
Modelling Goal-directed Players in Digital Games

David Thue and Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8
{dthue | bulitko}@cs.ualberta.ca

Abstract

The pursuit of a viable model of player behaviour has gained
momentum in research in recent years, and it is beginning to
attract the attention of the designers of next-generation dig-
ital games. In this paper, we present a novel enhancement
to player modelling that is well-suited to the digital role-
playing and puzzle game industries, titled Goal-Directed-
Player Modelling, in which state abstraction based on a
player’s goals is used to improve the performance of a classi-
fier for predicting player actions. We survey a set of related
research, formally introduce a method for Goal-Directed-
Player Modelling, and present empirical results which clearly
show the ability of Goal-Directed-Player Modelling to greatly
improve the accuracy of a simple, online, low cost incremen-
tal classifier to a level near those of more advanced and com-
plex offline methods.

Introduction
Current single-player digital games are generic; regardless
of who is playing, the player’s experience is largely the
same. While techniques such as scripting allow the player to
choose to experience various alternative sequences of events
in a game, they only aim to accommodate a handful of over-
generalized player groups; often, only “good” and “evil”
playing styles are considered. For example, in BioWare’s
The Knights of the Old Republic, the player is presented with
moral choices: should he accept a poor citizen’s payment for
a service rendered, refuse the payment altogether, or intim-
idate the citizen into paying more (BioWare Corp. 2003)?
Although such choices help influence the outcome of the
story, little attempt is made to tailor a game’s operation to
players on an individual level. To achieve this improvement
and make a digital game more player-specific, player infor-
mation must be gathered, interpreted, and used. This task,
known as player modelling, can be achieved in a variety of
ways, some of which will be presented later in this paper.

Motivation
Although player modelling is of theoretical interest in it-
self, its potential uses in digital games are particularly com-
pelling. Many of these uses are based on increasing the in-
dividual player’s enjoyment of the game, as follows.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Dynamic Levels of Difficulty In goal-directed digital
games such as first-person shooters or role-playing games,
the player’s enjoyment of the game is often directly related
to the perceived difficulty of the goals he achieves. Setting
goals that maintain a balance between being both challeng-
ing and achievable is a difficult aspect of game design; most
current games defer this selection to the player, offering the
choice of a “difficulty level” via an in-game menu. Unfor-
tunately, the number of available levels is often small, mak-
ing adjustments too coarse; a player may find one difficulty
setting far too easy, and the “next hardest” setting impossi-
bly difficult. Given a model that predicts the player’s actions
and, thereby, his likelihood of achieving his current goal, the
level of difficulty of that goal may be adjusted in a more de-
tailed manner, and independently of other goals. For exam-
ple, consider a hypothetical role-playing game that can pre-
dict that the player will attack a pack of monsters and easily
defeat them. With dynamic levels of difficulty, the difficulty
of defeating the monsters could be increased using the meth-
ods that are traditionally implemented in the difficulty-level
selector, but instead of applying this increase uniformly to
all goals in the game, the difficulty of only the current, ex-
cessively easy goal could be increased, at a resolution much
finer than those presented via in-game menus.

Helpful NPCs In combat-oriented games such as Are-
naNet’s Guild Wars, non-player characters (NPCs) can be
allied to the player in battle, aiding in defeating any oppo-
nents that are encountered (ArenaNet 2005). Having effec-
tive assistance allows players to accomplish more difficult
goals, which heightens their sense of achievement and en-
joyment of the task. Unfortunately, the “intelligence” of
NPCs in current digital games is often governed by a pre-
specified set of rules, similar to if player health < 50%,
heal player or if player attacks target, attack target. Al-
though these rules can easily lead to reasonable behaviour,
they rarely lead to effective behaviour; perhaps a player’s
strategy relies on a special ability that is available only when
his health is below 10%, making the first rule above counter-
productive. Star Wars: Republic Commando, a first-person
squad-based action game heralded for its ally AI, uses sev-
eral simple strategies that allow the AI-controlled squad-
mates to be useful to a human player (Lucas Arts 2005;
Gamespot 2005). The communication mechanism, though

86

ingenious in its simplicity, requires the player to give explicit
instructions to his squadmates by pressing various buttons;
no inference of player intentions is apparent during game-
play, and the heavily scripted squadmate behavior is inde-
pendent of the player’s gameplay style or personality. By
identifying player strategies via player modelling, comple-
mentary strategies for NPCs could be learned or evolved.

