
Improving Collaborative Pathfinding Using Map Abstraction

Nathan Sturtevant and Michael Buro
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{nathanst,mburo}@cs.ualberta.ca

Abstract

In this paper we combine recent pathfinding research on spa-
tial abstractions, partial refinement, and space-time reserva-
tions to construct new collaborative pathfinding algorithms.
We first present an enhanced version of WHCA* and then
show how the ideas from WHCA* can be combined with
PRA* to form CPRA*. These algorithms are shown to effec-
tively plan trajectories for many objects simultaneously while
avoiding collisions, as the original WHCA* does. These new
algorithms are not only faster than WHCA* but also use less
memory.

Introduction
Path planning is a fundamental operation in robotics and
many video games. Some problems faced in these domains
include navigating a point object through known terrain and
pathfinding groups of objects. Additional tasks in adver-
sarial pathfinding settings (e.g. real-time strategy games)
include blocking paths, surrounding opponent objects and
maintaining beliefs about other unit locations.

In this paper we present new research on collaborative
pathfinding, where multiple units would like to share infor-
mation about their expected paths in order allow behavior
such as adaptive collision avoidance.

Current games often exhibit poor pathfinding behavior be-
cause they do not consider paths planned by other units,
even when the units are on the same team. In general this
occurs because the problem of finding a path through both
space and time (spatial-temporal pathfinding) is reduced into
a more simple spatial pathfinding problem, where all other

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1

2

2

Figure 1: A simple collaborative pathfinding problem.

units are considered static obstacles. If we wish to exhibit
cooperative behavior we must consider both where units are
planning to travel and when they will arrive at any given lo-
cation along their path.

Consider a simple example in Figure 1 with two units.
The first unit is stopped, blocking the hallway, and the sec-
ond unit needs to walk to the other side of the hallway. The
most efficient solution to this problem is for the first unit to
move out of the way to allow the second unit to pass. But,
algorithms which plan strictly using two-dimensional spatial
pathfinding cannot find such solutions. Instead, the second
unit will either stop behind the first unit, or find a longer
route to the goal, depending on the implementation.

Disregarding computing resources, the best solution to
this problem is to do simultaneous planning for all units
in the world. But, this approach is infeasible in practice
(PSPACE-hard (Hopcroft, Schwartz, & Sharir 1984)).

In the next section we will discuss a variety of approaches
for cooperative pathfinding and speeding pathfinding using
abstraction. We will then combine these ideas into new algo-
rithms for cooperative pathfinding which are faster and more
efficient that previous methods.

Related Work
A* (Hart, Nilsson, & Raphael 1968) is one of the most
commonly used algorithms for pathfinding. A* maintains
a closed list of nodes for which optimal paths are known,
and an open list of nodes which are candidates for search.

But the traditional formulation of the pathfinding problem
as a single-agent two-dimensional search problem is inade-
quate if we are interested in the full multi-agent pathfinding
problem (Erdmann & Lozano-Perez 1987). The approaches
to this problem have been explored and categorized by sev-
eral authors. A good overview of this work can be found in
(Silver 2005).

Windowed Hierarchical Cooperative A* (WHCA*) (Sil-
ver 2005) combines several different ideas to achieve more
efficient cooperative pathfinding. First, units plan indepen-
dently, but share a reservation table which holds their in-
tended routes. Second, units construct an exact solution to
the spatial pathfinding problem as a heuristic estimate to the
cost of solving the spatial-temporal pathfinding problem. Fi-
nally, because of the accuracy of the constructed heuristic,

80

units can truncate their planning to a fixed window size to
reduce the cost of pathfinding.

Partial-Refinement A* (PRA*) (Sturtevant & Buro 2005)
uses automatic state-space abstraction to speed traditional
(non-temporal) pathfinding. PRA* uses a hierarchy of map
abstractions; it computes abstract paths within this hierar-
chy, and then refines them into paths which can be executed.

This paper has three main contributions. First, we imple-
ment and test WHCA* in a domain where we have eight
directions of movement available, as opposed to the four
(NSEW) that were used in the previous implementation of
WHCA*. Our implementation also supports variable speed
units. We then introduce two new algorithms based on the
combination of WHCA* and PRA*.

