
Goal-Directed Hierarchical Dynamic Scripting for RTS Games

Anders Dahlbom & Lars Niklasson

School of Humanities and Informatics
University of Skövde, Box 408, SE-541 28 Skövde, Sweden

anders.dahlbom@his.se & lars.niklasson@his.se

Abstract
Learning how to defeat human players is a challenging task
in today’s commercial computer games. This paper suggests
a goal-directed hierarchical dynamic scripting approach for
incorporating learning into real-time strategy games. Two
alternatives for shortening the re-adaptation time when
using dynamic scripting are also presented. Finally, this
paper presents an effective way of throttling the
performance of the adaptive artificial intelligence system.
Put together, the approach entails the possibility of an
artificial intelligence opponent to be challenging for a
human player, but not too challenging.

Introduction
The quality of the opponent intelligence in modern
computer games primarily comes from the ability of
artificial intelligence opponents (AIOs) to exert human-like
behavior (Spronck, et al. 2003). A cornerstone of human
behavior is learning; humans are able to quickly adapt to
and cater for changing situations. This is valid for players
of computer games too; they are able to quickly identify
and exploit the behavior of the opponent intelligence. We
argue that the entertainment value of a computer game can
be increased by allowing AIOs to adapt to the opponent
behavior, i.e. to the behavior of the human player.
 Learning how to defeat human players might however
raise issues when incorporated into commercial computer
games, as the goal is for the player to win (Lidén 2003),
but not too easily (Woodcock, et al. 2000). Hence, an AIO
needs to be carefully balanced.
 Balancing the performance of an AIO is however not a
trivial task, as the expertise amongst game players varies.
Learning paradigms also usually aim at reaching the best
available performance. Therefore, methods for balancing
AIOs might be of even more importance, as a game should
be challenging for both novice and expert players.
 This paper extends the approach of dynamic scripting
(Spronck, et al. 2003), by adding a goal-directed ability as
a means for enabling fast learning in RTS games. Two
alternatives for shortening re-adaptation times are also
presented. Finally, this paper presents an efficient approach
for throttling the performance of adaptive AIOs.

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

RTS games
In real-time strategy games two or more players fight each
other on a battlefield, where each player is in control of an
army. An army usually consists of various combat units
and structures for managing the war, such as: training
facilities, in-game research facilities, stationary defenses,
and resource gathering centers. A vital component in many
RTS games is resources such as gold and supplies. These
need to be gathered and allocated in order to construct a
base to operate from and in order to create combat units.
 The key to victory in an RTS game often depends on
two factors: good resource management and strategic
thinking. Everything comes to a certain cost and resources
can be of limited amounts. Therefore, an efficient flow and
good allocation of resources is needed. Furthermore,
tactical and strategic decisions are needed for how to
defeat the opponents. Advantages in the terrain need to be
found and weaknesses of enemies need to be spotted.
Together, these advantages and weaknesses can be used to
implement a good strategy for victory.

AI in RTS games
An AIO in an RTS game faces similar tasks as a human
player. In order to appear intelligent it might need to create
one cohesive strategy for victory. The AI system in an RTS
game can be compared with how real-world armies
operate. At the top, the commander-in-chief decides on a
grand plan based on doctrines, reports etc. This plan is
propagated through the chain of command down to
regiments or similar units, which execute different parts of
the plan. Eventually, orders reach the lower levels where
individual soldiers contribute with their part to the plan.
 Similarly, an AIO can be structured in a hierarchical
fashion stretching from strategic and tactical warfare to
individual unit combat. At the top, resources need to be
collected and managed efficiently. The order in which to
produce buildings and units also needs to be scheduled
efficiently. Furthermore, Buro & Furtak (2004) state that
both spatial- and temporal reasoning is of great
importance. Temporal reasoning is concerned with how
actions relate to each other over time, and spatial reasoning
is concerned with analyzing the environment. Forbus et al.
(2001), point out the importance of exploiting the terrain in

