
Building Robust Planning and Execution Systems for Virtual Worlds

Don M Dini, Michael van Lent, Paul Carpenter, Kumar Iyer

Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292
{dini, vanlent, carpenter, iyer}@ict.usc.edu

Abstract

1Planning and execution systems have been used in a wide variety
of systems to create practical and successful automation. They
have been used for everything from performing scientific research
on the surface of Mars to controlling enemy characters in video
games to performing military air campaign planning. After
reviewing past work on these various planning and execution
systems, we believe that most lack one or more key components
contained in another system. To enable future researchers to build
more complete systems, and avoid possible serious system
failure, we identify the major technical problems any
implementer of such a system would have to face. In addition we
cite recent solutions to each of these technical problems. We limit
our focus to planning and execution for virtual worlds and the
unique problems faced therein.

Introduction

Planning and execution systems are a proven technology
with a long history of creating robust, intelligent systems
for reasoning both in the real and virtual worlds. At Jet
Propulsion Laboratory, for example, planning and
execution systems have been used extensively to control
Mars Rovers, which help to perform scientific research on
the Martian terrain (Estlin et. al. 2005). In addition
planning and execution systems are being used in
commercial games (Orkin 2005) as well as virtual worlds
for research (Riedl 2005; Mateas and Stern 2003; Van
Lent, et al. 2005; Gordon and Logan 2004; Blumberg and
Galyean 1997).

Before proceeding, it is useful to define precisely what is
meant by a planning and execution system. In the most
general sense, a planner performs the following function:
given a description of the agent(s) world, and a description
of goal criteria, a planner provides an action or action
sequence that when executed will lead to achieving stated
goal criteria. It represents the thinking part, before any
acting is done. Investigation in planning and acting in

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

virtual worlds in particular holds many benefits not found
in real-world systems. Aside from the immense
commercial rewards involved in helping to create game
systems, creating AI for virtual worlds has great benefits
for scientific research as well. As pointed out in (Tambe et.
al. 1995) for example, “Another potential benefit is that
artificial agents can simplify and speed up experimentation
by providing more control of behavior, repeatability of
scenarios, and increased rate of simulation (i.e., faster than
real-time simulation).”

 Although there have been many approaches to creating
intelligent systems for virtual worlds, we believe that most
lack one or more key components contained in another
system. For this reason, we attempt to identify the key
technical problems that anyone wanting to create a
planning and execution system for virtual worlds would
have to solve. In doing so, we hope to enable future
researchers to build more complete systems that are less
prone to potential failure.

The motivation for this survey of combined planning and
execution systems comes, in part, from ongoing research
projects at the University of Southern California's Institute
for Creative Technologies (ICT). At ICT there are four
different research efforts which have or are utilizing some
combination of automated planning and plan execution.
These are the Intelligent Forces project (van Lent, et al.
2005), the Automated Story Director project (Riedl 2005),
the Virtual Humans project (Rickel et al. 2002), and the
Reflective Tutoring and Explainable AI project (Core et al.
2006). The requirements and survey presented in this paper
is the result of an attempt to identify the shared needs of
these four projects and explore the possibility of a common
architecture that allows various planners and execution
systems to be treated as pluggable modules and can
support the needs of current and future research projects.

The remainder of this paper is organized as follows. In the
first section, we list and briefly describe each of the main
technical problems. In the next section, we go into more
detail and discussion on each problem and cite significant

29

solutions to each. Lastly, a summarization and concluding
remarks are provided.

