
Adding Smart Opponents to a First-Person Shooter Video Game through
Evolutionary Design

C. Adam Overholtzer and Simon D. Levy

Computer Science Department
Washington and Lee University

Lexington, VA 24450
{overholtzerc, levys}@wlu.edu

Abstract
We demonstrate how a first-person shooter (FPS) video
game can be made more fun and challenging by replacing
the hard-wired behavior of opponents with behaviors
evolved via an evolutionary algorithm. Using the open-
source FPS game Cube as a platform, we replaced the
agents' (opponents) hard-wired behavior with binary
“DNA” supporting a much richer variety of agent
responses. Survival-of-the-fittest ensured that only those
agents whose DNA allowed them to avoid being killed by
the human player would continue on to the next
"generation" (game). Mutating the DNA of the survivors
provided enough variability in behavior to make the agent's
actions unpredictable. Our demo will show how this
approach produces an increasingly challenging level of
play, more fine-tuned to the skills of an individual human
player than the traditional approach using pre-programmed
levels of difficulty or simply adding more opponents.

Motivation

One of the major commercial applications of AI is in the
rapidly expanding computer game industry. Virtually
every game sold today has some sort of AI, from the
"computer player" in a chess game to the machine-gun-
toting enemies in a first-person shooter (FPS). Any virtual
being that does not behave in a strictly pre-scripted
manner has some sort of AI behind it. Sadly, however, the
multi-billion dollar gaming industry has done very little to
advance the field of AI. The industry has moved past the
day when an AI opponent would not even react to the
death of his teammate standing three feet away, but that
does not mean these bots, as they are commonly called,
have any serious thought processes.

Platform

Cube 1 is an open-source FPS, written in C++ for Linux
and Windows, that is based on a very unorthodox engine
that emphasizes simple 3D designs to provide a quickly
and cleanly rendered environment. The Cube Engine is, to

1http://cube.sourceforge.net

quote its website, mostly targeted at reaching feature
richness through simplicity of structure and brute force,
rather than finely tuned complexity. The code for Cube is
much shorter and simpler than that for many other FPS
games, and, because it is open-source, we have full access
to all of the code and thus almost any change is possible .

Approach

We realized that given the simplicity of Cube, developing
a straight hard-coded AI that would show real
improvement would be a difficult project. Rather than
spending lots of time trying to figure out how the agents
(bots, monsters, opponents) should behave, we decided
that it would be easier and more interesting to add an
evolutionary algorithm (Mitchell 1996) to the agent's
deterministic behavior. By evolving over time, the agents
could learn from experience what the best strategies were
and would, for example, decide for themselves how often
they should jump over obstacles, instead of running
around them.

The idea is that each of an agent's possible decisions are
represented by a single value (true, false, or a probability)
and all of these values combined determine his behavior.
This string of values, which we can call his DNA, is
attached to an individual agent. Whenever the agent needs
to make a decision, he consults both the usual criteria and
the corresponding value in his DNA. (Strings are initially
all zero at the start of the first game.) At the end of a
game, each agent is given a score based on how well he
performed, and five of the ten agents are probabilistically
chosen to be “reborn” in the next game, by fitness-
proportionate selection. Two copies of each agent are
passed on to the next game, but each of these is run
through a mutation function that randomly alters a small
fraction of the values in the DNA. This way, the agents are
changing a little bit each game and the ones that perform
the best will live to the next game. Just like biological
evolution, our game became a survival-of-the-fittest
environment where only the most well-adjusted agents
survive and eventually, at least in theory, the agents

155

Proceedings of the First
Artificial Intelligence and Interactive

Digital Entertainment Conference

(AIIDE-2005)

become very good at surviving.

Implementation

The main taks in our implementation was to design the
DNA sequence and connect it to the existing system. The
DNA is a C++ struct consisting mostly of booleans
(caresAboutArmor, seeksHealthBoost),
supporting the standard crossover and mutation operators
of a genetic algorithms. With this structure in place, it was
a relatively simple matter to preface existing hard-wired
agent behavior with conditionals like if
(seeksHealthBoost), making the agent's behavior
contingent on its DNA.

Results

Qualitatively, our project was a success: evolutionary
algorithms enabled our agents to move from incompetent
to lethal in 50 generations, showing that evolutionary
algorithms can be effectively and rather painlessly adapted
to 3D first-person shooter games. Furthermore, our simple
evolutionary system was extremely fun to play against
because the agents grew more and more challenging over
time and essentially learned from their mistakes as a real
human opponent would. Instead of increasing the
difficulty in the cheap way that most FPSes do, either by
making the agents stronger or more numerous, our
evolutionary algorithm enabled them to legitimately
improve their abilities. Because they are computer
opponents, they could improve faster than we could, and
that is why they could move from morons to masters in
relatively few rounds of play.

Quantitatively, we were able to observe the evolution of
various “genes” in the agent's DNA over generations.
Figure 1 shows the value of willJump for each of the
five agents that were selected following each of 50 games
(“generations”). If an agent is blocked by some obstacle
and can jump over, how often should he? Sometime
around game 30 they seem to settle on 5, or a probability
of 1/3, which is what we originally used when we first
wrote the function. But just a few games later, the agents
increase the average to around 1/2 and by game 45 or so
they seem all seem to agree on jumping 13 times for every
15 possible jumps. This is much higher than we would
have expected, indicating that jumping over small
obstacles, rather than moving around them, may be a
better idea than we thought. Such a result is a good
illustration of the benefits of evolutionary algorithms: the
agents had evolved a behavior that might be better than
what we would have hard-coded.

Future Work

One next step would be to add more capabilities to the
agents, such as better navigation or the ability to pick up
and use ammo in addition to health and armor. The long-
term goal would be to either add some high-level game
algorithms in Cube, such as team AI or path-finding, or
else implement a similar evolutionary algorithm in a more
complex FPS. Our project has shown that an evolutionary
algorithm can greatly enhance a first-person shooter, but
the real test is whether such a system could push the AI in
these games beyond what we have today. If the quality and
difficulty of these games can be dramatically improved by
a simple off-the-shelf genetic algorithm, then that would
be a real achievement.

Link to Demonstration

All material needed to play our “EvoCube” FPS on
Windows, as well as source code and instructions for
further development on Windows and other platforms, can
be accessed from:

 http://www.cs.wlu/edu/~levy/evocube.zip

Credits

All work described here was done by the first author, as a
senior-year independent-study project at Washington and
Lee University. The authors thank the developers of the
Cube engine for making their game available as a free
open-source, project, and the sponsors and managers of the
Sourceforge website for hosting Cube and other open-
source projects.

References

Mitchell, Melanie M. 1996. An Introduction to Genetic
Algorithms. Cambridge, Massachusetts: MIT Press.

Figure 1. Evolution of a single gene over time

156