21

war games. Key positions need to be found for where to
put defenses and for where to attack. Moreover, it can be
of importance to detect movement patterns of enemies in
order to place defenses strategically and to appear
intelligent.
 The battlefield in an RTS game is usually unknown from
the beginning, and players need to explore it to find
resource locations and key positions in the environment.
Even though the world has been explored, or if its structure
is known in advance, regions not seen by friendly units are
usually covered by a fog of war (FOW). Considering that
an RTS game is a dynamic environment the view of the
world for one player might not be completely true, as other
players might have changed it. Therefore, an AIO needs to
be capable of making decisions under uncertainty. A model
might need to be established for how the opponents play
and what their intentions are.
 Several players are also allowed to team up against
common enemies. AIOs might therefore need to be able to
collaborate with each other, as well as with human players.
 It can be important to combine many of these aspects
and create a plan which also considers future situations that
might occur. In order to achieve the longer-term goal of
victory, a plan might also need to include objectives that
are not directly profitable, or even unprofitable, in the near
future. In the end, everything however needs to be
executed through issuing low-level commands that control
the behavior of each individual unit.
 At the lower levels, the main task for the AI system is
pathfinding. It might however also need to possess the
capabilities of unit coordination and situation analysis, in
order for the units to appear intelligent. Even though the AI
system can be quite complex, shortcuts are allowed as it is,
in the end, the entertainment value that counts.

Dynamic scripting
Dynamic scripting (Spronck, et al. 2003) is a technique for
achieving online adaptation of computer game opponents.
In dynamic scripting, scripts are created online, i.e. during
game-play, based on rules extracted from a rulebase. The
technique is based on reinforcement learning and
adaptation proceeds by rewarding or punishing certain
rules according to their influence on the outcome.
 Originally, dynamic scripting was used to create scripts
for opponent parties in computer role-playing games
(CRPGs). Before an encounter between the party of a
human player and an opponent party, controlled by the AI,
rules are extracted to govern the behavior of the opponent
party. All rules in a rulebase are associated with weights
which determine the probability that they are extracted and
used in a script. Rules are evaluated when an encounter has
ended and their weights are updated according to the
outcome of the encounter.
 A fitness function is used to calculate fitness values for
all rules during the adaptation process. The fitness values
are based on the contribution to the outcome and they are
used to calculate new weights. This is handled by a weight-

update function which maps fitness values to weight
changes. Finally, a weight redistribution function is applied
so that the total weight-sum remains constant. Hence, if
one weight is increased, then other weights are decreased.
 A cornerstone of dynamic scripting is that it is based on
domain knowledge. Domain knowledge is used when rules
are created, as the designer has knowledge of the domain.
Domain knowledge is also used to separate rules during
run-time; rules for controlling a warrior are different from
rules for controlling a wizard. Different rulebases are
therefore created for each character type in a CRPG.
 The fact that the rules are manually designed is very
attractive from a game developer’s perspective, as the
quality assurance phase becomes easier. Moreover, the
behavior of AIOs in an RTS game is often determined by
scripts (Spronck, et al. 2002). Spronck (2005) also states
that dynamic scripting achieves eight demands that can be
needed to successfully implement online learning in
computer games: speed, effectiveness, robustness,
efficiency, clarity, variety, consistency, and scalability.
Therefore, dynamic scripting should be suitable for
achieving adaptive behavior in RTS games.

Dynamic Scripting in RTS games
According to Ponsen & Spronck (2004), dynamic scripting
is not directly applicable to RTS games due to the
differences between scripts for CRPGs and RTS games.
Ponsen & Spronck (2004) has however applied a modified
dynamic scripting algorithm to an RTS game, which
mainly differs with regard to two aspects:
1. Instead of separating rules with respect to different

opponent types (warrior, wizard, etc.), rules are
separated with respect to different game states.

2. Rules for an AIO are adapted when a state change
occurs and rules are evaluated with respect to the fitness
for the previous state and the fitness for the whole game.
In the original dynamic scripting algorithm (Spronck, et
al. 2003), rules are evaluated after each encounter
between opponent parties.

Ponsen & Spronck (2004) separate states based on what
type of buildings that are available in the game at any point
in time, since each building allows for various kinds of in-
game actions. Therefore, a state change occurs every time a
new building is constructed. For example, if a heavy
weapons factory is constructed, then tanks and artillery can
be built. If the factory is destroyed, then heavy weapons
cannot be constructed any more and rules associated with
these are useless. On top of this, Ponsen & Spronck
implemented a loop which was used to continuously
launch attacks against the opponent player.