Previous Techniques
We introduce two previous algorithms here in some detail, as
our new work draws heavily on the ideas introduced within
these algorithms, and an understanding of these techniques
is important for understanding our new work.

WHCA*
WHCA* combines three main ideas for efficient collabora-
tive pathfinding.

Space-time reservation table. A space time reservation
table is a three-dimensional table indexed by both anx/y
location in the world and a time,t. The value of an entry (x,
y, t), if it exists, is the unit which will be occupying the given
cell at that point in time. It is relatively simple to incorporate
a space-time reservation table into a search algorithm like
A*. When expanding the neighbors of a given node you
must simply check to see if any of these nodes is already in
the reservation table. If so, these nodes are skipped, because
they cannot be reached.

We demonstrate a space-time reservation table in Fig-
ure 2. Because of efficiency concerns, time is discretized
in the table. Some units will be able to move through multi-
ple tiles within a single time-step in the table depending on
their speed. If there is a wide disparity in unit speeds, this
can cause efficiency problems for the reservation table.

Reverse A* Heuristic. There is significant cost associated
with moving from a two-dimensional spatial pathfinding
problem to a three-dimensional temporal-spatial problem.
The cost of an inaccurate heuristic in a two-dimensional
problem is only the area in which the heuristic is inaccu-

2

2

1

1 1

1 1

1

x
y

t

Figure 2: A visualization of the 3-dimension reservation ta-
ble.

rate. In a three-dimensional problem the cost is the volume
where the heuristic is inaccurate. Thus, it is very important
to have an accurate heuristic.

In the case of cooperative pathfinding, we abstract the
problem by building an accurate heuristic for just the spatial
pathfinding problem, ignoring temporal constraints. This
works well because the time to travel a path is highly cor-
related with the distance traveled; given no additional units
in the world this would be a perfect heuristic.

An accurate spatial heuristic can be built by performing
a reverse A* search from the goal node to the start node
and saving the open and closed lists from the search. By
following this A* search backwards, the exact spatial cost
from not only the start node, but also every other node in
the closed list can be quickly computed. Thus, a reverse A*
search provides a heuristic for a wide range of nodes along
the search path. If the cost of a node not on the closed list is
needed, the reverse A* search can be resumed to add more
nodes to the closed list.

Windowing. Given a reservation table and a reverse A*
heuristic, cooperative pathfinding works well. But, as more
units interact within the world, the initial cost of resolving
all conflicts can become prohibitively large. This cost, how-
ever, can be reduced by windowing the search. If, for exam-
ple, WHCA* uses a window sizew, the firstw steps in the
path will be computed with full cooperation. The remaining
portion of the path will assume there are no other units in the
world. Because the reverse A* heuristic is an exact spatial
heuristic, there is no danger of being lead into a local mini-
mum from which a unit cannot escape. Since only the initial
window of a path is actually reserved, a new path must be
recomputed and reserved before the initial window is fully
executed.

Windowing the search is not without drawbacks. We il-
lustrate a difficult problem in Figure 3 which is made even
more difficult when windowing is used. In this example the
units are circles, and their goals are diamonds. If the search
window for each unit isn’t large enough, the units will take
turns pushing each other off their goals instead of finding a
stable solution.

Summary. Given these techniques, there are signifi-
cant memory and search costs associated with WHCA*.
WHCA* must store the results from the reverse A* search
in memory on a per-unit basis. In the worst-case scenario,

1

2

2

1

Figure 3: Windowing deadlock. Units 1 and 2 will succes-
sively push each other out of the way.

81

this means every unit will store a copy of the entire map. In
this cost will be determined by the complexity of the map,
but these rise linearly as units are added to the world. Ad-
ditionally, we note that WHCA* must perform a complete
A* search followed by a windowed search with reservations
before WHCA* units can start moving. These costs can be
significant, especially as the map size increases.

PRA*

Partial-Refinement A* (PRA*) (Sturtevant & Buro 2005)
combines the ideas of spatial abstraction with partial path re-
finement to speed up path planning considerably while still
producing high-quality paths. The main idea behind spatial
abstraction is to build a lower-resolution version of the map
which can be efficiently reasoned over. Then, the results of
low-resolution planning can be refined into executable paths
using path refinement. The strength of PRA* is its ability to
efficiently interleave planning with execution. We describe
the most important ideas from PRA* here.

