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Abstract 

1Planning and execution systems have been used in a wide variety 
of systems to create practical and successful automation. They 
have been used for everything from performing scientific research 
on the surface of Mars to controlling enemy characters in video 
games to performing military air campaign planning. After 
reviewing past work on these various planning and execution 
systems, we believe that most lack one or more key components 
contained in another system. To enable future researchers to build 
more complete systems, and avoid possible serious system 
failure, we identify the major technical problems any 
implementer of such a system would have to face. In addition we 
cite recent solutions to each of these technical problems. We limit 
our focus to planning and execution for virtual worlds and the 
unique problems faced therein. 

Introduction 

Planning and execution systems are a proven technology 
with a long history of creating robust, intelligent systems 
for reasoning both in the real and virtual worlds. At Jet 
Propulsion Laboratory, for example, planning and 
execution systems have been used extensively to control 
Mars Rovers, which help to perform scientific research on 
the Martian terrain (Estlin et. al. 2005). In addition 
planning and execution systems are being used in 
commercial games (Orkin 2005) as well as virtual worlds 
for research (Riedl 2005; Mateas and Stern 2003; Van 
Lent, et al. 2005; Gordon and Logan 2004; Blumberg and 
Galyean 1997).   

Before proceeding, it is useful to define precisely what is 
meant by a planning and execution system. In the most 
general sense, a planner performs the following function: 
given a description of the agent(s) world, and a description 
of goal criteria, a planner provides an action or action 
sequence that when executed will lead to achieving stated 
goal criteria. It represents the thinking part, before any 
acting is done. Investigation in planning and acting in 
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virtual worlds in particular holds many benefits not found 
in real-world systems. Aside from the immense 
commercial rewards involved in helping to create game 
systems, creating AI for virtual worlds has great benefits 
for scientific research as well. As pointed out in (Tambe et. 
al. 1995) for example, “Another potential benefit is that 
artificial agents can simplify and speed up experimentation 
by providing more control of behavior, repeatability of 
scenarios, and increased rate of simulation (i.e., faster than 
real-time simulation).”  

 Although there have been many approaches to creating 
intelligent systems for virtual worlds, we believe that most 
lack one or more key components contained in another 
system. For this reason, we attempt to identify the key 
technical problems that anyone wanting to create a 
planning and execution system for virtual worlds would 
have to solve. In doing so, we hope to enable future 
researchers to build more complete systems that are less 
prone to potential failure. 

The motivation for this survey of combined planning and 
execution systems comes, in part, from ongoing research 
projects at the University of Southern California's Institute 
for Creative Technologies (ICT).  At ICT there are four 
different research efforts which have or are utilizing some 
combination of automated planning and plan execution.  
These are the Intelligent Forces project (van Lent, et al. 
2005), the Automated Story Director project (Riedl 2005), 
the Virtual Humans project (Rickel et al. 2002), and the 
Reflective Tutoring and Explainable AI project (Core et al. 
2006). The requirements and survey presented in this paper 
is the result of an attempt to identify the shared needs of 
these four projects and explore the possibility of a common 
architecture that allows various planners and execution 
systems to be treated as pluggable modules and can 
support the needs of current and future research projects.  

The remainder of this paper is organized as follows. In the 
first section, we list and briefly describe each of the main 
technical problems. In the next section, we go into more 
detail and discussion on each problem and cite significant 
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solutions to each. Lastly, a summarization and concluding 
remarks are provided. 

