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Abstract

As computer game worlds get more elaborate the more
visible pathfinding performance bottlenecks become.
The heuristic functions typically used for guiding A*-
based pathfinding are too simplistic to provide the
search with the necessary guidance in such large and
complex game worlds. This may result in A*-search
exploring the entire game map in order to find a path
between two distant locations.

This article presents two effective heuristics for estimat-
ing distances between locations in large and complex
game maps. The former, the dead-end heuristic, elimi-
nates from the search map areas that are provably irrele-
vant for the current query, whereas the second heuristic
uses so-called gateways to improve its estimates. Em-
pirical evaluation on actual game maps shows that both
heuristics reduce the exploration and time complexity of
A* search significantly over a standard octile distance
metric.

Introduction

Modern computer game worlds are getting larger and more
complex every year, both in terms of the map size and the
number of units existing in the world. For example, in real-
time-strategy (RTS) games there can be hundreds of units
navigating the world simultaneously. Calculating paths for
all these units in real-time is computationally demanding
and may consume the better part of the available CPU re-
sources reserved for the game logic. In RTS games pathfind-
ing queries are also used to answer various strategic ques-
tions posed by the computer-controlled Al (e.g. how far is it
to a particular resource or from where can the enemy attack).
It is therefore of an utmost importance in modern games to
use an efficient (and carefully implemented) algorithm for
pathfinding calculations.

The de facto industry standard for pathfinding in games is
the A* algorithm (Hart, Nilsson, & Raphael 1968). Whereas
the state-space representation may differ from game to game
(a grid or a mesh both being common), A* search or a vari-
ant thereof is generally the algorithm of choice. A sim-
ple and efficient heuristic is typically used for guiding the
search. For example, in grid-based maps the octile distance
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(Manhattan distance extended to allow diagonal moves) is
commonly used. However, as the game maps become larger
and more complex such a simplistic heuristic cannot of-
fer sufficiently targeted guidance, resulting in the search
frequently exploring almost the entire map when finding a
shortest path between two distant map locations.

One technique used to overcome this problem is hierar-
chical pathfinding. Instead of having only a single represen-
tation of the state space, additional higher-level abstractions
are used as well. Each level in the hierarchy uses an increas-
ingly abstract view of the game map, and can subsequently
be represented using a smaller state space. When answering
a pathfinding query an approximate path is found in one of
the higher-level layers (and then possibly refined using small
local searches in the base layer). This results in much faster
processing because A* searches a smaller state space. The
main drawback of this approach is that the paths returned are
not necessarily optimal. This is because some of the finer de-
tails of the map typically get lost in the abstraction process.
However, this is generally of a little consequence for game-
play if the paths are only slightly sub-optimal. Fortunately,
this is most often the case. However, with increased number
of units and other dynamic obstacles on the map the risk of
the paths becoming seriously sub-optimal increases. This is
because a search performed in an abstract state-space usu-
ally does not (and cannot) take these dynamic obstacles into
account.

The approach we present in this paper reduces state-space
exploration while still making it possible to account for dy-
namic obstacles. Instead of using state-space abstraction to
create hierarchical views, we use it to provide an improved
heuristic function for guiding a regular A* search. The chal-
lenge is to devise heuristics that can be computed efficiently
but yet provide greatly improved search guidance. We intro-
duce two such new heuristics, both of which are admissible
and thus preserve optimality.

Our work bares similarity to recent work on hierarchi-
cal pathfinding (Botea, Miiller, & Schaeffer 2004; Rabin
2000), in particular the idea of using abstractions and map
preprocessing. For example, the H PA* algorithm (Botea,
Miiller, & Schaeffer 2004) decomposes game maps into
room-like structures, uses gates, and pre-calculates path dis-
tances. There is however a clear fundamental difference be-
tween our approach and the hierarchical ones: we use the
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Figure 1: Example map: locations explored by A* are shown in dark gray.

abstract map view to improve heuristic state evaluation, but
not to alter the representation of the search space. Our work
bares in that respect more resemblance to work on heuristic
evaluation improvement in other problem domains (Holte et
al. 1996).

