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Abstract 

Although other genres have used procedural level 
generation to extend gameplay and replayability, platformer 
games have not yet seen successful level generation.  This 
paper proposes a new four-layer hierarchy to represent 
platform game levels, with a focus on representing 
repetition, rhythm, and connectivity.  It also proposes a way 
to use this model to procedurally generate new levels.   

Introduction   

Procedural level generation has been successfully 
implemented in several genres of games.  Games have used 
level generation since 1980, when Rogue was written. 
Rogue is an ASCII graphic role-playing game, but one of 
its major innovations was its ability to generate an 
unlimited number of unique dungeon levels. Rogue levels 
are generated by partitioning dungeons into solid rock and 
empty space and filling the empty space with monsters and 
loot. Though the generated levels are not as complex as a 
hand-designed level could be, the innovation was not in the 
design of the dungeons, but in the ability to generate 
infinite numbers of them without human supervision.   
 More recently, games such as Diablo II and Civilization 
include similar level generation to that seen in Rogue.  The 
never-ending supply of dungeons to plunder or continents 
to colonize gives the player many more rewarding hours of 
gameplay than could be available with even a large set of 
human-designed levels.   
 Platformer games would benefit from the replayability 
of generated levels, but as yet, there has been no 
commercially distributed platformer game that uses level 
generation.  Platformer level generation is a more difficult 
problem than level generation in either RPG or strategy 
games, since very small changes, such as slightly changing 
the width of a chasm, can change a whole level from 
challenging to physically impossible.  Rogue-like level 
generation can make heavy use of relatively unconstrained, 
random decisions. The playability of the level is ensured 
by the constraints implicit in the human-designed atomic 
units employed by the generator (e.g. rooms, hallway 
connectors, terrain tiles). In contrast, the playability of a 
platformer level is strongly determined by the relationships 
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between units, requiring that these relationships be 
explicitly modeled and manipulated during level 
generation. The loosely constrained, random placement of 
elements that works in dungeon level and terrain 
generation, can easily lead to accidentally unwinnable 
platformer levels.  
   This paper proposes a model for the hierarchical 
elements and relationships between platformer levels, and 
an algorithm for level generation that is organized around 
the ontology. We have a working prototype of the level 
generator, and are currently implementing the complete 
architecture.  

Model of Platformer Levels 

The structure of this hierarchy is inspired by “A Novel 
Representation for Rhythmic Structure,” a paper describing 
a model for representing complex rhythmic patterns in 
African and African-American music (Iyer 1997).  Iyer 
describes a hierarchical representation that captures 
rhythmic repetition and the combination of short rhythmic 
sequences into longer, more complex passages. Though 
relating musical composition to the design of platformer 
levels may seem like a stretch, level design in platform 
games relies heavily on rhythm.  Rhythmic actions help the 
player reach a “flow” state in games, a state of heightened 
concentration (Csikszentmihalyi 1990).  When a player is 
“in the flow” or “in the rhythm” of a game, making jumps 
requires not only distance calculation, but also timing.  
Rhythmic placement of obstacles creates a rhythmic 
sequence of player movements, making each individual 
jump easier to time.  Using a rhythmic but varied repetition 
of elements also serves an economic function; it gives the 
player a longer level to play through with only a few game 
objects.  For example, by repeating and reshuffling a few 
basic elements such as pipes, blocks and platforms, it is 
possible for designers to construct long and interesting 
levels in the Mario Brothers games. 

Components 

Components, such as vines, platforms, little hills, and 
spikes, are the basic units out of which platform games are 
constructed. Often a component will have both an obstacle 
and a resting spot, which may be as simple as a stretch of 
empty air that must be jumped over, along with a platform 
to land on.   
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 It is represented to the physics engine as a set of edges 
with certain properties (such as bounciness, slipperiness, 
potential for injury). It also has a visual representation on 
the screen, which signals the properties of the edge to the 
player, so that he can plan his moves accordingly.   
 A specific component’s construction is determined in 
two ways.  The dimensions are determined by the space 
they have to fill in the world.  The rest of the construction 
is determined by two "tweaking" values, though how these 
affect the component is determined by what kind of 
component it is.  As shown in the illustration, a vine’s 
tweaks determine its length and offset, but a platform’s 
determine the width of the gap and the angle of the 
platform.  This allows a single type of component to vary 
widely when constructed with different values. 

 

Figure 1: Components are constructed from 

parameters, allowing wide variety 

Patterns 

Of course, a single jump wouldn’t make much of a game.  
Patterns provide the mechanism for grouping individual 
components into a longer sequence, while still maintaining 
rhythmic movement for the player. Currently the model 
defines 4 pattern types: basic, complex, compound, and 
composite.  
Basic Patterns. A basic pattern consists of a component, 
either by itself, or repeated several times with no variation.  
Complex Patterns.  A complex pattern is a repetition of 
the same component, but with the tweaks changed 
according to some set sequence, such as a series of 
horizontal jumps of increasing width.  
Compound Patterns.  A compound pattern alternates 
between basic patterns made of two different types of 
components.  An example of this would be a series of three 
horizontal jumps, followed by three spiky hurdles, 
followed by three horizontal jumps again.  Note that 
compound patterns introduce a rhythmic pattern at a higher 
level of abstraction, in the form of changing the rhythm in 
a rhythmic manner.  
Composite Patterns.  A composite pattern consists of two 
components placed so close to each other that they require 
a different kind of action, or a coordinated action, that 
would not be required for each one individually.  This 
requires the player to take the knowledge of the two 
problems and synthesize it into a solution.  A timed spike 
requires the player to judge the right time to pass, and a 

gap requires a judgment of distance, but placed together, 
they require the player to coordinate the timing with the 
run-up to the jump.   
 With patterns one can construct strictly linear sequences. 
While such sequences may be challenging and fun to play 
through, non-linear elements like branching paths, 
setbacks, loops, and hidden levels are necessary to give 
players the ability to choose their own paths through the 
game.  Since patterns, even the very elaborate ones, are 
strictly linear, the model needs another layer to deal with 
non-linear structure. 