Brief Description of Key Technical Problems

After performing a comprehensive survey of planning and
execution systems, and intelligent systems built for virtual
worlds in particular, we have identified the following list
of key technical problems involved in creating a planning
and execution system for virtual worlds. Each one is
important in the sense that if a designer were to not address
it, their system would exhibit a noticeable failure of some
kind, as made apparent below. For each problem, we
provide a definition and brief discussion on why it holds
special importance in virtual environments.
Uncertainty. Following the description in (Ghallab, Nau,
and Traverso 2004), uncertainty in planning in general
comes from one of three sources: Non-determinism, partial
observability, and extended goals.
 Non-determinism refers to stochastic actions. In classical
planning (Fikes and Nilsson 1971), actions are represented
as STRIPS style operators, with fixed effects. In reality,
however, the outcomes of actions are not totally knowable
beforehand. This is typically modeled by saying after
performing an action, the state of the world is one of many
possible states, each occurring with a particular
probability.
 Partial observability refers to the imprecision with
which the agent knows what the state of the world is.
Unlike in classical planning, the agent has only a
probability with which he knows something is true about
the world state. As a concrete example, imagine running
around in a maze. The state of the world might be your
present location (x and y coordinates), and the only data
you have to go on is what your surroundings look like. The
problem is that many places in the maze look exactly the
same, or very similar when you are immersed in it.
Looking at the world thus only gives you an estimation of
your present location, not a unique determination.
 Lastly, uncertainty can arise due to extended goals. As
in classical planning, one typically specifies the goal by
indicating one or more goal conditions as a series of atomic
sentences, the problem then being to find a plan that
achieves one or more of them. In many realistic problems,
however, goal conditions are not quite as clear cut. Using
an example from (Ghallab, Nau, and Traverso 2004), one’s
goal may be a guarantee that a mobile robot avoid
dangerous areas, and to reach a given location if possible.
Thus in this case there are two separate goals, each with a
different “strength.”

Dynamic Environments. “Dynamic environment” here
simply means that an agent cannot assume that elements of
the world state will be constant; there will be elements that
are likely to be quickly and constantly changing. For

example, as considered in (van den Berg, Ferguson, and
Kuffner 2006), an agent may be trying to perform path
planning around moving obstacles.
 Dynamic environments deserve particular attention
when considering virtual environments. In video games,
for example, action is extremely fast paced. Consequently,
agents must be able to plan based on what will soon be true
about the world, not based just on what is currently true.

Distributed Plans and Teamwork. AI systems often need
to control a team of agents to perform a joint task. For
example, teamwork among agents is critical in domains
such as RoboCup soccer and RoboCup Rescue (Kitano,
and Tadokoro 2001), and multi-robot space exploration
(Estlin, Gaines, Fisher, and Castano 2005). One must build
into the execution system some facility for making sure the
task is performed in a coordinated manner. Otherwise as
has been illustrated elsewhere (Levesque, Cohen, and
Nunes 1990; Grosz and Kraus 1996), the task may fail.

Responding to a Plan Made Invalid During Execution.
Plan recovery is a general tool that is required by
components solving the other problems.
This problem is a large part of what motivates having an
execution and monitoring system put on top of a simple
planner in the first place. After the planner component
creates a plan, in most realistic domains the plan becomes
unviable during mid-execution for a host of reasons. The
problem then, is how to maintain a plan that remains
relevant to the desired goal set in the context of a dynamic
environment.

Sensing and Maintaining Environment Data. There is a
general need for timely, accurate data about the
environment in which agents are acting to be relayed to the
planning and execution system. This is of course necessary
to create accurate plans that are relevant to the world.
There are a few problems that arise when managing world
data in a virtual environment, however. For example, as
pointed out in (Orkin 2005), simply sensing data about the
world may be computationally intensive in a virtual
environment. Now the agent has the problem of planning
with insufficient/partial data. One either has to obtain
expensive world data in a judicious way, or go on planning
without it.
 A second problem related to managing data in virtual
environments is deciding on what is relevant. In real world
scenarios, the agent is limited only to the data reported
back from the sensor. However, in virtual environments,
one has access to all data in internal data structures
representing the entire virtual world. This can be such a
vast amount of data that sifting through it becomes
difficult.