The main contributions of this paper are: 1) improved ad-
missible heuristics measures for guiding pathfinding search
on (game) maps — our experiments on actual game maps
show that A* search using the new heuristics outperforms
the standard octile-distance heuristic by a significant margin
whether measured by nodes expanded or total search time;
2) an algorithmic method for automatic decomposition of
game maps into smaller areas; the method is useful for cre-
ating abstract views not only for our new heuristics measures
but also for hierarchical pathfinding techniques in general.

In the next section we describe the new heuristic functions
and provide both detailed examples and pseudo-code. The
subsequent section describes the automatic map decompo-
sition, followed by a section summarizing the results of an
extensive empirical evaluation of the heuristics using real
game maps. We finally conclude and discuss future research
directions.

Improved Heuristics

The map in Figure 1 depicts an indoor scene typical of a
role-playing game. The world consists of multiple rooms
that are connected via doors and corridors. State-of-the-art
game maps would generally be somewhat larger and more
complex, but for demonstration purposes we will use the
map in the figure.

When finding a shortest path between two distant loca-
tions in this map a naive heuristic based on octile distance
would explore more or less all the locations on the map. This
is in part because it has no way of telling beforehand whether
there exists a pathway through any given room that leads to
a shortcut to the desired destination. To demonstrate this
better we have marked in dark gray all the tiles in the map
that A* using the octile heuristic explores when finding an
optimal path between two far apart locations. The optimal
path is shown in darker gray, the start is to the left and the
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goal to the right. The algorithm spends a lot of effort explor-
ing areas that — as is immediately obvious to us — cannot
possibly be relevant, either because they result in dead-ends
or clearly inferior paths.

The idea behind the two heuristics presented in this paper
is to alleviate this problem by identifying and excluding be-
forehand all areas (in our case rooms) that cannot possibly
be on an optimal path between two given locations. The for-
mer, the dead-end heuristic, avoids areas that lead to a dead-
end, whereas the latter, the gateway heuristic, goes a step
further by recognizing that moving through certain rooms
can only lead to sub-optimal paths. The dead-end and gate-
way heuristics are described in the next two sub-sections,
respectively. Computing the heuristics is a two-phase pro-
cess. In the first phase the map is preprocessed and an ab-
stract view created. This is done by automatically decom-
posing the map into smaller areas and then computing path
information. This calculation is done offline and only once
for each map. In the second phase the abstract view from
the preprocessing phase is used to derive improved heuristic
estimates for the pathfinding search. The heuristic is calcu-
lated in real-time and efficiency is therefore important.

Dead-End Heuristic

The dead-end heuristic can immediately tell if the search en-
ters a room which eventually leads to a dead-end, that is,
there is no pathway from this room to the goal (except back
out via the entrances we came in through). Clearly there is
no need to explore such rooms.

Preprocessing Phase The preprocessing phase continues
in two steps. In the first step the game map is decomposed
into several smaller areas, representing in this case rooms
and corridors. The result of running our decomposition al-
gorithm on this map is shown to the left in Figure 2.

The second step in this phase is to construct a high-
level graph for representing the different areas and the inter-
connections between them. A node in the graph represents
an area and an edge between nodes represents an entrance
between the two corresponding areas. Note that there are



Figure 2: Dead-end heuristic: area decomposition (left) and relevant areas and nodes explored (right).

possibly more than one entrance connecting the same two
rooms, resulting in more than one edge connecting a pair
of nodes in the graph. The graph is therefore a so called
undirected multi-graph. The graph along with the area in-
formation is stored with the game map.

Runtime Phase When the map is loaded into the game,
the data from the preprocessing phase accompanies the map.
This does result in some additional memory usage, but with
a careful implementation this can be minimized.

