

Michael van Lent, Mark O. Riedl, Paul Carpenter, Ryan McAlinden, Paul Brobst

Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Los Angeles, CA 90292
{vanlent, riedl, carpenter, mcalinden, brobst}@ict.usc.edu

Abstract
Opponent behavior in today's computer games is often the
result of a static set of Artificial Intelligence (AI) behaviors
or a fixed AI script. While this ensures that the behavior is
reasonably intelligent, it also results in very predictable
behavior. This can have an impact on the replayability of
entertainment-based games and the educational value of
training-based games. This paper proposes a move away
from static, scripted AI by using a combination of
deliberative and reactive planning. The deliberative
planning (or Strategic AI) system creates a novel strategy
for the AI opponent before each gaming session. The
reactive planning (or Tactical AI) system executes this
strategy in real-time and adapts to the player and the
environment. These two systems, in conjunction with a
future automated director module, form the Adaptive
Opponent Architecture. This paper describes the
architecture and the details of the deliberative and reactive
planning components.

Introduction
In most of today’s computer and video games the behavior
of AI opponents is controlled by a static script or some
other form of fixed behavior encoding. This well-
controlled but limited approach to opponent behavior has
both advantages and disadvantages. Since the behavior is
tightly controlled it is easier for developers to guarantee
that the AI opponents will behave predictably and therefore
ensure the intended gaming experience. Also, scripted or
fixed AI techniques can be less computationally and
memory intensive since a range of strategies don’t need to
be stored or considered during execution. However, the
limited nature of fixed AI opponents can have a negative
impact on the long-term replayability of games. The
player’s early experiences, while the AI’s behaviors are
still novel, are enjoyable. But as the player learns to
predict and counter the AI opponent’s single approach, the
experience starts to feel stale. After a fairly small number
of game sessions the game experience switches from

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

exploring how to counter the AI to simply applying the
same tried and true counter-strategy yet another time.
 As games and game technology are used more and more
frequently for non-entertainment applications, the current
static techniques for generating opponent behavior show
some additional limitations. For example, Full Spectrum
Command (FSC) (van Lent, Fisher and Mancuso 2004) is a
game-based training aid developed to help U.S. Army and
Singapore Armed Forces company commanders learn the
cognitive skills involved in commanding troops. In each
game level, or mission, the AI opponent is controlled by a
script created by the human mission designer. The first
time a student plays a mission this script is unknown and
the students must practice the cognitive skills FSC seeks to
train. However, the third or fourth time through the
mission the player knows the AI script and can use this
knowledge to win rather than exercising the target
cognitive skills. This becomes particularly apparent when
students start selecting actions that are, in general, very
poor choices but work well against the specific AI script
for that mission.
 The work described here seeks to use a combination of
deliberative and reactive planning to move away from AI
opponents that rely on a single, fixed strategy. A
deliberative planner (DPOCL) is used as the central
component of the Strategic AI system while a reactive
planner (Soar) is the core of the Tactical AI system. An
Automated Director that tracks player history and tailors
the experience is a planned future component. Collectively
this system is the Adaptive Opponent Architecture. The
Strategic AI subsystem operates before each game session
to create a novel strategy for the AI opponent based on the
scenario environment, parameters and the AI opponent’s
goals. The Tactical AI subsystem controls the execution of
this strategy through real-time interaction with the game
environment during the game session. The Tactical AI
subsystem is also responsible for purely reactive actions
and local modifications to the strategy. This combination
of deliberative and reactive planning results in dynamic,
unpredictable behavior by AI opponents that challenges the
player to constantly adapt and adjust their own strategies.
The Adaptive Opponent Architecture increases the
replayability of entertainment-based games and the
learning value of education-based games.