Abstraction. PRA* relies on the existence of an abstrac-
tion hierarchy. Each level in the hierarchy is a successively
more abstract version of the map. We show the general con-
cept in the upper portion of Figures 4. In our implementation
we represent the world as a graph, as shown in the bottom of
this figure, and do the actual abstraction by reducing cliques
in the original graph into single nodes in the abstract graph.
The nodes in group B are fully connected, so they become a
single node after abstraction. The nodes in group A are like-
wise abstracted. Because there is a single node that is only
connected to group A it is folded into A. Groups C is also
abstracted into a single node. Because all neighbors of node
D are already abstracted, node D is preserved after abstrac-
tion. Edges between groups in the original graph become
edges between nodes in the abstract graph.

Each abstract node is given a virtual location, which is
the average of the location of its children. Edges then have
cost equal to the straight-line distance between the nodes
they connect. This cost may underestimate or overestimate
the actual cost between two abstract nodes. Assigning all

A B

C

D
A B

C

D

Figure 4: Tile-based abstraction in PRA*. In each level up to
four fully connected traversable tiles in addition to hanging
off degree one nodes are merged.

edges cost 1 guarantees that the cost of an abstract path is
an admissible heuristic for (doesn’t overestimate) the cost of
the underlying path. There are trade-offs and arguments for
both approaches.

Abstractions can be pre-computed or built at runtime as
terrain is explored (Bulitko, Sturtevant, & Kazakevich 2005)
with relatively low overhead costs. We have found the
clique-based abstraction method effective in practice, but
there are many other ways that abstractions can be built.

Besides their use for pathfinding, abstractions have other
uses as well. For instance, we can annotate nodes with oc-
cupancy information. Then, we can quickly summarize in-
formation across wide areas of the map by looking at the
values stored in the abstract nodes. While a proof is outside
the scope of this paper, this information can be updated in
constant time, as the cost is amortized across movement.

Path Refinement. Given that we have an abstraction hi-
erarchy, we can use algorithms like A* to compute paths at
any level of the hierarchy. These abstract paths can either be
used to improve the heuristic at lower levels of the abstrac-
tion hierarchy (Holteet al. 1996), or can be used as a guide
for pathfinding at these levels.

We demonstrate this in Figure 5. If we want a path be-
tween A and B at the bottom level, we first find the par-
ents of nodes A and B (A’ and B’) at an abstract level in
the graph. We can compute a path between A’ and B’ using
A*. Because we are using abstraction the cost of comput-
ing this path is much smaller than the cost of computing a
path between A and B. Given a path between A’ and B’ at
an abstract level, we then define a corridor at the next lowest
level, which is the set of all nodes below the path between A’
and B’. This corridor can optionally be widened to encom-
pass more nodes. When computing a path at the next level
of abstraction, we restrict the ourselves to only expanding
nodes within this corridor.

If we have an accurate heuristic, the process of building
an abstract path and refining it is slightly more expensive
than just building the regular path in the world. But, when
our heuristic is poor, this process gives significant savings,
because we are prevented from exploring areas of the map
which do not lead to the goal.

Partial-Path Refinement. Searches with WHCA* can be
windowed because the reverse A* heuristic is accurate. Oth-

A B

A’ B’

Figure 5: Abstraction and path refinement in PRA*. To find
a path from A to B, PRA* first finds a path from A’ to B’,
the respective parents of A and B. At the next lower level a
new path is computed which stays in a corridor defined by
the original path. This procedure is repeated until the bottom
level is reached.

82

erwise there would be a risk of never reaching the goal.
Searches in PRA* can also be windowed, but for a differ-
ent reason. PRA* always computes a complete path from
the start to the goal at some level of abstraction. Thus, as
long as that abstract path is followed, a unit is guaranteed to
eventually reach its goal. So, PRA* is windowed by truncat-
ing the corridor that is used when refining abstract paths and
introducing intermediate goals at the end of each of these
corridors.

Summary. PRA* is the combination of abstraction and re-
finement as described above. The use of abstraction in this
manner does not guarantee optimal paths, but the over 90%
of paths computed by this method are optimal in practice
(Sturtevant & Buro 2005), and they are computed signifi-
cantly faster than A*.

New Methods
We propose and analyze here two simple combinations of
abstraction and WHCA*. The first idea is to compute the
reverse A* heuristic in abstract space instead of the full map.
The second idea is to use WHCA* inside the last step of a
PRA* search.