When we get a pathfinding query asking for the shortest
path between a start and a goal location, two searches are
performed. First a search is performed in the multi-graph to
identify the subset of areas in the map that are relevant for
the query; other areas, the so-called dead-end areas, can be
excluded from the pathfinding search altogether. Let nodes
S and G in the multi-graph stand for the nodes representing
the areas holding the start and goal locations in the map,
respectively. We do a search in the multi-graph to find all
possible paths from node S to node G to identify the relevant
areas. Note that during this search we need to mark all edges
we have visited to prevent loops and other duplicate search
effort. A simple depth-first search proved the most effective
for this task, both because of how small the multi-graph is
and the fact that we have to find all possible paths.

Once we have identified the subset of relevant areas a reg-
ular A* like pathfinding search is performed. The only dif-
ference is that we use an improved heuristic function that
returns a value of infinity for grid cells that are located in
non-relevant areas. This can be done quite effectively. Each
grid cell is marked by the area it belongs to (using a few ex-
tra bits) so we can trivially in constant time ask if the area is
relevant. One of the main strengths of the dead-end heuristic
is that it can be computed very efficiently.

This approach is fundamentally different from hierarchi-
cal pathfinding because we have not committed to any high-
level path beforehand. For example, in hierarchical pathfind-
ing, if such a high-level path is blocked by a dynamic ob-
stacle this typically does not get noticed until in the path-
following phase, and the search may have to be executed
again. In our case however, other possible paths are kept
open and the A* search will find another path if one exists.
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The effectiveness of this method in terms of reducing ex-
ploration of the state-space depends greatly on the structure
of the map. On the one hand, for maps consisting mainly
of areas connected via relatively few possible pathways, this
simple heuristic has the potential of giving significant im-
provements. However, the more alternative pathways there
are the less effective the heuristic becomes. For example, if
we were to open up a new pathway though the top rooms in
our example map, then the dead-end heuristic would be able
to eliminate only a few small areas from the search.

Also, one needs to be a bit careful with the automatic de-
composition of the map because if the generated areas be-
come too small, the abstract multi-graph will be large. The
overhead of the multi-graph search may then become signif-
icant. This overhead can of course be avoided in real-time
by preprocessing all the relevant area calculations, although
at the cost of extra memory usage.

The heuristic we introduce next suffers from neither of the
above problems.

Gateway Heuristic

The gateway heuristic pre-calculates the distances between
entrances/exits of the areas. It also proceeds in two phases.

Preprocessing Phase The map is decomposed into areas
in an identical way as for the dead-end heuristic. We de-
fine the boundaries between areas as gateways (or gates). A
gateway can be of an arbitrary size, but an artifact of our de-
composition algorithm is that its orientation is always either
horizontal or vertical. Next we use multiple A* searches to
pre-calculate the (static) distance between gates. For each
gateway we calculate the path distance to all the other gate-
ways (cost of infinity if no path exists). Alternatively, one
could calculate only the distances between gateways within
each room and then use a small search to accumulate the to-
tal cost during run-time. However, our approach results in
more accurate heuristic estimates and faster run-time access
(admittedly though at the cost of extra memory).

An important element of our approach is that four differ-
ent costs are stored for each pair of gateways. Each gate is
2-way because we are interested in knowing separate dis-



il

Figure 3: Nodes explored by the gateway heuristic. The error in the heuristic is due to the length of gates.

tances for each possibility of departing from and arriving to
a gate. This results in significantly more accurate heuristic
estimates during run-time compared to calculating only one
cost value. We therefore need four separate pre-calculation
pathfinding searches for each pair of gates (this is done of-
fline so the extra time is of no importance). In these pathfind-
ing searches we are not allowed to pass through the depart-
ing and arriving gate.

Runtime Phase The runtime phase is a regular A* search
that uses the heuristic function below:

h(n,g) =min» Y h(n,Gi)+H(Gi, G;)+h' (G, g)
g

The heuristic h'(n, G) calculates the octile distance from
grid cell n to the nearest point in gate G. This can be
computed trivially as a distance from a point to a horizon-
tal/vertical line. The term H(G;,G;) stands for the pre-
calculated shortest distances between gateways G; and G;
(in practice we would also have to pass in the gate directions
but we have omitted that from the notation here for clarity).
We need to look at all gates in the current area and com-
pare each of them to all gates in the goal area, and take the
minimum cost.

