited number of unique dungeon levels. Rogue levels
are generated by partitioning dungeons into solid rock and
empty space and filling the empty space with monsters and
loot. Though the generated levels are not as complex as a
hand-designed level could be, the innovation was not in the
design of the dungeons, but in the ability to generate
infinite numbers of them without human supervision.
 More recently, games such as Diablo II and Civilization
include similar level generation to that seen in Rogue. The
never-ending supply of dungeons to plunder or continents
to colonize gives the player many more rewarding hours of
gameplay than could be available with even a large set of
human-designed levels.
 Platformer games would benefit from the replayability
of generated levels, but as yet, there has been no
commercially distributed platformer game that uses level
generation. Platformer level generation is a more difficult
problem than level generation in either RPG or strategy
games, since very small changes, such as slightly changing
the width of a chasm, can change a whole level from
challenging to physically impossible. Rogue-like level
generation can make heavy use of relatively unconstrained,
random decisions. The playability of the level is ensured
by the constraints implicit in the human-designed atomic
units employed by the generator (e.g. rooms, hallway
connectors, terrain tiles). In contrast, the playability of a
platformer level is strongly determined by the relationships

Copyright © 2006, American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

between units, requiring that these relationships be
explicitly modeled and manipulated during level
generation. The loosely constrained, random placement of
elements that works in dungeon level and terrain
generation, can easily lead to accidentally unwinnable
platformer levels.
 This paper proposes a model for the hierarchical
elements and relationships between platformer levels, and
an algorithm for level generation that is organized around
the ontology. We have a working prototype of the level
generator, and are currently implementing the complete
architecture.

Model of Platformer Levels

The structure of this hierarchy is inspired by “A Novel
Representation for Rhythmic Structure,” a paper describing
a model for representing complex rhythmic patterns in
African and African-American music (Iyer 1997). Iyer
describes a hierarchical representation that captures
rhythmic repetition and the combination of short rhythmic
sequences into longer, more complex passages. Though
relating musical composition to the design of platformer
levels may seem like a stretch, level design in platform
games relies heavily on rhythm. Rhythmic actions help the
player reach a “flow” state in games, a state of heightened
concentration (Csikszentmihalyi 1990). When a player is
“in the flow” or “in the rhythm” of a game, making jumps
requires not only distance calculation, but also timing.
Rhythmic placement of obstacles creates a rhythmic
sequence of player movements, making each individual
jump easier to time. Using a rhythmic but varied repetition
of elements also serves an economic function; it gives the
player a longer level to play through with only a few game
objects. For example, by repeating and reshuffling a few
basic elements such as pipes, blocks and platforms, it is
possible for designers to construct long and interesting
levels in the Mario Brothers games.

Components

Components, such as vines, platforms, little hills, and
spikes, are the basic units out of which platform games are
constructed. Often a component will have both an obstacle
and a resting spot, which may be as simple as a stretch of
empty air that must be jumped over, along with a platform
to land on.

109

Branch

Setback
 Penalty

Hub

Parallel Branch

Valve

Portal

 It is represented to the physics engine as a set of edges
with certain properties (such as bounciness, slipperiness,
potential for injury). It also has a visual representation on
the screen, which signals the properties of the edge to the
player, so that he can plan his moves accordingly.
 A specific component’s construction is determined in
two ways. The dimensions are determined by the space
they have to fill in the world. The rest of the construction
is determined by two "tweaking" values, though how these
affect the component is determined by what kind of
component it is. As shown in the illustration, a vine’s
tweaks determine its length and offset, but a platform’s
determine the width of the gap and the angle of the
platform. This allows a single type of component to vary
widely when constructed with different values.

Figure 1: Components are constructed from

parameters, allowing wide variety

Patterns

Of course, a single jump wouldn’t make much of a game.
Patterns provide the mechanism for grouping individual
components into a longer sequence, while still maintaining
rhythmic movement for the player. Currently the model
defines 4 pattern types: basic, complex, compound, and
composite.
Basic Patterns. A basic pattern consists of a component,
either by itself, or repeated several times with no variation.
Complex Patterns. A complex pattern is a repetition of
the same component, but with the tweaks changed
according to some set sequence, such as a series of
horizontal jumps of increasing width.
Compound Patterns. A compound pattern alternates
between basic patterns made of two different types of
components. An example of this would be a series of three
horizontal jumps, followed by three spiky hurdles,
followed by three horizontal jumps again. Note that
compound patterns introduce a rhythmic pattern at a higher
level of abstraction, in the form of changing the rhythm in
a rhythmic manner.
Composite Patterns. A composite pattern consists of two
components placed so close to each other that they require
a different kind of action, or a coordinated action, that
would not be required for each one individually. This
requires the player to take the knowledge of the two
problems and synthesize it into a solution. A timed spike
requires the player to judge the right time to pass, and a

gap requires a judgment of distance, but placed together,
they require the player to coordinate the timing with the
run-up to the jump.
 With patterns one can construct strictly linear sequences.
While such sequences may be challenging and fun to play
through, non-linear elements like branching paths,
setbacks, loops, and hidden levels are necessary to give
players the ability to choose their own paths through the
game. Since patterns, even the very elaborate ones, are
strictly linear, the model needs another layer to deal with
non-linear structure.