WHCA*(w, a)
WHCA* uses values from the reverse A* search as an esti-
mate of the full space-time search cost. We propose replac-
ing this A* search with an A* search in an abstract space.
This gives us WHCA* with two parameters,w, the window
size used for reservations anda the abstraction level used
for the heuristic. This simple addition not only reduces the
size of the A* search that must be cached, but also speeds
the initial A* search.

There are two ways we can use the abstract search to
generate a heuristic. Given a set of paths through abstract
space on the A* closed list we need an associated heuristic
value for each path. If optimality is a concern, we should
assume that the edges in this path have cost 1 each. But,
since we have already lost optimality by planning units in-
dependently, this is not a great concern. So, instead we use
the abstract edge cost (defined in the discussion of abstrac-
tions in the previous section). Empirical analysis has shown
that this value is much more accurate, but tends to slightly
overestimate the actual cost.

This approach has direct trade-offs between the value of
a, the memory used by WHCA*(w, a) and the number of
nodes expanded. The larger the value ofa, the less mem-
ory we need, which initially reduces the number of nodes
expanded in the first step. But, larger values ofa result in a
less accurate heuristic, which in turn results in more nodes
expanded during the windowed search.

Combining WHCA* and PRA*
PRA* performs an A* search at each level of the abstrac-
tion hierarchy, restricting search to a corridor defined by
the previous search results. Thus, the most simple way to
combine PRA* and WHCA* is to simply replace the last
A* search at the bottom of the abstraction hierarchy with a
WHCA* search. In this approach the cost and the scope of

the WHCA* search is limited by the PRA* corridor. Be-
cause the PRA* target location is always moved to the end
of the current search window, no extra data needs to be
cached like in WHCA*. We call this new algorithm Cooper-
ative PRA* (CPRA*). CPRA*(k) takes a single parameter
k which is the length of the path which is partially refined at
each step.

The cost of a CPRA* search will depend greatly on the
window size that is used for search. Unlike WHCA* which
has a high initial cost when the A* heuristic is being com-
puted, and then much lower costs after that, CPRA* will
have roughly the same cost at each re-planning stage.

One advantage of using CPRA* is that the window size,
and thus the pathfinding cost, can be dynamically adjusted,
if needed. If, for instance, many units are simultaneously
asked to path across the map, a smaller window size might
be used for the first movement computation. While the win-
dow size in WHCA* can also be dynamically adjusted, there
is no way to avoid building the reverse A* heuristic in the
first step of execution.

Experiments
We now compare these algorithms across various sized maps
and numbers of units. Our implementation of WHCA* has
a few differences between the implementation in (Silver
2005). First, units can move to any of the eight adjacent tiles
(including diagonals) on any move, instead of just the four
adjacent tiles considered in prior implementations. Next,
we re-plan paths at a fixed distance (3 steps) from the end
of our path instead of at the half-way through the reserved
path. Finally, we don’t measure collisions. When a collision
occurred in (Silver 2005) the colliding units were removed
from the world. We instead left all units in the world after
they collided, forcing them to replan.

We run experiments in two scenarios, S1 and S2. The
maps for these scenarios are in Figure 6. In these maps black
areas are out of bounds. The lighter areas are the potential
start and end locations. For each experiment we placed a
given number of units randomly on the left side of the map
and asked them to path to random locations on the right side.
These maps were scaled in size from32× 32 to 256× 256.

In S1 the Manhattan distance heuristic is quite poor ini-
tially, but once units have crossed the middle of the map,
the Manhattan distance is very accurate. While this isn’t the

Figure 6: The maps for scenarios S1 (left) and S2 (right) we
used in our experiments.

83

W,H 32 64 96 128 160 192 224 256
S1 376 1246 2894 4726 7744 10724 14887 18646
S2 418 1246 2962 4574 7713 10445 12960 17886

Table 1: PRA* abstraction sizes for scenarios S1 and S2
measured in nodes.

worst case heuristic, it is much better than S2, where the ini-
tial heuristic is fairly accurate, except for the obstacles in the
way.