Brief Description of Key Technical Problems 

After performing a comprehensive survey of planning and 
execution systems, and intelligent systems built for virtual 
worlds in particular, we have identified the following list 
of key technical problems involved in creating a planning 
and execution system for virtual worlds. Each one is 
important in the sense that if a designer were to not address 
it, their system would exhibit a noticeable failure of some 
kind, as made apparent below. For each problem, we 
provide a definition and brief discussion on why it holds 
special importance in virtual environments.  
Uncertainty. Following the description in (Ghallab, Nau, 
and Traverso 2004), uncertainty in planning in general 
comes from one of three sources: Non-determinism, partial 
observability, and extended goals.  
 Non-determinism refers to stochastic actions. In classical 
planning (Fikes and Nilsson 1971), actions are represented 
as STRIPS style operators, with fixed effects. In reality, 
however, the outcomes of actions are not totally knowable 
beforehand. This is typically modeled by saying after 
performing an action, the state of the world is one of many 
possible states, each occurring with a particular 
probability. 
 Partial observability refers to the imprecision with 
which the agent knows what the state of the world is. 
Unlike in classical planning, the agent has only a 
probability with which he knows something is true about 
the world state. As a concrete example, imagine running 
around in a maze. The state of the world might be your 
present location (x and y coordinates), and the only data 
you have to go on is what your surroundings look like. The 
problem is that many places in the maze look exactly the 
same, or very similar when you are immersed in it. 
Looking at the world thus only gives you an estimation of 
your present location, not a unique determination.  
 Lastly, uncertainty can arise due to extended goals. As 
in classical planning, one typically specifies the goal by 
indicating one or more goal conditions as a series of atomic 
sentences, the problem then being to find a plan that 
achieves one or more of them. In many realistic problems, 
however, goal conditions are not quite as clear cut. Using 
an example from (Ghallab, Nau, and Traverso 2004), one’s 
goal may be a guarantee that a mobile robot avoid 
dangerous areas, and to reach a given location if possible. 
Thus in this case there are two separate goals, each with a 
different “strength.”   
 
Dynamic Environments. “Dynamic environment” here 
simply means that an agent cannot assume that elements of 
the world state will be constant; there will be elements that 
are likely to be quickly and constantly changing. For 

example, as considered in (van den Berg, Ferguson, and 
Kuffner 2006), an agent may be trying to perform path 
planning around moving obstacles. 
  Dynamic environments deserve particular attention 
when considering virtual environments. In video games, 
for example, action is extremely fast paced. Consequently, 
agents must be able to plan based on what will soon be true 
about the world, not based just on what is currently true.   
 
Distributed Plans and Teamwork. AI systems often need 
to control a team of agents to perform a joint task. For 
example, teamwork among agents is critical in domains 
such as RoboCup soccer and RoboCup Rescue (Kitano, 
and Tadokoro 2001), and multi-robot space exploration 
(Estlin, Gaines, Fisher, and Castano 2005). One must build 
into the execution system some facility for making sure the 
task is performed in a coordinated manner. Otherwise as 
has been illustrated elsewhere (Levesque, Cohen, and 
Nunes 1990; Grosz and Kraus 1996), the task may fail.  
 
Responding to a Plan Made Invalid During Execution.  
Plan recovery is a general tool that is required by 
components solving the other problems.  
This problem is a large part of what motivates having an 
execution and monitoring system put on top of a simple 
planner in the first place. After the planner component 
creates a plan, in most realistic domains the plan becomes 
unviable during mid-execution for a host of reasons. The 
problem then, is how to maintain a plan that remains 
relevant to the desired goal set in the context of a dynamic 
environment. 
 
Sensing and Maintaining Environment Data. There is a 
general need for timely, accurate data about the 
environment in which agents are acting to be relayed to the 
planning and execution system. This is of course necessary 
to create accurate plans that are relevant to the world. 
There are a few problems that arise when managing world 
data in a virtual environment, however. For example, as 
pointed out in (Orkin 2005), simply sensing data about the 
world may be computationally intensive in a virtual 
environment. Now the agent has the problem of planning 
with insufficient/partial data. One either has to obtain 
expensive world data in a judicious way, or go on planning 
without it. 
 A second problem related to managing data in virtual 
environments is deciding on what is relevant. In real world 
scenarios, the agent is limited only to the data reported 
back from the sensor. However, in virtual environments, 
one has access to all data in internal data structures 
representing the entire virtual world. This can be such a 
vast amount of data that sifting through it becomes 
difficult.  
 