Extending dynamic scripting
In this section, a goal-directed hierarchical approach for
extending the dynamic scripting algorithm (Spronck, et al.
2003) is presented. We argue that two main advantages can
be gained by introducing a goal-directed component:

22

1. The illusion of intelligence can be strengthened given
that: (1) it is important that agents in computer games
seem to possess some intelligence (Laird 2000), and (2)
the most important aspect of an agent’s intelligence is its
goal-directed component (Nareyek 2002).

2. The complex domain knowledge possessed by human
designers can easily be translated to individual goals and
prerequisites. These can be used to dictate the behavior
of AIOs whilst the structure is kept simple and allows
for fast learning through a smaller learning space.

The approach also extends the dynamic scripting algorithm
by utilizing a hierarchical structure which allows for
emergent planning and resource allocation. We argue that
AIOs in RTS games are preferably built in a hierarchical
fashion as the tasks for an AIO in an RTS game span from
strategic decisions and tactical command, all the way down
to individual unit behavior. A hierarchy should thus
constitute good mapping from tasks to behavior.

Goal-directed rule hierarchy
Similarly to dynamic scripting, goal-directed hierarchical
dynamic scripting (GoHDS) maintains several rulebases,
one for each basic player type in a game. Each rule in a
rulebase has a purpose to fill and several rules can have the
same purpose, e.g. to attack an enemy but in different
ways. We extend the amount of domain knowledge by
grouping rules with the same purpose, and say that these
rules have a common goal. Hence, goals are introduced
and put in several goalbases, one for each player type. A
rule is seen as a strategy for achieving a goal, which can be
seen as domain knowledge used to direct the behavior.
 The learning mechanism in GoHDS operates on the
probability that a specific rule is selected as strategy for
achieving a specific goal. In order to allow for reusability
of rules, so that many goals can share individual rules,
weights are detached from rules and instead attached to the
relationships between goals and rules, see Figure 1. By
assigning weights to each goal-rule relationship, adaptation
can occur in a separate learning space for each goal. This
can allow for higher flexibility and reuse.

Figure 1: Illustration of the goal-rule layout.
 Rules in GoHDS are divided in two distinct states: init
and active. The init state has the purpose of asserting that
the global tactical/strategic state is suitable for a given rule,
e.g. preconditions are checked to see if the rule is at all
applicable. If the rule is not applicable, then goals are

started with the purpose of fulfilling the global
tactical/strategic state that is needed for the rule. For
example, if an assault squad of tanks is to be built, then a
heavy weapons factory is needed. In the case where a
heavy weapons factory does not exist, then it is not
necessary to check if there is enough cash to build tanks,
and instead, a goal to create a heavy weapons factory can
be started. Rules change to the active state when their
preconditions are fulfilled. The active state has the purpose
of executing the main action of rules if their optional
condition(s) is (are) true, e.g. to build an assault squad in
the previous example.
 An advantage of using dynamic scripting is that rules are
designed in a clear and understandable fashion. This might
pose a problem if rules are to give the illusion of
intelligence at the tactical/strategic level. For example, a
single rule for ordering a blitzkrieg assault might neither be
simple nor reusable if a single rule handles the complete
behavior. Hence, rules are broken down into smaller rules
and sub-goals which are connected to form a hierarchy of
goals and rules. This is illustrated in Figure 2. By dividing
rules into many small rules and goals, the simplicity and
understandability can more easily be maintained.

Figure 2: Illustration of a simple goal-rule hierarchy.