We considered the following algorithms in each experi-
ment. WHCA*(w, a): Whena = 0, we are using WHCA*
without any spatial abstraction in the heuristic. We var-
ied a between 0 and 3, and also variedw between 8 and
20. CPRA*(k): A corridor size ofk for CPRA* is roughly
equivalent to a window size of2k for WHCA*. So, for
CPRA* we variedk between 4 and 10. We also included
PRA*(k) for some experiments which does not make any
reservations; it just uses local repair.

Experimental results are measured in terms of nodes ex-
panded, but for reference we have measured node generation
speeds on a 1.5Ghz Powerbook G4 laptop with 512MB of
RAM compiled with gcc 4.0.1 using -O3 for optimization.
CPRA* expands 80-150k nodes/sec. WHCA(*, 0) expands
50-70k nodes per second on average. WHCA*(*, 1/2/3) all
expand 40-50k nodes per second on average. Because we
have implemented these algorithms in a framework designed
for maximum flexibility and experimentation, we have not
devoted significant effort to optimizing our code. It would
not be surprising if a custom implementation of these algo-
rithms was significantly faster.

The graphs in Figures 7 to 10 present important runtime
statistics of the described algorithms in form of the maxi-
mum computed from a dataset of 100 samples for a fixed set
of algorithms and varying start and goal locations.

In each plot presented here, algorithms are sorted by their
performance. The top name in each legend corresponds to
the highest values, and so on. For each algorithm we plotted
the window settings with the best performance. When two
algorithms have equal performance we plot a single curve
and indicate that they are equal in the legend.

We use these experiments to illustrate four points. First,
the memory savings when using abstraction. Second, the
drop in initial planning costs from using abstraction. Third,
the steady-state cost of using each algorithm, and finally the
resulting path quality.

We illustrate memory savings in Figure 7. In this fig-
ure we plot the size of the open and closed lists for the
WHCA*’s reverse A* heuristic at their largest point in the
run. Figure 7A contains the results on running on the map S1
as we vary the map size. We see that increasing the abstrac-
tion level from 0 to 1 decreases the memory used by about a
factor of 4. In Figure 7B we show how memory usage scales
as we add more units to map S2. The total memory required
increases linearly with the number of units. Using a single
layer of abstraction decreases the memory usage by a factor
of 4. Further layers of abstraction reduce memory usage, but
by smaller margins.

 128 160 192 224
 0k

100k

200k

300k

400k

500k

600k

700k

800k

Map Width,Height

A) Memory consumption, 64 units, S1

WHCA*(-,0)
WHCA*(-,1)

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
 0k

 40k

 80k

120k

160k

200k

240k

280k

320k

Number of Units

B) Memory Consumption, 256x256 map, S2

WHCA*(8,0)
WHCA*(8,1)
WHCA*(8,2)

WHCA*(20,3)

Figure 7: Memory consumption: maximum of the maximal
number of nodes in open/closed lists.

 128 160 192 224
 0k

100k

200k

300k

400k

500k

600k

700k

Map Width,Height

A) Expanded nodes in first second, 64 units, S1

WHCA*(-,0)
WHCA*(-,1)

PRA*(4)=CPRA*(4)

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
 0k
 25k
 50k
 75k
100k
125k
150k
175k
200k
225k
250k

Number of Units

B) Expanded nodes in first second, 256x256 map, S2

WHCA*(8,0)
WHCA*(8,1)

WHCA*(8,3)=WHCA*(8,2)
CPRA*(4)

Figure 8: Initial planning time: maximum of the number of
nodes expanded during the first second.

 128 160 192 224
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Map Width,Height

 A) Avg. of expanded nodes per second, 64 units, S1

CPRA*(10)
PRA*(10)

WHCA*(8,0)
WHCA*(8,1)

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
 0

 500

 1000

 1500

 2000

Number of Units

 B) Avg. of expanded nodes per second, 256x256 map, S2

CPRA*(10)
WHCA*(16,2)

WHCA*(8,0)
WHCA*(12,1)

Figure 9: Follow-up planning time: maximum of the aver-
age number of nodes expanded in subsequent seconds.

 128 160 192 224
 9k

 10k

 11k

 12k

 13k

 14k

 15k

 16k

Map Width,Height

A) Total travel distance, 64 units, S1

PRA*(8)
WHCA*(20,0)
WHCA*(20,1)

CPRA*(10)

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
 0k

 2k

 4k

 6k

 8k

 10k

 12k

 14k

Number of Units

B) Total travel distance, 256x256 map, S2

WHCA*(20,3)
CPRA*(10)

WHCA*(20,2)
WHCA*(16,0)
WHCA*(20,1)

Figure 10: Path quality: maximum of the total travel dis-
tance.