Authorability. At a high level, authorability refers to ease 
of content creation. For the problem of creating intelligent 
agents for acting in some domain, the “content” one must 
create is of the agent’s knowledge. For example, a 
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planning agent using a STRIPS style planner, one must 
create a domain specification, library of operators, or a task 
hierarchy (when using hierarchical planning). 
 Although authorability is certainly a factor in real world 
planners, it is more of a factor in virtual worlds. This can 
be seen in the following way. Consider the design process 
for a video game. A non-AI expert game designer will 
have an idea for a scene with dramatic elements that they 
would like to create. There must therefore be a way for the 
game designer to author agent knowledge easily, but still 
remain faithful to his dramatic vision. 
 
Constraints on Plan Content. Additional constraints on 
plans occur in virtual worlds because agents must fulfill 
roles. In other words, there are restrictions on what actions 
are valid for a given agent. To see why this is so, consider 
the following. An agent in a video game is most often a 
human-like creature. Thus, any plan that is generated for it 
to carry out must adhere to things that only a human-like 
creature can believably do. (Tambe et. al 1995; Riedl and 
Young 2005). For example, an agent controlling a human 
character cannot walk through walls or jump over 
skyscrapers even if it would be conducive to a shorter or 
easier plan.  
 

Solutions and Discussion of Main Problems 
 
Dealing with Uncertainty 
 
As mentioned above, uncertainty in planning can be 
resolved into three sources: Non-deterministic actions, 
partial observability, and extended goals. We will now 
consider notable solutions to each. 
 Non-determinism. A naïve response to non-
deterministic actions would be to pretend that actions are 
still deterministic. That is, the effects of each action in its 
specification could be written as the most likely outcome. 
Then, if during execution, an action produces a non-
predicted outcome, the agent could perform a recovery 
with conditional planning methods (Draper et al., 1994) or 
replanning (Wilkins 1990). If the environment is too non-
deterministic, however, then recovery operations start to 
become expensive, and non-determinism becomes harder 
and harder to ignore.  
 One successful method for reasoning about stochastic 
actions include decision theoretic methods such as the 
Markov Decision Process (MDP) framework (Kaelbling,  
Littman, and Cassandra 1995), which is built from the 
ground up to reason about uncertain actions. 
 Additionally, classical planners and neo-classical 
planners have been extended to reason about uncertain 
actions. For example, there are probabilistic graph-planners 
and satisfiability planners, a survey of which appear in 
(Ghallab, Nau, and Traverso 2004) 
 

 Partial Observability. As mentioned above, partial 
observability of an environment means that an agent 
cannot uniquely determine the state of the world at any 
given moment. Instead, the agent maintains his best guess 
as to what state he is in. That is, a probability distribution 
over the set of states of the world is maintained (Ghallab, 
Nau, and Traverso 2004). This makes planning much more 
difficult, as now the state space, spanning the set of 
probability distributions, has become infinite. 
 One framework that has received an enormous amount 
of attention for solving partially observable problems is the 
Partially Observable MDP or POMDP framework 
(Kaelbling, Littman, and Cassandra 1995). The massive 
body of POMDP literature has advanced greatly, making 
computation of policies much easier, although still difficult 
in general. 
 Partial observability might arise in virtual environments 
for several reasons. Chief among them is the potential cost 
of performing sensing actions. Evaluating the precondition 
of an action is not simply the result of reading a robotic 
sensor. As (Orkin 2005) points out, determining the truth 
value of a precondition could be computationally 
expensive. If available resources are insufficient for 
evaluating a given precondition, then methods for planning 
with partial knowledge must be used.  
 Extended Goals. The general “extended goals” 
problem, as described above, is to find a way to reason 
about goals that have degrees of desirability. The need to 
support this in virtual environments is described in greater 
detail in the section “Dealing with a Highly Dynamic 
Environment.” As (Ghallab, Nau, and Traverso  2004) 
describes, however, extended goals is a form of uncertainty 
because it is meant to capture the non-deterministic notion 
of having a goal that the agent is merely “trying” to 
achieve, rather than requiring the goal be performed.  
 This form of goal can be handled using utility functions 
and decision theory (Kaelbling, Littman, and Cassandra 
1995). The formulation in this framework is there is now a 
“utility” associated with performing an action in a given 
state. The utility is calculated from the degree to which 
doing an action will lead the agent to more utility later on. 
The planning problem in this framework then becomes to 
find a plan (policy) that maximizes overall utility. 
 