GoHDS in an RTS game
Is the GoHDS method enough for creating an AIO which
gives the illusion of intelligence in an RTS game? At the
tactical/strategic level an AIO faces tasks such as resource
allocation, modeling, spatial- and temporal reasoning,
planning, and decision making. These tasks can all be
important when creating AIOs in RTS games, but which
tasks can GoHDS handle and how can it be combined with
other systems in order to achieve such a system?
 The GoHDS method does not contain a communication
system, it is not a spatial reasoning system, nor is it a
temporal reasoning system; hence, collaboration and
spatial- and temporal reasoning are excluded. Explicit
modeling is ruled out as dynamic scripting is not a system
for making plausible hypotheses concerning enemy intent.
Dynamic scripting is however a machine learning
technique and its weights implicitly model the behavior

23

previously expressed by its enemies. Some degree of
resource allocation and planning is also managed in the
hierarchy and by the preconditions.
 We argue that the GoHDS method might need to be
complemented with other systems in order to be applicable
in practice. A collection of many sub-systems can in
combination be used to form an overall strategy for
victory, and GoHDS can be used as one such sub-system.
The introduction of goals through GoHDS can be exploited
further by using goals as an interface between the different
systems. For example, GoHDS might need to be fed with
goals to be efficient. It might also need to retrieve
information concerning vantage points, paths, and avenues
of approach. A simple example of how to combine a set of
systems with GoHDS is now presented.
 First, a perception system is needed in order to act. This
can for example be achieved through a 2D map containing
all vital objects that are seen by friendly units.
Furthermore, the perception system can be complemented
with influence maps for detecting movement patterns of
enemies. The perception system can be used by a modeling
system which, for instance, keeps a state vector of the
world. Each state can then be matched against a target state
and for each state that is not fulfilled a goal to fulfill it can
be fed to GoHDS. Furthermore, GoHDS can communicate
with the perception system on its own in order to retrieve
state information. The modeling system and GoHDS could
also communicate with some form of resource
management system that prioritizes and performs
production scheduling. In addition, a pathfinding system
could be used by GoHDS, the modeling system, and an
object system. The pathfinding system could also use some
form of terrain analysis system for input. Figure 3
illustrates a simple example of the described system.

Figure 3: Example of how GoHDS can be combined
with other systems.

Learning in RTS games

Exploiting the feedback
At the tactical/strategic level in an RTS game, the number
of occasions when feedback is available can be rather few.
It is therefore important to exploit the feedback as much as

possible, when it actually exists. In other words, there is a
need for rapid learning. In many learning paradigms, a
distinct learning rate (LR) factor usually controls the speed
at which learning proceeds. In dynamic scripting the LR
factor consists of a reward and a punishment factor. In
order to actually exploit the feedback from the
environment, it is important to understand how these
factors affect the learning process, both individually, as
well as when combined with a distinct LR factor. It is also
interesting to investigate if the time to achieve adaptation
can be lowered by manipulating these factors.
 In order to compare how the punishment and reward
factors affect the learning process, this paper has
investigated three different settings of these factors: (1)
higher rewards, (2) higher punishments, and (3) equal
rewards and punishments. It is also interesting to
investigate if the adaptation time can be shortened by
increasing both factors proportionally at the same time.
Hence, this paper has also investigated if a larger LR yields
shorter adaptation times. It is however important to
remember that having too large a LR factor could
introduce predictability, which eliminates one of the
benefits of using dynamic scripting – unpredictability
(Spronck, et al. 2003).
 In methods based on reinforcement learning, the
punishment and reward factors are usually proportional to
the fitness relative to some pre-defined break-even point
i.e. the point where good and bad behaviors join. Temporal
aspects are however usually neglected. In case of dynamic
scripting, considering temporal aspects of results could
however be applicable. For example, if a rule achieves low
fitness for a number of consecutive evaluations, then that
rule is potentially no good and its weight can be drastically
decreased. Similarly, in the case of consecutive good
results the weight for a rule can be drastically increased. A
potential realization of this could be to track the trend of
change over time in fitness results, i.e. to introduce the
derivative of the fitness results.
 Using the derivative of the results is however not
directly applicable as the fitness results do not constitute a
continuous function. The point-wise derivative could be
used, but with the potential problem of introducing
oscillating results. A third approach for exploiting the
derivative is to use some form of smoothing function, such
as a non-uniform rational b-spline (NURBI), or similar
function. Fitness results can be inserted into a NURB
which can be used to find the derivative. By using a
NURB, the influence of historical fitness results can be
weighted so that recent results have a higher impact on the
derivative. Historical results can however help to minimize
the impact of the derivative in case of uncertain direction.
 This paper has investigated if adaptation time can be
lowered by including the derivative in the weight-update
function.