Obtaining a Player Model
Before a player model can be used to increase the player’s
enjoyment of a game, the model must be obtained. The re-
mainder of this work investigates this task, and is organized
as follows. First, the problem of player modelling is for-
malized for a general game scenario. Second, a set of re-
lated research is surveyed. Third, a novel approach to player
modelling is proposed and analyzed, and empirical results
are presented and discussed. Finally, a body of future work
is proposed, and conclusions are given.

Problem Formulation
In general, a digital game has four primary components: a
world, W , a set of attributes, A, which describe the world,
a set of values, V , and a set of value-changing actions, Q.
Specifically, every attribute a ∈ A represents information
about some aspect of the world; examples of attributes could
include the position of a book, the mood of its reader, and the
amount of light reaching its pages. Every attribute, a, can as-
sume one of several values, v ∈ Va ⊆ V , which describe the
current configuration of a, V alue(a) = v. The state of the
world is defined as a set of pairs specifying the current value
of each attribute in the world: State(W) = {(a, v)|∀a ∈
A,∃v ∈ Va, V alue(a) = v}. When performed, each ac-
tion q ∈ Q changes the values of one or more attributes in
Aq ⊆ A: ∀a ∈ Aq, q(V alue(a) = v) → V alue(a) = v′,
where v, v′ ∈ Va and v 6= v′. As time progresses, actions
from Q are applied to sets of attributes in A, changing the
values of those attributes and thus the state of the world.

For example, consider the images shown in Figure 1.
There are two attributes, A = {ball.position, ball.colour},
two possible values for each attribute, Vball.position = {0, 1},
and Vball.colour = {black, white}, and two actions,
Q = {push, paint}. The push and paint actions op-
erate on the ball.position and ball.colour attributes,
respectively. From the initial world state shown in
Figure 1 a), where V alue(ball.position) = 0 and
V alue(ball.colour) = white, either action in Q may
be chosen. Figure 1 b) shows the result of the push
action: the value of ball.position has changed to 1. Figure
1 c) shows the result of the paint action: the value of
ball.colour has changed to black.

Figure 1: Three possible world states. a) is the initial state,
b) is the state after action push is taken in a), and c) is the
state after action paint is taken in a).

In single-player games, the player is responsible for de-
termining which action to perform at any given time, based
on a perceived subset of the current state of the world:
Player(U) → q ∈ Q, where U ⊆ State(W). In digi-
tal games, the player must indicate their desired action to
the game; given this ability to observe the actions chosen by
the player when presented with various states of the world,
digital games have the opportunity to model the actions of
the player; that is, given a subset of the current world state,
U ⊆ State(W), determine which action the user will take:
∀q ∈ Q,Model(U) → q ⇔ Player(U) → q.

In Machine Learning, player modelling is the task of
learning a classifier; that is, a function that assigns every
subset of the world state to one of n classes, where each class
uniquely represents one of n available player actions. From
the perspective of Reinforcement Learning, player mod-
elling resembles policy iteration; a policy represents a map-
ping from world states to actions, and at each timestep the
policy is evaluated and improved. The incremental nature
of policy iteration makes it well-suited to modelling play-
ers during gameplay. In terms of Heuristic Search, player
modelling represents the learning of a heuristic to guide the
search agent through a space of states and actions, along the
same path that the player would take, given the opportunity
to do so. It is this distinction that separates player mod-
elling from the typical applications of methods in the above
fields: instead of learning optimal or near optimal solutions
to a problem, player modelling seeks to learn how to tackle
the problem in the same way that the player being modelled
would; whether or not a solution is found is often irrelevant.