Responding to Broken Plans 
 
If domains were totally deterministic, fully observable, and 
were static, then the outcome of each action could be 
known before hand, and there would be no reason to 
monitor and maintain plans during execution. Because of 
uncertainties and dynamic elements mentioned above, such 
as an unknown human player or stochastic actions, one has 
to deal with the problem of plans that become unviable 
during mid-execution.  
 To deal with this problem, there is a multitude of 
techniques developed to maintain relevant plans. Such 
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methods include sensorless planning (Erdmann and Mason 
1988), replanning (Wilkins 1990), using heuristics to fix 
broken plans (Estlin et. al 2002), and iterative repair 
(Chien et. al 2000). All of these methods are relevant to 
planning and execution in virtual worlds as well.  
 In addition, if one is able to anticipate the ways that a 
plan can go wrong, a good plan recovery method is 
Contingency Planning (Draper et al., 1994). In 
Contingency Planning, one creates a plan offline as a 
response for all the contingencies that could arise during 
plan execution. When a contingency happens, the 
execution system can just load the cached response plan. 
As discussed in more detail in a later section, these 
contingencies are easier to find and express in virtual 
worlds. This technique has been successfully applied in 
(Riedl, Saretto, and Young 2003). 
 
Approaches to Teamwork 
 
As noted earlier, plan steps sent to the execution 
component can in general be joint tasks, assigned to a team 
of agents to perform jointly. If some method for 
coordinating the execution of this task among the agents is 
not used, then failure of the task can result (Levesque, 
Cohen, and Nunes 1990). Generic methods of teamwork 
(Levesque, Cohen, and Nunes 1990; Grosz and Kraus 
1996) have been developed that have been built into 
several successful multi-agent systems (Tambe 1997; 
Jennings 1995). (Levesque, Cohen, and Nunes 1990) for 
example, identifies a few key rules, referred to in 
(Levesque, Cohen, and Nunes 1990) as a joint persistent 
goal, that, if built into an execution system, result in true 
coordination. Specifically, if agents x and y are performing 
joint task T, then first, they should signal each other to 
make sure they start T at the same time. Second, and most 
importantly, if one of the agents privately comes to believe 
that T is either impossible or already accomplished, then 
they must inform the other agent of this.  
 Several multi-agent control systems have been built 
based upon joint intentions theory (Tambe 1997; Jennings 
1995). Notably, (Tambe 1997) successfully implemented a 
multi-agent system and added the ability to use decision-
theory methods for communication to minimize the cost of 
communication among agents.  
 The above generic teamwork methods are required for 
synchronization and consistency of joint actions. They do 
not address what the actual content of the distributed plan 
is, but rather how a team must perform each step in order 
to remain coordinated. Actually deciding on how to split a 
larger task among a team of agents to create a distributed 
plan is solved by a host of decentralized planning methods. 
Notable methods include game theory (Emery-
Montemerlo, et al. 2005), phrasing distributed planning as 
a constraint satisfaction problem (Yokoo and Hirayama 
2000), and distributed POMDPs (Nair et al. 2003). Other 
work has focused on encoding a human’s knowledge of a 
domain into strategies for a team to follow (Hoang, Lee-
Urban, and Munoz-Avila 2005)    