I For more information regarding NURB curves and their
derivative, see for example Piegl and Tiller (1995).

24

Performance throttling
Computer games need to be fun for both novice and expert
players. This can be a problem for many adaptation
algorithms since they usually aim at reaching the best
available performance. This problem could however
possibly be solved by designing fitness criteria that do not
promote the best performance, but which promote high
entertainment value. Entertainment value is a complex
term, but we argue that it can be increased if the
performance of an AIO matches that of the human player.
This means that the performance of an AIO might need to
be throttled to match the expertise exerted by its human
opponent, i.e. to put up a good fight, but to lose.
 One approach for limiting the performance of an AIO is
to investigate the fitness and weight-update functions. The
fitness function determines the score achieved for each rule
and the weight-update function translates the fitness scores
into weight changes. Establishing design criteria for a
fitness function that does not promote the best available
behavior can be considered a difficult problem and hence
we focus on the weight-update function. The weight-
update function used by Spronck, et al. (2003)
proportionally maps fitness values into weight changes so
that the best available fitness gives the largest weight
increase and vice versa. We suggest that a fitness-mapping
function can be used in between the fitness and weight-
update functions, which maps fitness scores into a fitness
space that promotes behaviors relative to a difficulty level.
 We have investigated if a fitness-mapping function,
based on the sine function, can be used to throttle the
performance of an AIO. One revolution of the sine
function has been used and its amplitude and frequency has
been translated and scaled to fit the fitness space. Further,
the function is phase-shifted to center its peak on a fitness
value that corresponds to the currently active difficulty
level. The following function has been used:

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤−+
⎟
⎠
⎞

⎜
⎝
⎛ −+−

=

otherwise

ff
ff

f
T

T

0

5.05.0
2

2
5.02sin

*

ππ

where f* denotes the fitness after mapping, f the original
fitness value, and fT the target fitness.

Simulation experiments
The results in this section are based on Dahlbom (2004).

Test environment
The aim of the test environment is to: (1) compare various
settings of the punishment and rewards factors, (2)
measure the adaptation time over varying learning rates,
(3) measure the adaptation time when including the
derivative, and (4) measure the performance when
applying varying fitness-mapping targets.

 A simulation involves two artificial players launching
assault raids against each other. One of the players is a
dynamically scripted player and the other is a manually
designed player, referred to as opponent player. At the start
of each simulation both players are given 1500 cash to
symbolize some form of resources. A simulation proceeds
by ordering the players to attack each other in an
alternating fashion, which starts an encounter. For each
encounter both players select a rule, either for attacking or
for defending, and for each rule, a group of ten units are
created to a cost of ten. Consequently ten are withdrawn
from each player’s stash of cash for each encounter.
 During an encounter, the two opposing groups fire at
each other in an alternating fashion. Each group has a
predetermined probability of hitting each other. This
probability depends on the rules that are applied. One unit
is withdrawn from a group when hit by the other and an
encounter ends when one of the two groups has run out of
units. The remaining units for the victorious player are
transferred back to the stash of cash. Finally, a simulation
ends when a player has run out of cash.

Goal-rule hierarchy
The structure of GoHDS has been delimited to cover only
two levels in the goal-rule hierarchy. By limiting the size
of the structure, simulations can be carried out under
similar circumstances. Disadvantages of limiting the
structure are however that: (1) the usefulness GoHDS is
not tested and (2) game specific implications are ignored.
 Two goals have been created: attack and defend. Each of
these goals has eight rules for accomplishing the goal, see
Figure 4. In order for adaptation to be possible in the
environment, some rules are stronger and some are weaker,
according to a predefined scheme. By using a predefined
scheme it is known in advance that reaching convergence
is always possible, and hence, the time to reach
convergence can always be measured. The environment
can also be seen as a variant of the prisoner’s dilemma.