The accuracy and computing efficiency of the gateway
heuristic is independent of the total number of gates (al-
though that affects the memory usage). The efficiency of
computing the heuristic estimates is mainly affected by the
number of gates in the areas we pass through, in particu-
lar the area where the goal resides. This is because at each
state we select the minimum estimated distance among all
pairs of gates with the former gate in the current room and
the latter in the goal room (see the heuristic function equa-
tion). The heuristic accuracy, on the other hand, is affected
by two things: the shape of the rooms and the size of in-
dividual gates. Because we use the octile heuristic for es-
timating the distance from the current state (and the goal)
to the nearest gate, we are prone to the underestimate errors
introduced by the octile heuristic. However, because short
distances are typically being estimated, these underestimates
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will not have a significant effect on the overall distance esti-
mate. Also, our area decomposition algorithm tends to split
maps up into convex areas where the octile heuristic gives
accurate estimates. The other type of underestimation tak-
ing place has to do with the gate sizes. When calculating
distances from a state to a gate we always use the closest
point on the gate to ensure admissibility. This is not neces-
sary the same gate point that was used in our gate distance
pre-calculations. The distance between these two points is a
source of underestimation. The larger a gate is, the further
we risk these two points being apart.

Decomposition Algorithm

The algorithm that divides the map into zones is a sort of
flood-filling algorithm. Instead of having to input bound-
aries though, the algorithm automatically builds borders as
it encounters tiles that satisfy certain conditions. The algo-
rithm requires no input other than the tile-based map with
information for each tile about whether it is passable or not.
The output is information for each tile stating which zone it
belongs to (or that it is impassable).

Pseudo-code for the decomposition method is shown as
Algorithm 1. When creating a zone the algorithm starts by
finding the top leftmost tile that is passable and has not yet
been assigned to a zone. From that tile the algorithm starts
flood-filling to the right until it hits a non-free tile. Both pre-
viously assigned and impassable tiles are regarded as non-
free tiles (lines 9-15). It then proceeds to the next row, se-
lecting a start point as far left as possible using similar stop
criteria as for the right side (lines 27-36). It will then start
filling to the right again, repeating the process.

The algorithm detects whether the right and the left bor-
ders grow or shrink from one line to the next (lines 17-26 and
37-42). If a border regrows after having shrunk the flood-
filling for that zone is stopped (possibly having to undo the
last line filled (lines 20-24)).

Figure 4 shows examples of how the decomposition al-
gorithm works. The top left image shows an undivided
map, and in the image to its right the flood-filling has be-
gun. The fourth row has stopped because the area opens



Algorithm 1 Automatic Map Decomposition

1: for all passable tiles in map do
2:  zome(tile) — free
3: end for

4: currZone «— 1

5: repeat
6
7
8

(zLeft,y) « top and leftmost free tile on the map
shrunkR «— shrunkL — false

repeat
o: {Mark line until hit wall or area opens upwards}

10: x «— xLeft

11: zone(z,y) «— currZone

12: while (24 1,y) = freeA(z+ 1,y —1) # free
do

13: T—z+1

14: zone(x,y) « currZone

15: end while

16 {Stop filling area if right border regrowing}

17: if (z+1,y—1)=currZone then

18: shrunkR = true

19: elseif (z,y — 1) # currZone A shrunkR then

20: {Undo line markings}

21: while (z,y) = currZone do

22: zone(z,y) «— free

23: z—x—1

24: end while

25: break

26: end if

27: {Goto same initial x-pos in next line}

28: (x,y) < (zLeft,y+1)

29: {If on obstacle, go right in zone until empty }

30: while (z,y) # free A zone(z,y — 1) =
currZone do

31: T—z+1

32: end while

33: {Move further left until wall or opens upward }

34: while (z —1,y) = freeA(x — 1,y —1) # free
do

35: r—z—1

36: end while

37: {Stop filling area if left border regrowing }

38: if (x—1,y—1)=currZone then

39: shrunkL = true

40: else if (z,y — 1) # currZone A shrunkL then

41: break

42: end if

43:  until break
44:  currZone «— currZone + 1
45: until no free tiles are found in map

upwards. It would be unwise to proceed in such cases
as the line would cut right through another potential zone.
This is the later stop condition in line 12 of the algorithm
((x+ 1,y — 1) # free). In the bottom left image the algo-
rithm has finished filling the zone. In the line immediately
below the zone the algorithm has the chance to extend the
zone to the right. However, as the zone has already shrunk
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Figure 4: Zone generation border criteria.