Authorability. At a high level, authorability refers to ease
of content creation. For the problem of creating intelligent
agents for acting in some domain, the “content” one must
create is of the agent’s knowledge. For example, a

30

planning agent using a STRIPS style planner, one must
create a domain specification, library of operators, or a task
hierarchy (when using hierarchical planning).
 Although authorability is certainly a factor in real world
planners, it is more of a factor in virtual worlds. This can
be seen in the following way. Consider the design process
for a video game. A non-AI expert game designer will
have an idea for a scene with dramatic elements that they
would like to create. There must therefore be a way for the
game designer to author agent knowledge easily, but still
remain faithful to his dramatic vision.

Constraints on Plan Content. Additional constraints on
plans occur in virtual worlds because agents must fulfill
roles. In other words, there are restrictions on what actions
are valid for a given agent. To see why this is so, consider
the following. An agent in a video game is most often a
human-like creature. Thus, any plan that is generated for it
to carry out must adhere to things that only a human-like
creature can believably do. (Tambe et. al 1995; Riedl and
Young 2005). For example, an agent controlling a human
character cannot walk through walls or jump over
skyscrapers even if it would be conducive to a shorter or
easier plan.

Solutions and Discussion of Main Problems

Dealing with Uncertainty

As mentioned above, uncertainty in planning can be
resolved into three sources: Non-deterministic actions,
partial observability, and extended goals. We will now
consider notable solutions to each.
 Non-determinism. A naïve response to non-
deterministic actions would be to pretend that actions are
still deterministic. That is, the effects of each action in its
specification could be written as the most likely outcome.
Then, if during execution, an action produces a non-
predicted outcome, the agent could perform a recovery
with conditional planning methods (Draper et al., 1994) or
replanning (Wilkins 1990). If the environment is too non-
deterministic, however, then recovery operations start to
become expensive, and non-determinism becomes harder
and harder to ignore.
 One successful method for reasoning about stochastic
actions include decision theoretic methods such as the
Markov Decision Process (MDP) framework (Kaelbling,
Littman, and Cassandra 1995), which is built from the
ground up to reason about uncertain actions.
 Additionally, classical planners and neo-classical
planners have been extended to reason about uncertain
actions. For example, there are probabilistic graph-planners
and satisfiability planners, a survey of which appear in
(Ghallab, Nau, and Traverso 2004)

 Partial Observability. As mentioned above, partial
observability of an environment means that an agent
cannot uniquely determine the state of the world at any
given moment. Instead, the agent maintains his best guess
as to what state he is in. That is, a probability distribution
over the set of states of the world is maintained (Ghallab,
Nau, and Traverso 2004). This makes planning much more
difficult, as now the state space, spanning the set of
probability distributions, has become infinite.
 One framework that has received an enormous amount
of attention for solving partially observable problems is the
Partially Observable MDP or POMDP framework
(Kaelbling, Littman, and Cassandra 1995). The massive
body of POMDP literature has advanced greatly, making
computation of policies much easier, although still difficult
in general.
 Partial observability might arise in virtual environments
for several reasons. Chief among them is the potential cost
of performing sensing actions. Evaluating the precondition
of an action is not simply the result of reading a robotic
sensor. As (Orkin 2005) points out, determining the truth
value of a precondition could be computationally
expensive. If available resources are insufficient for
evaluating a given precondition, then methods for planning
with partial knowledge must be used.
 Extended Goals. The general “extended goals”
problem, as described above, is to find a way to reason
about goals that have degrees of desirability. The need to
support this in virtual environments is described in greater
detail in the section “Dealing with a Highly Dynamic
Environment.” As (Ghallab, Nau, and Traverso 2004)
describes, however, extended goals is a form of uncertainty
because it is meant to capture the non-deterministic notion
of having a goal that the agent is merely “trying” to
achieve, rather than requiring the goal be performed.
 This form of goal can be handled using utility functions
and decision theory (Kaelbling, Littman, and Cassandra
1995). The formulation in this framework is there is now a
“utility” associated with performing an action in a given
state. The utility is calculated from the degree to which
doing an action will lead the agent to more utility later on.
The planning problem in this framework then becomes to
find a plan (policy) that maximizes overall utility.