Figure 4: Illustration of the goal-rule setup used.
 During a simulation both players always have the defend
goal active, which yields that they are always prepared to
defend themselves. An attack goal is then given to each
player in an alternating fashion to start an encounter.
 When an opponent player is assigned a goal it selects
rules according to a predefined scheme. A dynamically
scripted player selects rules according to the dynamic
scripting procedure.

25

Weight-update functions
Everything in the test environment is based on groups of
units fighting each other, and hence, the fitness function is
based on the number of surviving units in a group, uS, and
the number of units killed by the group, uK. As each group
initially consists of ten units, the fitness value, f, will be in
the range of 0 to 1, and it is calculated as:

⎩
⎨
⎧ >+

=
otherwiseu

uu
f

K

SS

05.0
005.05.0

Informally this means that if a group has lost an encounter,
its fitness is below 0.5 and proportional to the number of
opposing units destroyed. If a group has won an encounter,
then its fitness is above 0.5 and relative to the number of
surviving units in the group.
 The fitness for a rule is used to calculate a weight
change. Two weight-update functions have been used: (1)
fitness proportional weight function and (2) the fitness
proportional function combined with a fitness derivative
function. A similar weight update function to that used by
Spronck, et al. (2003), has been used as the proportional
function, and a new weight WP, is calculated as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⋅+

<⎟
⎠
⎞

⎜
⎝
⎛ −

⋅−
=

otherwise
b
bfMW

bf
b

fbMW
W

RO

PO

P

1
min

,0max

where WO denotes the old weight, f the fitness, MP the
maximum punishment, MR the maximum reward, and b the
break-even point. A break-even point of 0.5 has been used
in all simulations.
 When including the derivative, a new weight WPD is
calculated as a sum of the proportional function, WP, and
the derivative function, WD, multiplied by the maximum
weight, MW. The derivative of the fitness results, WD, has
been calculated by inserting historical fitness results into a
NURB curve of degree four with evenly distributed knots,
and then extracting the derivative from it as follows:

() ()() ()()
()⎩

⎨
⎧

−
≠−−

=
otherwisewvfvnd

ndndwvfvnd
W

N

T
D ,,1

,...sgn,...1sgn,,1

where n is the degree of the NURB, i.e. 4, d(t, fv, wv) is the
derivative at point t on a NURB curve based on a fitness
vector fv, and a weight vector wv. Observe that wvT and
wvN are not to be confused with rule weights; they describe
weights for pulling the NURB curve towards its control
points, here constituted of the fitness results.
 The motivation for using two different weight vectors is:
if the point in which the derivative is calculated resides on
a local maxima or minima, then the derivative will point in
the wrong direction. Hence we use wvT which pulls the
curve towards the most recent fitness result in order to
avoid bad behaviors. wvN and wvT are defined as:

⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧= 10,1,...,1,,...,2,1

n
n

n
wv

n
n

nn
wv TN

Experiments
Four opponent players have been used during simulation:
two statically designed and two dynamically designed. The
static opponents have a predefined scheme for exactly
which rules to deploy during run-time and their purpose is
to allow for clear measurements on adaptation and re-
adaptation times. To assess the performance against more
human-like behavior the dynamic opponents dynamically
select rules, but according to a predefined scheme.
 Constant: This opponent always deploys the first
available rule for each assigned goal.
 Changing: This opponent deploys the first rule for each
assigned goal during the first 80 encounter pairs (attack
and defend), after which it deploys the second rule for each
goal. The second rule has an 80% probability of beating
the rule that is strong against the first rule.
 Consecutive: This opponent deploys a rule until the
average fitness for that rule, over the last five encounters,
is below 0.5, then the next available rule is selected which
in turn has an 80% probability against the rule that is
strong against the previously deployed rule. The purpose is
to simulate some form of human-like domain knowledge.
 Best: An average of ten previous fitness results are
calculated for each rule and the rule with the highest
average is used at each selection point. This opponent has
the purpose of simulating human-like short-term memory.
 During and after simulation we have used three different
measures to quantify the quality of the dynamically
scripted opponents: (1) turning point, (2) re-adaptation
point, and (3) average fitness. The turning point is a
combination of the average and absolute turning point
calculations used by Spronck, et al. (2003), and it is
calculated as the first encounter: (1) followed by at least
ten consecutive successful encounters and (2) after which
the number of consecutive successful encounters is never
followed by a longer run of consecutive unsuccessful
encounters. The re-adaptation point is calculated as the
length of the longest interval of unsuccessful encounters
occurring after the turning point has been reached.