from the right and regrowing is prohibited the zone filling
stops. This ensures that zones have fairly regular shapes. In
the last image two more zones have been similarly filled.

Empirical Evaluation

We evaluated the effectiveness of the new heuristics by run-
ning them on computer game maps, both created by us and
taken from popular commercial role-playing games. All ex-
periments were run on 3.0 GHz CPU personal computers.

Table 1 shows the result of our pathfinding experiments
where the octile and the two new heuristics are compared.
On each map 1000 searches were performed using randomly
chosen start and goal positions. The top section includes
experimental data from searching our demo map (Figure 1)
and the middle section data from nine different maps from
the popular game Baldurs Gate II (Figure 5). In the last
section we show separately data for a particularly large game
map, also from Baldur’s Gate II (Figure 6). Horizontal and
vertical moves have the cost of 100 whereas diagonal moves
were rounded to a cost of 150.

In all map types the new heuristics are on average clearly
superior to the standard octile heuristic, both in terms of
number of nodes expanded and total running time. Overall,
the gateway heuristic is the best. We can also see that the
time overhead in calculating the dead-end heuristic is close
to negligible because the time saving corresponds roughly
to the node savings. This was achieved because the multi-
graphs paths were pre-calculated. For the gateway heuristic
the node reductions are particularly impressive. The search
time does however not decrease relatively as much as the
number of nodes expanded. This is due to the complexity of
the new heuristic functions compared to calculating the oc-
tile distance. The time savings are none the less significant,
and may be further improved with a careful implementation.



Figure 5: Decomposed game map (212 x 214).

Figure 6: The largest game map (244 x 192).

We were also interested in looking closer at how the
heuristics perform on longer paths. The top 10% sections
give the result for longer than average paths (for each map
we randomly generated 10,000 paths and included the 10%
longest) These are the paths that are likely to cause a prob-
lem. The performance improvement of the new heuristics is
now even more profound. Also of interest is to see how close
the gateway heuristic estimates are to the true path lengths.

Conclusions

We presented two new admissible heuristic functions for
guiding heuristic search in pathfinding large game maps.
The initial results with these heuristics are promising. Both
heuristics did outperform the standard techniques used in
most modern games. However, before drawing any concrete
conclusions we want to perform much more thorough exper-
imental evaluation on many more maps. It is clear that with
ever increasing game maps heuristics like the ones discussed
here will become necessary.
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Table 1: Pathfinding statistic (averages).

Demo map | Octile | Dead-end | Gateway
all path cost 7430 7430 7430
estimate 3940 3940 7241
nodes 955 579 220
time (ms.) 18.6 14.7 13.2
top 10% | path cost 14373 14373 14373
estimate 6605 6605 14179
nodes 2397 1352 487
time (ms.) 42.9 30.4 28.0
Game maps | Octile | Dead-end | Gateway
all path cost 10339 10339 10339
estimate 7788 7788 9884
nodes 1231 1120 723
time (ms.) 27.3 24.6 22.6
top 10% | path cost 20468 20468 20468
estimate 13290 13290 19731
nodes 3701 3370 2313
time (ms.) 69.2 60.7 54.5
Large map | Octile | Dead-end | Gateway
top 10% | path cost 30463 30463 30463
estimate 17201 17201 30002
nodes 5961 4536 2361
time (ms.) 110.1 84.0 71.3

There is still room for improvement both in our imple-
mentation and, maybe more importantly, in improving the
heuristic estimates. We have several ideas of how to con-
tinue with this research. One is to work more on the zone
decomposition algorithm, to make it better adapt for various
different types of terrain.
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