Responding to Broken Plans

If domains were totally deterministic, fully observable, and
were static, then the outcome of each action could be
known before hand, and there would be no reason to
monitor and maintain plans during execution. Because of
uncertainties and dynamic elements mentioned above, such
as an unknown human player or stochastic actions, one has
to deal with the problem of plans that become unviable
during mid-execution.
 To deal with this problem, there is a multitude of
techniques developed to maintain relevant plans. Such

31

methods include sensorless planning (Erdmann and Mason
1988), replanning (Wilkins 1990), using heuristics to fix
broken plans (Estlin et. al 2002), and iterative repair
(Chien et. al 2000). All of these methods are relevant to
planning and execution in virtual worlds as well.
 In addition, if one is able to anticipate the ways that a
plan can go wrong, a good plan recovery method is
Contingency Planning (Draper et al., 1994). In
Contingency Planning, one creates a plan offline as a
response for all the contingencies that could arise during
plan execution. When a contingency happens, the
execution system can just load the cached response plan.
As discussed in more detail in a later section, these
contingencies are easier to find and express in virtual
worlds. This technique has been successfully applied in
(Riedl, Saretto, and Young 2003).

Approaches to Teamwork

As noted earlier, plan steps sent to the execution
component can in general be joint tasks, assigned to a team
of agents to perform jointly. If some method for
coordinating the execution of this task among the agents is
not used, then failure of the task can result (Levesque,
Cohen, and Nunes 1990). Generic methods of teamwork
(Levesque, Cohen, and Nunes 1990; Grosz and Kraus
1996) have been developed that have been built into
several successful multi-agent systems (Tambe 1997;
Jennings 1995). (Levesque, Cohen, and Nunes 1990) for
example, identifies a few key rules, referred to in
(Levesque, Cohen, and Nunes 1990) as a joint persistent
goal, that, if built into an execution system, result in true
coordination. Specifically, if agents x and y are performing
joint task T, then first, they should signal each other to
make sure they start T at the same time. Second, and most
importantly, if one of the agents privately comes to believe
that T is either impossible or already accomplished, then
they must inform the other agent of this.
 Several multi-agent control systems have been built
based upon joint intentions theory (Tambe 1997; Jennings
1995). Notably, (Tambe 1997) successfully implemented a
multi-agent system and added the ability to use decision-
theory methods for communication to minimize the cost of
communication among agents.
 The above generic teamwork methods are required for
synchronization and consistency of joint actions. They do
not address what the actual content of the distributed plan
is, but rather how a team must perform each step in order
to remain coordinated. Actually deciding on how to split a
larger task among a team of agents to create a distributed
plan is solved by a host of decentralized planning methods.
Notable methods include game theory (Emery-
Montemerlo, et al. 2005), phrasing distributed planning as
a constraint satisfaction problem (Yokoo and Hirayama
2000), and distributed POMDPs (Nair et al. 2003). Other
work has focused on encoding a human’s knowledge of a
domain into strategies for a team to follow (Hoang, Lee-
Urban, and Munoz-Avila 2005)