Results
Table 1 presents average turning point results achieved
during simulation. For each opponent, seven different
settings have been used: higher rewards (R+), higher
punishments (P+), equal punishments and rewards over
three different learning rates (1x, 2x, and 4x), and inclusion
of the derivative (df/dt). A 95% confidence is also included
which determines the average to a 95% certainty given that
the results follow a normal distribution. All simulations
have been carried out 20 times in order to calculate the
confidence intervals. All values have also been rounded off
to the nearest integer.

26

Table 1: Average turning point results.
Opponent Constant Changing Consec. Best

Setting μ ± μ ± μ ± μ ±
R+ 12 3 16 4 116 33 132 32
P+ 10 3 12 4 105 33 76 31
1x 11 2 11 3 110 32 96 34
2x 8 2 10 4 98 34 68 30
4x 8 2 10 2 37 20 41 21

df/dt 12 3 10 3 86 36 74 29

 It is clear that the consecutive and best opponents are
much harder to defeat than the two static opponents, since
the average number of encounters before a turning point
could be reached is much higher. It can also be observed
that the adaptation time is significantly shorter against the
dynamic opponents when using a learning rate of four
instead of one. A learning rate of four is also significantly
better than a rate of two against the consecutive opponent.
It is obvious that a higher learning rate has a potential of
shortening the adaptation time.
 Figure 5 illustrates the adaptation time against the tactic
changing opponent when investigating the punishment and
reward factors. We see that it can be slightly more efficient
to have equal factors, or to have higher punishments than
rewards, but not to a significant extent.

Figure 5: Diagram showing re-adaptation point over
three different settings of punishments and rewards.
 Table 2 shows the average performance against the four
opponents. Again, we observe that the consecutive and best
opponents are much harder to defeat. It can also be
observed that fitness increases against the tactic changing
opponent when increasing the learning rate and when
including the derivative.
Table 2: Average performance results.
Opponent Constant Changing Consec. Best

Setting μ Μ μ μ
R+ 0.69 0.63 0.49 0.50
P+ 0.69 0.64 0.50 0.51
1x 0.70 0.66 0.49 0.50
2x 0.71 0.68 0.50 0.51
4x 0.72 0.68 0.52 0.53

df/dt 0.69 0.68 0.50 0.51

 Figure 6 illustrates the re-adaptation time against the
tactic changing opponent over three different learning rates
and when including the derivative. It can be observed that
increasing the learning rate significantly shortens the re-
adaptation time. The re-adaptation time is however also
significantly shortened when including the derivative.

Figure 6: Re-adaptation point over varying learning
rate and when including the derivative.
 Figure 7 shows results regarding performance throttling
when applying a fitness-mapping function. In all four
diagrams it can be observed that the fitness centers on 0.5
against the consecutive and best opponents. This complies
with earlier results, which points out that the GoHDS
algorithm clearly has problems easily defeating the
dynamic opponent types. It can however be seen that when
applying fitness-mapping targets between 0.2 and 0.5, the
average fitness increase similarly against all four opponent
types. This means that the performance can be throttled.
 In Figure 7, it can also be observed that by applying a
fitness-mapping function, the performance can be throttled
to negative levels against all four opponents. This means
that an AIO can be designed to lose against a human
player. It can however also be designed to play even.

Figure 7: Average fitness (F) over varying fitness-
mapping target (FT), against (a) constant opponent, (b)
changing opponent, (c) consecutive opponent, and (d)
best opponent. The dotted line at 0.5 separates victories
from losses and results below 0.5 mean that the AIO
using GoHDS lost on average.