 
Dealing with a Highly Dynamic Environment 
 
A rapidly and constantly changing environment motivates 
several requirements for agents in virtual worlds, as we 
will now see. Let us first consider the sources of dynamism 
particular to virtual environments.  
 Video Games in particular are clearly a very dynamic 
environment, simply because many games are filled with 
fast paced action. Another major source of an 
unpredictable environment, however, is human users. An 
agent’s planning component may make a sound plan, but 
the unknown and uncontrollable user may, through his 
actions, break a causal link making the plan invalid (Riedl 
2005; Riedl, Saretto, and Young 2003). 
 The classical planning agent would solve this problem 
by creating a complete plan, and then executing it while 
holding its eyes closed. To account for a dynamic 
environment, a simple extension to this is to replan 
whenever the agent’s plan goes off track. This is 
problematic, however, as replanning can be just as costly 
as planning (Jonsson and Backstrom 1995). 
 Monitoring Context. Instead, to deal with a dynamic 
environment, a planning and execution system must 
monitor the moment to moment context in which it acts 
(Geib 1994). As Geib points out, there are two successful 
methods for doing this. One is to precompute a policy 
offline, which means storing a cached response to each 
possible world state. This is the approach taken in 
(PO)MDP literature. Although this allows for planning 
with context and provides very fast response time, it 
suffers from two problems. First, dealing with any realistic 
problem requires a (possibly unacceptably) vast amount of 
offline computation. Second, the policy does not change 
during run time. This might be unsatisfactory for some 
problems. 
 The second method for performing efficient planning 
while monitoring context is interweaving the process of 
planning and execution. This is called incremental 
planning, or continuous planning (Jonsson and Backstrom 
1995). In Incremental Planning, an agent produces only a 
prefix of a plan. While that is being executed, the agent can 
monitor any changes to the world and plan its next few 
actions. This method has been successfully applied in 
several domains, such as the avoidance of moving 
obstacles (van den Berg, Ferguson, and Kuffner 2006).  
 Further, it is more possible to examine context in virtual 
worlds than in the real world. This is because more data is 
available to the agent. Because the agent is operating in a 
virtual world, the internal representation of the 
environment is accessible. Unlike relying entirely on 
sensors while operating in the real world, any aspect of the 
virtual world that is stored in an internal data structure is 
accessible. Thus, where an ordinary sensor might simply 
tell you that a necessary precondition for the next step in 
the plan is no longer true, access to the world 
representation allows you investigate how that 
precondition became untrue.  
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 Supporting Multiple Goals. A dynamic environment 
also motivates the requirement to support pursuing 
multiple goals at once, as noted in (Gordon and Logan 
2004; Tambe et. al 1995). (Gordon and Logan 2004) gives 
an illustrating example. An agent in a Capture the Flag 
session in Epic’s Unreal Tournament (UT) might be low 
on health, and so will adopt the goal of replenishing health. 
The problem is, if the health pack has been taken, and if 
the agent can only pursue one goal at a time, then it will 
single-mindedly wait for the health pack to reappear. It will 
be unprepared for imminent attacks from other players. 
 Some methods for pursuing multiple goals at once are 
described in (Gordon and Logan 2004; Mateas and Stern 
2004). (Gordon and Logan 2004) describes a system that 
can dynamically generate new goals and dynamically 
assigns priority to goals based on the urgency of the 
agent’s current situation. An “arbitrator” then decides 
which goal to pursue.    
 
Sensing and Managing Data from a Virtual 
Environment 
 
There is a very interesting problem in sensing the 
environment that is unique to virtual worlds. Because the 
environment is running as a simulation on a computer, 
obtaining data about the environment can sometimes 
amount to a costly computation (Orkin 2005). For 
example, determining if the precondition of an operator is 
true or not can require a costly path planning or ray 
intersection computation. The problem solved in (Orkin 
2005) is how to perform the necessary calculations while 
not taking too many resources away from the other 
components of the game.  
 As (Orkin 2005) discusses, the solution to this problem 
is to not do too much calculation in a single frame of game 
play. Rather, one should intelligently spread out the 
calculation among many frames. As an example from the 
paper, if an enemy agent during game play discovers some 
threat, he stops and uses each frame to calculate the path to 
a location of tactical value, checking also if it is free of 
danger. The agent stops this process when a safe path is 
found.  
 The second problem identified above is how to deal with 
an overabundance of data. That is, when presented with a 
large amount of world data, the problem is to determine 
which data are relevant. At least one place where this 
problem is considered is in (Horvitz and Barry 1995).   
 