Dealing with a Highly Dynamic Environment

A rapidly and constantly changing environment motivates
several requirements for agents in virtual worlds, as we
will now see. Let us first consider the sources of dynamism
particular to virtual environments.
 Video Games in particular are clearly a very dynamic
environment, simply because many games are filled with
fast paced action. Another major source of an
unpredictable environment, however, is human users. An
agent’s planning component may make a sound plan, but
the unknown and uncontrollable user may, through his
actions, break a causal link making the plan invalid (Riedl
2005; Riedl, Saretto, and Young 2003).
 The classical planning agent would solve this problem
by creating a complete plan, and then executing it while
holding its eyes closed. To account for a dynamic
environment, a simple extension to this is to replan
whenever the agent’s plan goes off track. This is
problematic, however, as replanning can be just as costly
as planning (Jonsson and Backstrom 1995).
 Monitoring Context. Instead, to deal with a dynamic
environment, a planning and execution system must
monitor the moment to moment context in which it acts
(Geib 1994). As Geib points out, there are two successful
methods for doing this. One is to precompute a policy
offline, which means storing a cached response to each
possible world state. This is the approach taken in
(PO)MDP literature. Although this allows for planning
with context and provides very fast response time, it
suffers from two problems. First, dealing with any realistic
problem requires a (possibly unacceptably) vast amount of
offline computation. Second, the policy does not change
during run time. This might be unsatisfactory for some
problems.
 The second method for performing efficient planning
while monitoring context is interweaving the process of
planning and execution. This is called incremental
planning, or continuous planning (Jonsson and Backstrom
1995). In Incremental Planning, an agent produces only a
prefix of a plan. While that is being executed, the agent can
monitor any changes to the world and plan its next few
actions. This method has been successfully applied in
several domains, such as the avoidance of moving
obstacles (van den Berg, Ferguson, and Kuffner 2006).
 Further, it is more possible to examine context in virtual
worlds than in the real world. This is because more data is
available to the agent. Because the agent is operating in a
virtual world, the internal representation of the
environment is accessible. Unlike relying entirely on
sensors while operating in the real world, any aspect of the
virtual world that is stored in an internal data structure is
accessible. Thus, where an ordinary sensor might simply
tell you that a necessary precondition for the next step in
the plan is no longer true, access to the world
representation allows you investigate how that
precondition became untrue.

32

 Supporting Multiple Goals. A dynamic environment
also motivates the requirement to support pursuing
multiple goals at once, as noted in (Gordon and Logan
2004; Tambe et. al 1995). (Gordon and Logan 2004) gives
an illustrating example. An agent in a Capture the Flag
session in Epic’s Unreal Tournament (UT) might be low
on health, and so will adopt the goal of replenishing health.
The problem is, if the health pack has been taken, and if
the agent can only pursue one goal at a time, then it will
single-mindedly wait for the health pack to reappear. It will
be unprepared for imminent attacks from other players.
 Some methods for pursuing multiple goals at once are
described in (Gordon and Logan 2004; Mateas and Stern
2004). (Gordon and Logan 2004) describes a system that
can dynamically generate new goals and dynamically
assigns priority to goals based on the urgency of the
agent’s current situation. An “arbitrator” then decides
which goal to pursue.

Sensing and Managing Data from a Virtual
Environment

There is a very interesting problem in sensing the
environment that is unique to virtual worlds. Because the
environment is running as a simulation on a computer,
obtaining data about the environment can sometimes
amount to a costly computation (Orkin 2005). For
example, determining if the precondition of an operator is
true or not can require a costly path planning or ray
intersection computation. The problem solved in (Orkin
2005) is how to perform the necessary calculations while
not taking too many resources away from the other
components of the game.
 As (Orkin 2005) discusses, the solution to this problem
is to not do too much calculation in a single frame of game
play. Rather, one should intelligently spread out the
calculation among many frames. As an example from the
paper, if an enemy agent during game play discovers some
threat, he stops and uses each frame to calculate the path to
a location of tactical value, checking also if it is free of
danger. The agent stops this process when a safe path is
found.
 The second problem identified above is how to deal with
an overabundance of data. That is, when presented with a
large amount of world data, the problem is to determine
which data are relevant. At least one place where this
problem is considered is in (Horvitz and Barry 1995).