This paper focuses on a particular subfield of player mod-
elling: modelling goal-directed players. Henceforth, a goal
is defined to be a subset of a state of the world, G ⊆
State(W), such that the player’s choice of actions will be
guided by his desire to bring the attributes in G, AG ⊆ A,
to the corresponding values specified in G. An approach
to modelling the behaviour of goal-directed players is pre-
sented later in this paper.

Related Work
A naive approach to player modelling relies on tracking user
actions from every visited world state. Given a world with
|A| attributes, a, each having |Va| possible values, the num-
ber of possible world states is given by:

WorldSize =
|A|∏
i=1

|Vai
|

When WorldSize is large, any given configuration of states
is unlikely to reoccur in its entirety; this makes the naive
approach problematic in two respects:
• information obtained for world states that do occur is un-

likely to ever be used, and
• when a query is made about the player’s next action given

the current world state, it is likely that this world state has
not previously occurred, meaning that no player informa-
tion is available.

How can this problem be solved?

87

In a recent publication on adaptive game design, Charles
et al. address the first point, presenting a method for player
modelling based on profiling (Charles et al. 2005). For-
mally, profiling is “a technique whereby a set of character-
istics of a particular class of person is inferred from past ex-
perience” (Electronic Benefits Transfer Glossary 2005). In
their work, Charles et al. use game data to infer values for a
small set of player characteristics, such as “good at solving
puzzles”, or “uses varied tactics”; the set of characteristics
must be tuned for games in various genres. By using ab-
straction to form a profile of each player, information con-
cerning similar players can be used and updated in groups.
This mitigates the problem of specific world-states reoccur-
ring infrequently, as the obtained information is distributed
over a class of players. Although their technique is intu-
itive, Charles et al. fail to consider player goals; knowing
that a player uses varied tactics may be useful, but know-
ing his current goal could let a helpful non-player character
estimate which tactic he might use.

In recent work by Yannakakis and Maragoudakis, the sec-
ond point above, that of predicting player actions in pre-
viously unseen world states, is addressed (Yannakakis &
Maragoudakis 2005). Focusing on predator/prey games,
Yannakakis and Maragoudakis construct their player model
using game data as the input to a Bayesian Network, which
allows the model to be used as long as player information
is known for at least a partial set of current game data;
matching the complete set is not required. By relaxing the
set of data required to use the player model, the problem
of predicting actions for previously unseen world states is
reduced. Although preliminary results indicate that their
method works well, Yannakakis and Maragoudakis do not
seem to consider the high-level knowledge that players in
predator/prey games have well-defined goals (to avoid the
predators, or to catch the prey).

Albrecht et al. tested several Bayesian Networks for pre-
dicting the goals, actions, and locations of players interact-
ing in a Multi-User Dungeon, a domain similar to present-
day multiplayer role-playing games (Albrecht, Zukerman,
& Nicholson 1998). By examining a player’s actions, lo-
cations, and previously completed goal, the player’s current
goal (one of 20 possibilities) is predicted with a promising
level of success. In addition to predicting player goals, Al-
brecht et al. attempt to predict player actions based on the
estimate of their current goal, and obtain results that are vi-
sually similar to those given later in this paper. The key
difference between the approach of Albrecht et al. and the
technique we present here is that their Bayesian Networks
require a significant amount of training (80% of the full data
set) to obtain the results shown for tests run on the remaining
20% of the data, while our method is fully online and incre-
mental; no prior training is required, as each action predic-
tion is made based solely on the player data observed thus
far. Additionally, the predictions made by the method of
Albrecht et al. are made based on data gathered from all
players, while our method is based solely on data gathered
from the current player being modelled.