84

In Table 1 we show the memory required to build an ab-
straction for a given map dimension. On a 256x256 map we
need approximately 20,000 nodes to build a full abstraction
hierarchy. CPRA* units can share a single abstraction hi-
erarchy, so this cost would be shared by all CPRA* units.
WHCA* only needs a single abstract map, not a full ab-
straction hierarchy, so this additional cost would be less for
WHCA* than for CPRA*.

In Figure 8 we plot the first-move computation cost
summed over all units. This is the number of nodes that all
units must expand to begin acting in the world. Again, using
an abstract map with WHCA* reduces the first-move cost
significantly on both S1 (Figure 8A) and S2 (Figure 8B). All
the CPRA* algorithms have the same performance in both
of these figures. We also plot the PRA* (non-cooperative
pathfinding cost) in part A, and it has the same performance
as CPRA*.

We consider the steady-state cost of pathing all units af-
ter the first move in Figure 9. For S1 in 9A we can see that
CPRA* has a higher steady-state cost than WHCA*. This is
expected, because WHCA* has a very high-quality heuristic
after the first move. It is interesting to note that the pathfind-
ing cost stays constant despite the size of the map increas-
ing. This occurs because neither algorithm is dependent on
the size of the map after the first step. For S2 in 9B we mea-
sure the steady-state cost as the number of units increases.
Adding units linearly increases the cost of pathfinding. We
point out that the higher abstractions used by WHCA* even-
tually degrade performance, with WHCA*(16, 2) perform-
ing more slowly than WHCA*(8, 0).

We note that in Figure 9 the best CPRA* window size is
10, while in Figure 8 the best window size is 4. This suggests
we should CPRA* should use a window size of 4 on the first
move and 10 on remaining moves.

Finally, we show the total distance moved by all units
while moving from the start to their goal in Figure 10. We
see that all algorithms have very similar performance. So,
the improvements suggested in this work do not have a
meaningful effect on the quality of paths, just on the mem-
ory and speed of their computation.

Conclusion and Future Work
In this paper we have presented two ways in which state ab-
straction can be used to improve WHCA*’s performance.
The first of these methods, building the reverse A* heuris-
tic in abstract space, reduces the per unit memory needed
for WHCA*. CPRA* uses an abstraction hierarchy to re-
duce the first move delay, although it is more expensive than
WHCA* after the first step.

The practical choice of which of these algorithms to use
will depend on the application in question and the problem
constraints. If there are many units and memory is con-
strained, CPRA* is probably a better approach. If users can
tolerate slower initial costs and memory is not a problem,
WHCA* provides better performance once the initial com-
putations are completed.

There are many interesting extensions which might be
added to this work. For instance, we can use an abstraction

hierarchy to store information about things like congestion,
and this information can be used to help avoid congested
routes. Similarly, we could use this information to dynami-
cally vary the window size with CPRA*, ensuring we don’t
step into a congested region unless we can pass completely
through. We plan to build on this work by exploring such
ideas.

Finally, we note that while we have focused on im-
proving spatial-temporal pathfinding, these exact techniques
are more general and can be applied to three-dimensional
pathfinding with or without an extra temporal dimension, or
other more difficult pathfinding problems.

References
Bulitko, V.; Sturtevant, N.; and Kazakevich, M. 2005.
Speeding up learning in real-time search via automatic
state abstraction. InProceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 1349–1354.
Erdmann, M., and Lozano-Perez, T. 1987. On multiple
moving objects.Algorithmica2:477–521.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cybern.4:100–107.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction:
A graph oriented approach.Artificial Intelligence85(1-
2):321–361.
Hopcroft, J.; Schwartz, J.; and Sharir, M. 1984. On the
complexity of motion planning for multiple independent
objects: PSPACE-hardness of the warehousemans prob-
lem. International Journal of Robotics Research3(4):76–
88.
Silver, D. 2005. Collaborative pathfinding. InProceedings
of AIIDE, 23–28.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement. InProceedings of
AAAI, 47–52.

85