Dealing with Constraints on Plan Content

As pointed out in (Tambe et. al 1995), most often an agent
in a virtual system is playing the part of a human being, or
human-like creature. This is especially so in video games.
As mentioned above, there are consequently some
constraints on what an agent in such an environment can
do while maintaining believability.
 Some past work on adding believability to agent
behavior includes the Hap agent language (Loyall and

Bates 1991). Hap was later extended to include most
notably a mechanism for multi-agent coordination in the
ABL (A Behavior Language) system (Mateas and Stern
2004). As (Mateas and Stern 2004) points out, the problem
of achieving human-like believability for an agent contains
to a large degree being able to perform multiple actions at
once: “To achieve a non-trivial degree of life-likeness in
such agents, they must possess the ability [to] perform
several intelligent activities in parallel – for example, to
gaze, speak, walk, use objects, gesture with their hands and
convey facial expressions, all at the same time.” The
ability of the ABL system to coordinate all these activities
to create believable behavior was illustrated impressively
in the game Façade (Mateas and Stern 2003).
 (Riedl and Young 2005; Mateas and Stern 2003) in
contrast consider the problem of agent believability within
the context of the field of story generation systems, in
which one is concerned with the behavior of all agents in a
virtual world for the purpose of relaying a narrative. The
point discussed in (Riedl and Young 2005) is, when an
agent’s actions are the result of a planning system,
believability is often harmed because the planner is only
concerned with assembling actions to reach the desired
goal. It is not concerned with the question of if those
actions are role-appropriate for the agent.
 An interesting consequence of requiring plan-
appropriate behavior is the segmenting of players into
roles. Specifically, different agents within a virtual world
occupy different roles, and so have different sets of actions
that are acceptable for them (e.g. a dragon can breath fire
and fly, a human-like character cannot). As a result of this,
one must consider how to coordinate heterogeneous
agents. The problem to solve in this case is, given an
unpredictable collection of agents, each with different
abilities, how to coordinate them to solve a given task. One
notable method for solving this problem is (Tambe et al.
2000) in which heterogeneous agents are coordinated by
attaching proxies to them.

Authorability

Planning and execution systems require some method of
authoring the knowledge for that domain. Any facility for
making this creation process easier only adds to their
utility. This type of authorability has unfortunately not
received a great deal of attention in the AI community. In
the field of virtual agents, some prior work has been done
by (Robertson and Good 2005) where tools for creating
interactive stories are discussed.
 In addition to the above considerations, intelligent
agents acting in virtual worlds are also subject to additional
authorability constraints. Specifically, as mentioned above,
agents acting in interactive story systems often motivate a
need for a story director to exert a sudden control over an
agent (Blumberg and Galyean 1997).
 (Blumberg and Galyean) resolve agent control into four
“levels”: 1. specific motor action command, 2. behavior
command, 3. motivation command (e.g. “you’re cold”),

33

and 4. manipulation of environment. To support these four
levels of control, (Blumberg and Galyean 1997) create a
system with three types of external run-time control. First,
a director can adjust a “motivational variable,” effectively
changing a character’s behavior at a more abstract level.
Second, a director can change the condition on which a
behavior activates, referred to as a “release mechanism.”
(Blumberg and Galyean 1997) give the example of
initiating a dog’s “marking” behavior. It may initially be
set to activate upon seeing a fire hydrant. One could
instead change the condition for this firing to be a human’s
pant-leg, if desired. The third available method is simply to
allow the director to force execution of an action or
behavior.

Summary and Future Work

Although many planning and execution systems have been
made and used in a variety of circumstances, we believe
that most systems lack one or more key components
contained in another. To help make sure that systems built
in the future are more complete, and do not lack a critical
feature resulting in possible system failure, we provide in
this paper a list of the key technical challenges involved in
making a planning and execution system. However, we
limit our focus to the particular problems involved in
building systems for virtual worlds. In addition, we point
out several significant solutions to these problems in recent
literature. Our next focus is to investigate how to most
efficiently build a planning and execution system
containing each of these requirements. We will then
implement our design and examine its performance in
various virtual domains.