Goal-Directed-Player Modelling
As mentioned previously, this paper focuses on modelling
goal-directed players; this task is henceforth referred to as
GDP-Modelling (Goal-Directed-Player Modelling). Goal-
directed player behaviour is particularly prevalent in both
digital role-playing games and puzzle games. In the former,
goals are provided to the player in terms of quests, such as
“retrieve the magic sword from the dragon’s lair”; in the lat-
ter, solving an 8-puzzle is a potential goal. How can knowl-
edge of a player’s goal be used in forming a player model?
The key to modelling goal-directed behaviour is that the goal
is known at all times. Given this information, various meth-
ods can be used to compare the current state of the world to
the goal state and assess their similarity. Our hypothesis is
that the differences between the current world state and goal
state can be used to predict the player’s actions.

The study of Means-Ends Analysis performed by Newell,
Shaw, and Simon offers insight into this approach (Newell,
Shaw, & Simon 1960). The General Problem Solver they
designed was based on a study of how humans solve prob-
lems as a sequence of transformations on objects, where
each transformation is applied to reduce the differences be-
tween given and target objects. In the context of digital
games, goal-directed players will perform actions to reduce
the number of differences between the current world state
and goal state. Given this knowledge, an abstraction can be
constructed that groups world states by their similarity to the
goal state; the task of measuring this similarity will now be
discussed.

Measuring Similarity
Two types of measures of similarity can be used: domain-
independent measures, and domain-dependent measures.
Hamming Distance is an example of a domain-independent
measure, being the number of substitutions that are required
to transform one sequence of objects into another (Hamming
1950). For example, given two world states represented as
bit vectors, 100010 and 110000, the Hamming Distance be-
tween them is 2; for the vectors to match, the second and
fifth bits from the left must be changed. A possible domain-
dependent measure is “Count Distance”; in a world where
every attribute has the same set of possible values, the dif-
ference between the number of attributes in both G and WG

having a particular value can be compared. The previous
two bit vectors each contain 2 ones, so their Count Distance
is 2 - 2 = 0. In a digital role-playing game, Geographic Dis-
tance could be used as a domain-dependent measure. Ab-
stracting world states based on the geographic proximity of
their components could help in predicting the player’s route
and destination during travel in-game, allowing enjoyable
challenges to be automatically placed along the way.

Building and Applying the Abstraction
Once a set of similarity measures has been chosen, a com-
pact, abstract world may be constructed as follows. Let
each measure of similarity define an abstract attribute of the
world. Partition the range of possible values for each mea-
sure of similarity into a small set of ranges, and let each

88

range define an abstract value of the abstract attribute that
represents that measure of similarity1. Given the current,
non-abstract state of the world and the state expressing the
player’s current goal, the corresponding abstract world state
can be found by computing the value of each measure of
similarity between the world and the goal, and finding where
each value falls in the set of ranges defined for that mea-
sure; this gives the current abstract value for every abstract
attribute, thus defining the current state of the abstract world.

The Algorithm
Pseudocode for a modelling algorithm that uses goal-based
abstraction is presented in Figure 2. The sole input to the
method consists of a specification of the abstraction, that
is, a set of similarity measures, each having a small set of
ranges that separates the possible values for that measure.
The main loop begins on line 1, and execution of the loop’s
body will repeat until play ends. On lines 2 and 3, both the
goal world state and the current world state are obtained,
and on line 4 they are compared; if they are equal, then the
player has achieved the desired goal, and execution returns
to line 2, where a new goal world state is obtained. Other-
wise, execution proceeds to line 5, where the computation
of the current abstract world state begins by initializing it to
be empty. From line 6 to line 8, each measure of similarity
(with the included set of value ranges) is used to compute
the abstract value held by the measure’s corresponding ab-
stract attribute, and these attribute/value pairs are added to
the abstract world state. On line 10, the abstract world state
is used as the input to a Machine Learning classifier, which
returns a prediction of the action that the player is about to
take. Line 11 indicates the position in the algorithm where
predicted actions might be used, perhaps to make a simple
challenge more difficult, employ a complementary strategy,
or offer help in solving a puzzle. On lines 12 and 13, the
player’s action is obtained (via traditional user-input) and
used along with the current abstract world state to update the
classifier with a new training instance. The player’s action is
applied to the world on line 14, and the resulting world state
is obtained on line 15 and set as the current world state.