Cells and Cell Structures 

Cells, the building blocks of non-linear level design, are 
constructed from linear patterns.  A cell is an encapsulation 
of some pattern. At this level, the characteristics of the 
specific pattern are ignored; it is only important that it is 
possible for the player to get from one end of the pattern to 
the other. 
 A cell structure describes how cells may be connected in 
such a way that it affects gameplay. By studying the 
structure of both classic and recently released platform 
games, we are building a library of possible cell structures. 
A few of the most common cell structures found in 
platform games are illustrated in Figure 4.  
 A branch cell structure is the most basic way to add non-
linearity to a level by giving players a choice of two paths 
to take.  The player chooses not only between the two 
paths, but the two possible destinations, which might lead a 
player to choose a harder-looking path with the expectation 
of a greater reward at the end.  Similar to a regular branch, 
a parallel branch creates two paths, both of which end at 
the same location.   

Figure 2: Cell structures create non-linear levels 

 Level Design Algorithm 

This model can be partially represented as a context-free 
grammar, with a level as a start symbol, patterns and cells 
as non-terminal symbols, cells structures and pattern 
combinations as productions, and components as terminal 
symbols.  Since generating strings from a grammar is very 
simple, the process of constructing a new valid level is 
equally straightforward. Each level is started with a cell 
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structure, which can be broken down into more cell 
structures several times as space permits.  Those cells are 
each given a pattern, which, like the cells, can be 
recursively expanded into more patterns.  Finally, each 
bottom level pattern is translated into a series of 
components. 

The Physics Model and Difficulty Calculator 

The physics model calculates accurately how the avatar 
will move in a world built of two-dimensional edges.  
Familiar platformer components, like vines, ladders, and 
platforms are represented as sets of these edges.  The 
avatar either runs along connected edges, or jumps off at a 
normal to the edge.  Like Super Mario Brothers, which 
does not conform to real-world physics, this model also 
allows the avatar to change direction in mid-air.  Given 
two edges, basic ballistics calculations can determine 
where, if at all, the avatar would hit the second edge after 
jumping off of some point on the first edge. 
 The system calculates the spatial window the avatar can 
start from in order to successfully jump from one 
component (here represented as a set of edges) to another.  
In addition, it can estimate the temporal window the player 
has to change direction mid-air in order to change an 
unsuccessful jump into a successful one.   With knowledge 
of the player's aiming and timing abilities, this allows the 
system to approximate the difficulty of a jump. If there are 
a series of components, like in a pattern, it can calculate 
the difficulty of getting through the entire pattern.   

Figure 3:  The possible trajectories, including mid-air 

jumps, available from this starting position 

Pattern-Building  

To build a pattern, the system starts with a short list of 
possible component types and two bracketing components 
already present in the level that mark the beginning and the 
end of the desired pattern.  For each possible set of 
component types and number of components, the optimal 
pattern is built, and then the best of these is selected as the 
final pattern. 
 The optimal pattern for any given set and number of 
components is determined using a simple hill-climbing 
algorithm, with the system hill-climbing towards the target 
difficulty. Each component type has a set of parameters 
defining the component. For example, for platforms, the 
two component parameters are the length and angle of the 
platform. The component parameters define the difficulty 
surface on which the system hillclimbs. 

 To start the hill-climbing search, the system creates an 
initial pattern by first selecting random values for the 
component parameters (e.g. random angles and platform 
lengths), and then evenly sub-dividing the space between 
the start and end locations of the pattern with these 
components. To then find a pattern close to the desired 
difficulty, the system adjusts the component parameters in 
the direction of steepest assent.   
 The fitness graphs for simple and complex pattern are 
relatively smooth and not riddled with local maxima, so 
this hill-climbing algorithm has a fair chance of returning 
the strictly optimal solution.  Even non-optimal solutions 
are usually not far enough off from the desired mark to be 
noticeable to a player.  Catastrophic results, like a pattern 
of either impossible or trivial difficulty, are overwritten by 
testing multiple sets and numbers of components.   

Cell Structure Decisions 

Patterns are generated for an initial cell. As the player 
reaches the outer limits of that cell, a new cell, or set of 
cells, is connected to it with one of the cell structures 
mentioned above. This new cell is populated with patterns 
through the previously described algorithm.   Which cell 
structure to use is based on pre-determined values for the 
level, such as the level of desired branching.  The direction 
and dimensions of the cell are based on physical 
constraints of the already developed space, as well as some 
degree of randomness.  
 Though not implemented at this time, this could be used 
for dynamic difficulty adjustment (Hunicke 2004).  If the 
system monitors the player’s progress through the level, 
perceived preferences (through which path the player 
takes) and the success and failure rate, this could be used to 
create a player profile and inform the generation of 
successive cells.  

Current and Future Work 

The pattern builder algorithm works successfully.  It is 
capable of constructing and optimizing single patterns.  At 
this time, an algorithm for building cell structures has been 
designed, but is not yet implemented in the prototype.   
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