Acknowledgements

The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
Blumberg, B., and Galyean, T. 1997. Multi-level control
for animated autonomous agents: Do the right thing... oh,
not that... In Trappl, R., and Petta, P., eds., Creating
Personalities for Synthetic Actors. Springer-Verlag Lecture
Notes in Artificial Intelligence.

Blythe, J. 1999. "Decision-Theoretic Planning", AI
Magazine, Volume 20, Number 2, Summer.

Chien, S and Knight, R. and Stechert, A. and Sherwood, R.
and Radibeau, G. 2000. Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling. In Proc. of
AIPS. Breckenridje, CO, USA.

Core, M., Lane, H. C., van Lent, M., Gomboc, D.,
Solomon, S., and Rosenberg, M. 2006. Building
Explainable Artificial Intelligence Systems. Accepted to
appear in IAAI.

Draper, D., Hanks, S., and Weld, D. 1994. Probabilistic
planning with information gathering and contingent
execution. In Proceedings of ICAPS.
Emery-Montemerlo, R., Gordon, G., Schneider, J., and
Thrun, S. 2005. Game Theoretic Control for Robot Teams.
In Proceedings of IEEE ICRA.

Erdmann, M. A. and Mason, M. 1988. An exploration of
sensorless manipulation. IEEE Journal of Robotics and
Automation, 4(4), 369-379.

Estlin, T. and Fisher, F. and Gaines, D., and Chouinard, C.
and Schaffer, S. 2002. Continuous Planning and Execution
for an Autonomous Rover. In Proc. 3rd Intl. NASA
Workshop on Planning and Scheduling for Space,
Houston, TX.

Estlin, T.; Gaines, D.; Chounard, C.; Fisher, F.; Castano,
R.; Judd, M.; Anderson, R.; and Nesnas, I. 2005a. Enabling
autonomous rover science through dynamic planning and
scheduling. In Proceedings of IEEE Aerospace.

Estlin, T., Gaines, D., Fisher, F., and Castano, R. 2005b.
Coordinating Multiple Rovers with Interdependent Science
Objectives. In Proceedings of AAMAS.

Fikes, R. and Nilsson, N. 1971. A new approach to the
application of theorem proving to problem solving.
Artificial Intelligence, 2:189-208.

Geib, C. 1994. The Intentional Planning System: Itplans. In
Proceedings of AIPSC.

Gerevini, A. and Serina, I. 2002. LPG: a Planner based on
Local Search for Planning Graphs. In Proceedings of
AIPS'02, AAAI Press, Toulouse, France.

Ghallab, M., Nau, D., and Traverso, P. 2004. Automated
Planning: theory and practice. San Francisco, CA.:
Morgan Kaufmann.

Gordon, E. and Logan, B. 2004. Game Over: You Have
Been Beaten by a GRUE. AAAI Workshop Challenges in
Game Artificial Intelligence

Graesser, A.C. and Lang, K.L. and Roberts, R.M. 1991.
Question answering in the context of stories. Journal of
Experimental Psychology: General, vol. 120.

Grosz, B. and Kraus, S. 1996. Collaborative Plans for
Complex Group Action. In Artificial Intelligence. 86(2),
pp. 269-357.

34

Hoang, H., Lee-Urban, S., and Munoz-Avila, H. 2005.
Hierarchical Plan Representation for Encoding Strategic
Game AI. In Proceedings of AIIDE.

Horvitz and Barry, M. 1995. Display of information for
time-critical decision making. In P. Besnard and S. Hanks,
editors, Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, pages 296--305.
Morgan Kaufmann, San Francisco.

Jennings, N. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions. AIJ, 75:195-240.

Jonsson, P. and Backstrom, C. 1995. Incremental planning.
In Proceedings of 3rd European Workshop on Planning.

Kaelbling, L., Littman, M., and Cassandra, A. 1995.
Planning and acting in partially observable stochastic
domains. Technical report, Brown University, Providence
RI.