Theoretical Analysis
In terms of computational cost, the two most expensive com-
ponents of the GDP-Modelling algorithm appear on lines 7
and 10 in Figure 2: using the measures of similarity to obtain
abstract values, and using the classifier to predict an action.
The following is an analysis of the first of these processes;
relative classifier complexity will be discussed later on.

The computational complexity of computing the similar-
ities between the world and goal states depends largely on
each measure of similarity individually. For example, the
computations of Hamming Distance and Count Distance are
both in Ω(|AG|) and O(|A|), where |AG| is the number of
attributes whose values are specified in the goal world state,
and |A| is the total number of attributes in the world state.

1The size of the set of ranges affects a trade-off between reduc-
ing the effective size of the game world and having good resolution
in the abstraction.

GDP-Modelling
Input: mos← measures of similarity

mos.ranges← value ranges for each measure

1 while the player is still playing do
2 gws← goal world state
3 cws← current world state
4 while cws 6= gws do
5 aws← ∅
6 for each mos do
7 abstractValue← mos.AssessSimilarity(cws, gws)
8 aws← aws ∪ {(mos, abstractValue)}
9 end for
10 predictedAction← classifier.Classify(aws)
11 Use(predictedAction)
12 playerAction← ObtainPlayerAction()
13 classifier.Update(aws, playerAction)
14 ApplyToWorld(playerAction)
15 cws← current world state
16 end while
17 end while

Figure 2: The GDP-Modelling Algorithm.

Given the value of each abstract attribute (similarity mea-
sure), the calculation of each corresponding abstract value
(similarity value range) is in Θ(log |AbstractVAbstractA|));
that is, the calculation is bounded by the log of the number
of abstract values that the abstract attribute can take on.

Empirical Evaluation
To evaluate the GDP-Modelling algorithm, a set of player
choices in a goal-directed setting was required. To this end, a
simple, web-based puzzle game was created, titled Dot Mas-
ter (Thue 2005). Hosted on a remote web server, Dot Mas-
ter was accessible to anyone using a modern web browser;
players who navigated to the Dot Master web page were im-
mediately presented with the game, as shown in Figure 3.

Figure 3: The Experimental Testbed: Dot Master.

89

Measure of Similarity Value Ranges
Hamming Distance 1, 2, [3, 5], [6,∞)

Count Distance (−∞,−2], −1, 0, 1, [2,∞)
Group Distance (−∞,−1], 0, [1,∞)

Table 1: Measures of Similarity and Value Ranges.

The goal given to each player was to use the buttons along
the bottom to manipulate the central 3 by 3 grid of dots in
an attempt to match the configuration of dots given in the
small grid at the top of the screen. Nine possible actions
existed, though the dynamics of the game resulted in not
all actions being available for selection at all times. Af-
ter every player action choice, the inner ‘while’ loop of the
GDP-Modelling algorithm was run, and a 5-tuple of results
(player ID, GDP-selected action, randomly-selected action,
player-selected action, abstract world state) was saved to the
server. The measures of similarity and accompanying value
ranges that were used in this experiment are given in Table
1. Hamming Distance and Count Distance have been dis-
cussed previously; Group Distance is a domain-dependent
measure referring to the difference in number of groups be-
tween the world and goal states, where a group is defined
to be either one dot or a set of dots that are 4-adjacent. For
both Count Distance and Group Distance, differences were
computed as worldValue − goalValue. Given that there are
4, 5 and 3 abstract values for each of the Hamming, Count,
and Group Distance measures respectively, the total size of
the abstract world is 4 × 5 × 3 = 60, while the size of the
non-abstract world and goal, having 18 attributes (dots) with
2 values each (on or off), is 218 = 262144. An example of
the goal-based state abstraction process is shown in Figure
4; five world dots must be changed to match the goal, and
the world has both one more dot and one less group than the
goal. Once the values for the similarity measures are com-
puted, they are fitted into the ranges in Table 1.