Dealing with Constraints on Plan Content 
 
As pointed out in (Tambe et. al 1995), most often an agent 
in a virtual system is playing the part of a human being, or 
human-like creature. This is especially so in video games. 
As mentioned above, there are consequently some 
constraints on what an agent in such an environment can 
do while maintaining believability. 
 Some past work on adding believability to agent 
behavior includes the Hap agent language (Loyall and 

Bates 1991). Hap was later extended to include most 
notably a mechanism for multi-agent coordination in the 
ABL (A Behavior Language) system (Mateas and Stern 
2004). As (Mateas and Stern 2004) points out, the problem 
of achieving human-like believability for an agent contains 
to a large degree being able to perform multiple actions at 
once: “To achieve a non-trivial degree of life-likeness in 
such agents, they must possess the ability [to] perform 
several intelligent activities in parallel – for example, to 
gaze, speak, walk, use objects, gesture with their hands and 
convey facial expressions, all at the same time.” The 
ability of the ABL system to coordinate all these activities 
to create believable behavior was illustrated impressively 
in the game Façade (Mateas and Stern 2003).  
 (Riedl and Young 2005; Mateas and Stern 2003) in 
contrast consider the problem of agent believability within 
the context of the field of story generation systems, in 
which one is concerned with the behavior of all agents in a 
virtual world for the purpose of relaying a narrative. The 
point discussed in (Riedl and Young 2005) is, when an 
agent’s actions are the result of a planning system, 
believability is often harmed because the planner is only 
concerned with assembling actions to reach the desired 
goal. It is not concerned with the question of if those 
actions are role-appropriate for the agent.  
 An interesting consequence of requiring plan-
appropriate behavior is the segmenting of players into 
roles. Specifically, different agents within a virtual world 
occupy different roles, and so have different sets of actions 
that are acceptable for them (e.g. a dragon can breath fire 
and fly, a human-like character cannot). As a result of this, 
one must consider how to coordinate heterogeneous 
agents. The problem to solve in this case is, given an 
unpredictable collection of agents, each with different 
abilities, how to coordinate them to solve a given task. One 
notable method for solving this problem is (Tambe et al. 
2000) in which heterogeneous agents are coordinated by 
attaching proxies to them. 
  
Authorability 
 
Planning and execution systems require some method of 
authoring the knowledge for that domain. Any facility for 
making this creation process easier only adds to their 
utility. This type of authorability has unfortunately not 
received a great deal of attention in the AI community. In 
the field of virtual agents, some prior work has been done 
by (Robertson and Good 2005) where tools for creating 
interactive stories are discussed.  
 In addition to the above considerations, intelligent 
agents acting in virtual worlds are also subject to additional 
authorability constraints. Specifically, as mentioned above, 
agents acting in interactive story systems often motivate a 
need for a story director to exert a sudden control over an 
agent (Blumberg and Galyean 1997). 
 (Blumberg and Galyean) resolve agent control into four 
“levels”: 1. specific motor action command, 2. behavior 
command, 3. motivation command (e.g. “you’re cold”), 

33



and 4. manipulation of environment. To support these four 
levels of control, (Blumberg and Galyean 1997) create a 
system with three types of external run-time control. First, 
a director can adjust a “motivational variable,” effectively 
changing a character’s behavior at a more abstract level. 
Second, a director can change the condition on which a 
behavior activates, referred to as a “release mechanism.” 
(Blumberg and Galyean 1997) give the example of 
initiating a dog’s “marking” behavior. It may initially be 
set to activate upon seeing a fire hydrant. One could 
instead change the condition for this firing to be a human’s 
pant-leg, if desired. The third available method is simply to 
allow the director to force execution of an action or 
behavior.  
 

Summary and Future Work 
 
Although many planning and execution systems have been 
made and used in a variety of circumstances, we believe 
that most systems lack one or more key components 
contained in another. To help make sure that systems built 
in the future are more complete, and do not lack a critical 
feature resulting in possible system failure, we provide in 
this paper a list of the key technical challenges involved in 
making a planning and execution system. However, we 
limit our focus to the particular problems involved in 
building systems for virtual worlds. In addition, we point 
out several significant solutions to these problems in recent 
literature. Our next focus is to investigate how to most 
efficiently build a planning and execution system 
containing each of these requirements. We will then 
implement our design and examine its performance in 
various virtual domains.   
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