Kitano, H; Tadokoro, S. 2001. RoboCup rescue: A grand
challenge for multiagent and intelligent systems
AI MAG. Vol. 22, no. 1, pp. 39-52.

Laird, J., Newell, A. and Rosenbloom, P. 1987. Soar: An
architecture for general intelligence. Artificial Intelligence
33:1-64.

Levesque, H.; Cohen, P.; and Nunes, J. 1990. On acting
together. In Proceedings of AAAI, 94--99.

Loyall, A.B., Bates, J. 1991. Hap: A reactive, adaptive
architecture for agents. Technical Report, CMU-CS-91-
147, Department of Computer Science, Carnegie Mellon
University.

Mateas, M. and Stern, A. 2003. Facade: An Experiment in
Building a Fully-Realized Interactive Drama. In
Proceedings of GDC, Game Design Track.

Mateas, M. and Stern, A. 2004. A Behavior Language:
Joint Action and Behavioral Idioms. Book Chapter in Life-
Like Characters, Tools, Affective Functions and
Applications, eds. H. Prendinger and M. Ishizuka,
Springer.

Muñoz-Avila, H. & Fisher, T. 2004. Strategic Planning for
Unreal Tournament Bots. Proceedings of AAAI-04
Workshop on Challenges on Game AI. AAAI Press.

Nair, R., Pynadath, M., Yokoo, M., Tambe, M., and
Marsella, S. 2003. Taming Decentralized POMDPs:
Towards efficient policy computation for multiagent
settings. In Proceedings of IJCAI.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu,
D. and Yaman, F. 2003. SHOP2: An HTN Planning
System, JAIR, 20:379-404.

Orkin, J. 2005. Agent Architecture Considerations for
Real-Time Planning in Games, AIIDE 2005 Proceedings.

Rickel, J., Gratch, J., Hill, R., Marsella, S., Traum, D., and
Swartout, W. 2002. Toward a New Generation of Virtual
Humans for Interactive Experiences, IEEE Intelligent
Systems, July/August 2002, pp. 32-38.

Riedl, M. and Saretto, C. J. and Young, R. M. 2003.
Managing Interaction between users and agents in a multi-
agent storytelling environment. In Proceedings of
AAMAS.

Riedl, M. 2005. "Towards Integrating AI Story Controllers
and Game Engines: Reconciling World State
Representations." IJCAI Workshop on Reasoning,
Representation and Learning in Computer Games.

Robertson, J. and Good, J. 2005. Adventure Author: An
Authoring Tool for 3D Virtual Reality Story Construction.
AIED Workshop on Narrative Learning Environments.

Tambe, M and Johnson, W. L. and Jones, R and Koss, F.
and Laird, J. E. and Rosenbloom, P. S. and Schwamb, K.
1995. Intelligent agents for interactive simulation
environments. AI Magazine, 16(1), Spring.

Tambe, M. 1997. Towards flexible teamwork. JAIR, 7:83-
124.

Tambe, M, Pynadath, D., Chauvat, N., Das, A., and
Kaminka, G. 2000. Adaptive agent integration
architectures for heterogeneous team members. In
Proceedings of ICMAS.

van Lent, M., Riedl, M., Carpenter, P., McAlinden, R.,
Brobst, P. 2005. Increasing Replayability with Deliberative
and Reactive Planning. In Proceedings of AIIDE.

van den Berg, J., Ferguson, D., and Kuffner, J. 2006.
Anytime Path Planning and Replanning in Dynamic
Environments. In Proceedings of ICRA.

Wilkins, D. 1990. Can AI planners solve practical
problems? Computational Intelligence, 6(4), 232-246.

Yokoo, M., Hirayama, K. 2000. Algorithms for Distributed
Constraint Satisfaction: A Review. Autonomous Agents
and Multi-Agent Systems 3:2 185-207.

35