Abstract Value Abstract
Attribute Value
Hamming

5 [3, 5]Distance
Count

1 1Distance
Group −1 (−∞,−1]Distance

Figure 4: Example Abstraction: on the left are the world and
goal states, and on the right is the abstract world state.

To assess the value of the GDP-Modelling algorithm’s
goal-based abstraction, several popular Machine Learning
classifiers were deployed on the Dot Master testbed with
two sets of input: approximately 4000 player actions with
the set of full (non-abstract) world and goal states in which
they were taken, and the same set of actions with the set of
corresponding abstract world states. Three of the classifiers
used were run using the Weka Data Mining Software, a free
tool containing a host of different classifiers (Witten & Frank
2005). These classifiers were: K-Nearest Neighbour (K=3),
Decision Stump, and Naive Bayes. A fourth classifier, called

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

P
er

ce
nt

 C
or

re
ct

Number of Predictions

Freq. Occurrence
K-Nearest.N.

DecisionStump
NaiveBayes

Random

Figure 5: Classifier performance using no abstraction

“Frequent Occurrence”, was added directly to the Dot Mas-
ter testbed, consisting of a simple most-frequent-occurrence
classification choice with random initialization; for any in-
put world state, from the actions that can be performed in
that state, the one taken from that state most frequently in the
past is returned, and if no actions have been observed for a
given state, a random prediction is made. Given its direct in-
tegration into the testbed, the Frequent Occurrence classifier
was implemented to be online and incremental. With every
player action, the classifier’s model is refined, and a predic-
tion of the next action is generated. Because the classifiers
chosen from Weka were implemented as offline methods,
simulating an online implementation required re-initializing
each classifier after every action, using all previous actions
as a training set to predict the next action. As a baseline,
a classifier that returns a random prediction from the set of
possible actions, called “Random”, was also run.

Figure 5 shows the results for the first input set, where
the full world and goal states were used. Figure 6 shows the
results for the second input set, where abstract world states
were used. Each line in the figures represents the perfor-
mance over time of one of the five classifiers, in terms of the
percent of predictions made that were correct, that is, where
the predicted action matched the action taken by the player.
Each data point represents an average over predictions for a
set of players, beginning with 33 players for the first action.
Classifier performance is shown for 100 predictions and ac-
tions, but many players stopped playing before this point. In
light of this, all averages were taken relative to the number
of players that were still playing at the timestep in which the
action was taken.

Discussion
Comparing Figures 5 and 6, several results are apparent:
the Weka-based classifiers, K-Nearest Neighbour, Decision
Stump, and Naive Bayes, perform similarly with respect to
one another in both graphs, and although all three appear
to gain a small boost in performance (between 3% and 5%)
when GDP-Modelling is applied, these increases are not sta-
tistically significant. In contrast, a large, statistically signifi-
cant increase in performance is obtained by the Frequent Oc-

90

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

P
er

ce
nt

 C
or

re
ct

Number of Predictions

Freq. Occurrence
K-Nearest.N.

DecisionStump
NaiveBayes

Random

Figure 6: Classifier performance using GDP-Modelling

currence classifier, improving in accuracy almost twofold,
and moving from predicting almost completely randomly to
being competitive with the more advanced classifiers from
Weka. As expected, the Random classifier generally remains
between accuracies of 12% and 20%, reflecting random pre-
dictions based on a variable number of action choices avail-
able in a given state.