27

Conclusion and discussion
A goal-directed hierarchical approach for extending
dynamic scripting has been proposed, GoHDS. In GoHDS,
goals are used as domain knowledge for selecting rules,
and a rule is seen as a strategy for achieving a goal. A goal
can in turn be realized through an arbitrary number of rules
and the adaptation process operates on the probability that
a specific rule is used as strategy for achieving the purpose
of the goal. Rules are divided into sub-goals which put
together forms a hierarchical structure. Some degree of
planning is introduced by allowing rules to have
preconditions, which if false initiate goals with the purpose
of fulfilling them.
 Simulation results have shown that by increasing the
learning rate, or by including the derivative, re-adaptation
times can be significantly shortened. Increasing the
learning rate too much could however result in predictable
behavior. This could lower the entertainment value, and
hence, it could possibly be preferred to include the
derivative. An approach for effectively throttling the
performance of AIOs has also been presented, fitness-
mapping, which provides the ability for throttling
performance to negative levels, i.e. to lose.
 The simulation results might however be dependent on
the test environment, and hence, investigations conducted
in real games are of great interest in order to verify the
results. We however argue that fitness-mapping should be
applicable elsewhere too.
 Even though the goal-rule hierarchy proposed in this
paper has not been thoroughly evaluated, it should still
provide a good platform for constructing an RTS game
AIO system. The system covers not only the strategic
level, but also all levels of the AIO down to every single
unit. Hence, the system also serves as an interface between
different levels of the AIO. Given that AIOs in an RTS
game are preferably built in a hierarchical fashion, the
goal-rule hierarchy provides a good structure for achieving
a goal directed behavior, which includes adaptation.

Future work
In future work we will investigate the applicability of
GoHDS in practice, both in RTS games as well as in other
simulated environments and when applied in other
domains. We will also investigate the surrounding systems
for achieving an illusion of intelligence. The complete
picture is considered of high importance.

Acknowledgments
This work was supported by the Information Fusion
Research Profile (University of Skövde, Sweden) in
partnership with the Swedish Knowledge Foundation under
grant 2003/0104.

References
Buro, M., & Furtak, T. 2004. RTS Games and Real-Time
AI Research. In proceedings of the Behavior
Representation in Modeling and Simulation Conference
(BRIMS). Arlington VA 2004.
Dahlbom, A. 2004. An adaptive AI for real-time strategy
games. M.Sc. diss., University of Skövde.
Forbus, K.D., Mahoney, J.V., & Dill, K. 2001. How
qualitative spatial reasoning can improve strategy game
AIs. In proceedings of the AAAI Spring Symposium on AI
and Interactive Entertainment, March, 2001.
Laird, J.E. 2000. An Exploration into Computer Games
and Computer Generated Forces. In proceedings of The
Eight Conference on Computer Generated Forces and
Behavior Representation. Orlando, FL.
Lidén, L. 2003. Artificial Stupidity: The Art of Intentional
Mistakes. In Ai game programming wisdom 2 (ed. S.
Rabin), 41-48. Charles River Media.
Nareyek, A. 2002. Intelligent Agents for Computer Games.
In proceedings of the Second International Conference on
Computers and Games (CG 2000).
Piegl, L., and Tiller, W. 1995. The nurbs book, 2nd edition.
Springer.
Ponsen, M.J.V., & Spronck, P. 2004. Improving Adaptive
Game AI with Evolutionary Learning. In proceedings of
Computer Games: Artificial Intelligence, Design and
Education (CGAIDE 2004), 389-396. University of
Wolverhampton.
Spronck, P. 2005. Adaptive Game AI. Ph.D. thesis,
Maastricht University Press, Maastricht, The Netherlands.
Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. 2003.
Online Adaptation of Game Opponent AI in Simulation
and in Practice. In proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-
ON 2003), (eds. Quasim Mehdi and Norman Gough), 93-
100. EUROSIS, Belgium.
Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E. 2002.
EVOLVING IMPROVED OPPONENT INTELLIGENCE.
In proceedings of the 3rd International Conference on
Intelligent Games and Simulation (GAME-ON 2002), (eds.
Quasim Mehdi, Norman Gough, and Marc Cavazza), 94-
98. Europe Bvba.
Woodcock, S., Pottinger, D., and Laird, J.E. 2000. Game
AI: The State of the Industry. Game Developer Magazine
(August), 24-39. CMP Media LLC.

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