Cells and Cell Structures

Cells, the building blocks of non-linear level design, are
constructed from linear patterns. A cell is an encapsulation
of some pattern. At this level, the characteristics of the
specific pattern are ignored; it is only important that it is
possible for the player to get from one end of the pattern to
the other.
 A cell structure describes how cells may be connected in
such a way that it affects gameplay. By studying the
structure of both classic and recently released platform
games, we are building a library of possible cell structures.
A few of the most common cell structures found in
platform games are illustrated in Figure 4.
 A branch cell structure is the most basic way to add non-
linearity to a level by giving players a choice of two paths
to take. The player chooses not only between the two
paths, but the two possible destinations, which might lead a
player to choose a harder-looking path with the expectation
of a greater reward at the end. Similar to a regular branch,
a parallel branch creates two paths, both of which end at
the same location.

Figure 2: Cell structures create non-linear levels

 Level Design Algorithm

This model can be partially represented as a context-free
grammar, with a level as a start symbol, patterns and cells
as non-terminal symbols, cells structures and pattern
combinations as productions, and components as terminal
symbols. Since generating strings from a grammar is very
simple, the process of constructing a new valid level is
equally straightforward. Each level is started with a cell

110

structure, which can be broken down into more cell
structures several times as space permits. Those cells are
each given a pattern, which, like the cells, can be
recursively expanded into more patterns. Finally, each
bottom level pattern is translated into a series of
components.

The Physics Model and Difficulty Calculator

The physics model calculates accurately how the avatar
will move in a world built of two-dimensional edges.
Familiar platformer components, like vines, ladders, and
platforms are represented as sets of these edges. The
avatar either runs along connected edges, or jumps off at a
normal to the edge. Like Super Mario Brothers, which
does not conform to real-world physics, this model also
allows the avatar to change direction in mid-air. Given
two edges, basic ballistics calculations can determine
where, if at all, the avatar would hit the second edge after
jumping off of some point on the first edge.
 The system calculates the spatial window the avatar can
start from in order to successfully jump from one
component (here represented as a set of edges) to another.
In addition, it can estimate the temporal window the player
has to change direction mid-air in order to change an
unsuccessful jump into a successful one. With knowledge
of the player's aiming and timing abilities, this allows the
system to approximate the difficulty of a jump. If there are
a series of components, like in a pattern, it can calculate
the difficulty of getting through the entire pattern.

Figure 3: The possible trajectories, including mid-air

jumps, available from this starting position

Pattern-Building

To build a pattern, the system starts with a short list of
possible component types and two bracketing components
already present in the level that mark the beginning and the
end of the desired pattern. For each possible set of
component types and number of components, the optimal
pattern is built, and then the best of these is selected as the
final pattern.
 The optimal pattern for any given set and number of
components is determined using a simple hill-climbing
algorithm, with the system hill-climbing towards the target
difficulty. Each component type has a set of parameters
defining the component. For example, for platforms, the
two component parameters are the length and angle of the
platform. The component parameters define the difficulty
surface on which the system hillclimbs.

 To start the hill-climbing search, the system creates an
initial pattern by first selecting random values for the
component parameters (e.g. random angles and platform
lengths), and then evenly sub-dividing the space between
the start and end locations of the pattern with these
components. To then find a pattern close to the desired
difficulty, the system adjusts the component parameters in
the direction of steepest assent.
 The fitness graphs for simple and complex pattern are
relatively smooth and not riddled with local maxima, so
this hill-climbing algorithm has a fair chance of returning
the strictly optimal solution. Even non-optimal solutions
are usually not far enough off from the desired mark to be
noticeable to a player. Catastrophic results, like a pattern
of either impossible or trivial difficulty, are overwritten by
testing multiple sets and numbers of components.

Cell Structure Decisions

Patterns are generated for an initial cell. As the player
reaches the outer limits of that cell, a new cell, or set of
cells, is connected to it with one of the cell structures
mentioned above. This new cell is populated with patterns
through the previously described algorithm. Which cell
structure to use is based on pre-determined values for the
level, such as the level of desired branching. The direction
and dimensions of the cell are based on physical
constraints of the already developed space, as well as some
degree of randomness.
 Though not implemented at this time, this could be used
for dynamic difficulty adjustment (Hunicke 2004). If the
system monitors the player’s progress through the level,
perceived preferences (through which path the player
takes) and the success and failure rate, this could be used to
create a player profile and inform the generation of
successive cells.

Current and Future Work

The pattern builder algorithm works successfully. It is
capable of constructing and optimizing single patterns. At
this time, an algorithm for building cell structures has been
designed, but is not yet implemented in the prototype.

References

Csikszentmihalyi, M. 1990. Flow: the psychology of
optimal experience. New York, NY, HarperCollins.

Hunicke, R., Chapman, V. 2004. “AI for Dynamic
Difficult Adjustment in Games.” Proceedings of the
Challenges in Game AI Workshop, Nineteenth National
Conference on Artificial Intelligence.

Iyer, V., Bilmes, J., Wessel, D. and Wright, M. 1997. A
Novel Representation for Rhythmic Structure. In
Proceedings of the 23rd International Computer Music
Conference, (Thessaloniki, Hellas, 1997), International
Computer Music Association, 97-100.

111