When assessing the value of GDP-Modelling, it is impor-
tant to recall that the Frequent Occurrence classifier is both
online and incremental, and benefits from a simple imple-
mentation with low computational cost; this makes it par-
ticularly well-suited for embedding in commercial games
where only a small portion of CPU cycles is available for
in-game AI. Additionally, because the Frequent Occurrence
classifier stores only the frequency of player actions and pre-
dicts the action with highest frequency, its computational
and storage requirements are independent of the number of
player actions observed. The ability of GDP-Modelling to
improve the performance of the Frequent Occurrence clas-
sifier to a level of accuracy near those of significantly more
costly offline classifiers is encouraging, and given that the
process of building and applying the abstraction is also sim-
ple and inexpensive, the Frequent Occurrence classifier en-
abled by GDP-Modelling is an efficient, viable solution to
the online prediction of player actions.

Future Work
Although the given results of the study of GDP-Modelling
are promising, further research is required. While the related
work presented in this paper has significant merit in itself,
it would be interesting to extend the methods therein with
the idea of Goal-Directed-Player Modelling presented in this
work. Given the substantial benefit obtained by the Frequent
Occurrence classifier from GDP-Modelling, it would be in-
teresting to devise and test additional simple and inexpensive
classifiers. An investigation of the performance of GDP-
Modelling-enhanced classifiers in other domains is needed
to verify their general ability to predict player actions, and
the implementation of a system that uses GDP models to
adjust game difficulty dynamically or generate helpful non-
player characters remains as future work.

Conclusion
The study of player modelling for digital games is gain-
ing popularity, and the results shown by Yannakakis and
Maragoudakis, Charles et al., and Albrecht et al. are most
promising. In this paper, we have offered insight into the dif-
ferences in these methods for player modelling, and inves-
tigated the subfield of modelling goal-directed players. We
have proposed a novel enhancement to player modelling that
is particularly relevant to the digital role-playing and puzzle
game industries, titled Goal-Directed-Player Modelling, in
which state abstraction is used with knowledge of a player’s
goals to improve the accuracy of a simple, incremental, low
cost online classifier that learns to predict player actions as
gameplay progresses, with an accuracy that is competitive
with advanced offline classification techniques.

Acknowledgements
We greatly appreciate the support of the many players of
Dot Master, and offer our thanks for the thoughtful sugges-
tions from our reviewers. Special thanks are due to Nicholas
D’Autremont, both for hosting Dot Master and assisting
with server-side operations.

References
Albrecht, D. W.; Zukerman, I.; and Nicholson, A. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game. In User Modeling and User-Adapted Interac-
tion 8(1-2), Special Issue on Machine Learning in User
Modeling, 5–47. Kluwer Academic Publishers.
ArenaNet. 2005. Guild Wars. http://www.guildwars.com/.
Charles, D.; Kerr, A.; McNeill, M.; McAlister, M.; Black,
M.; Kcklich, J.; Moore, A.; and Stringer, K. 2005. Player-
centred game design: Player modelling and adaptive digital
games. Digital Games Research Conf. 2005 285–298.
Hamming, R. W. 1950. Error-detecting and error-
correcting codes. Bell System Tech. Jrn. 29(2):147–160.
BioWare Corp. 2003. Star Wars: Knights of the Old Re-
public. http://www.lucasarts.com/products/swkotor/.
Electronic Benefits Transfer Glossary. 2005. http://www.
utexas. edu/lbj/21cp/ebt/glossary.htm.
Gamespot. 2005. Star Wars: Republic Commando, A Re-
view. http://www.gamespot.com/pc/action/ starwarsrepub-
liccommando/review.html.
Lucas Arts. 2005. Star Wars: Republic Commando. http://
www.lucasarts.com/games/swrepubliccommando/.
Newell, A.; Shaw, J.; and Simon, H. A. 1960. Report on
a general problem solving program. In Proceedings of the
Int’l Conference on Information Processing, 256–264.
Thue, D. 2005. Dot Master. http://wasteofspace.ca/
˜dotmaster/.
Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal machine learning tools and techniques. San Fransisco:
Morgan Kaufmann, 2nd edition.
Yannakakis, G. N., and Maragoudakis, M. 2005. Player
modeling impact on players entertainment in computer
games. Springer-Verlag: Lec. Notes in Comp. Sci. 3538:74.

91