135

Proceedings of the First
Artificial Intelligence and Interactive
Digital Entertainment Conference

Increasing Replayability with Deliberative and Reactive Planning

 Full Spectrum Command has been selected as the first
target application of the Adaptive Opponent Architecture.
Since FSC straddles the fence between computer game and
training tool, it allows us to demonstrate the value of
deliberative and reactive planning in both entertainment
and educational applications. FSC is a one or two player
PC-game in which the player commands a company of 120
light infantry soldiers divided into three platoons. A game
session in FSC consists of three phases: planning,
execution and after-action review. In the planning phase
the player reads the mission description and creates a high-
level plan coordinating the actions of the three platoons to
achieve the mission goal. This emphasis on pre-mission
planning sets FSC apart from most games that jump to the
action as quickly as possible. In the execution phase the
player monitors the platoons as they execute the plan and
modifies/updates the plan as necessary through
fragmentary orders (Fragos). In the after-action review
phase the player reviews mission statistics and their plan,
gets to see the opponent’s plan for the first time, and can
replay the mission with key points highlighted. The
Adaptive Opponent Architecture fits well into this three
phase design with the Strategic AI operating during the
planning phase and the Tactical AI operating during the
execution phase.
 The next section of this paper describes the Adaptive
Opponent Architecture in more detail. The following two
sections describe the deliberative planning-based Strategic
AI and the reactive planning-based Tactical AI. The next
section describes the current status of the work and a
number of next steps currently being explored and then
wraps up with some conclusions.

Adaptive Opponent Architecture
The Adaptive Opponent Architecture, shown in Figure 1,
consists of a three-tiered collection of AI modules that
communicate with the game environment and each other to
control the behavior of the AI opponents in support of
entertainment or other game goals. The boxes with dashed
outlines show components designated for future work. The
top-tier module is an automated director that tracks the
player’s history over a series of game sessions and tailors

the scenario details of each new game session to make each
new session entertaining and consistent with previous
sessions. For example, the automated director might adjust
the level of difficulty to match the player’s abilities and
vary the details to ensure the player experiences some
novel aspects of the environment each game session. The
automated director module is planned future work. We
hope to capitalize on the ongoing research in this area (e.g.
Magerko and Laird 2003; Young et al. 2004).
 The next module is the Strategic AI module which is
based on the DPOCL domain-independent deliberative
planner (see next section for more details). The Strategic
AI module takes as input a set of mission details from the
game environment (and eventually the automated director).
These game details include the initial state of the game
session, the AI opponent’s goal for the game session, and
the actions available to the AI opponent. The Strategic AI
module then uses an abstracted model of the game to create
a mission plan for the AI opponent. This mission plan is
encoded as an execution matrix in which each row
represents a sequence of actions by a specific platoon and
each column is a slice of time in the mission. Transitions
between time slices in the mission can be fixed to a
specific time or variable depending on environmental
conditions. Determining when the conditions indicating a
step transition are satisfied is one of the roles of the
Tactical AI. The deliberative planning process performed
by the Strategic AI is the same process a player performs
during the planning stage (for the player’s side) or a
mission designer performs during the authoring of a
mission (for the AI opponent’s side).
 The final module of the Adaptive Opponent Architecture
is the Soar-based Tactical AI. The Tactical AI takes the
execution matrix as input and interacts with the game
environment in real-time through a pre-defined set of
sensors and actions. Sensor input, received multiple times
a second, gives the Tactical AI information about the
immediate state of the game environment. Based on this
sensor input both goal-based actions (directed by the
execution matrix) and reactive actions are selected and
passed back to the game environment to control the AI
opponent entities. Goal-based actions primarily focus on
executing the mission plan generated by the Strategic AI.
Example goal-based actions might include moving to a
checkpoint, clearing a building, or ambushing an enemy
unit. Reactive actions are selected in response to events in
the environment and are influenced by, but separate from,
the mission plan. Example reactive actions might include
returning fire when fired upon, seeking cover, or fleeing
when heavily outnumbered.

Deliberative Planning: Strategic AI
The Strategic AI module requires the ability to generate
any number of high-level plans for the AI opponent that
are novel, meaning significantly different in some
recognizable way from previous plans used by the system.
To promote variability, each game session may provide

Tactical AI
(Soar)

Strategic AI
(DPOCL)

execution
matrix

replanning
requests

mission
details

sensors

actions

experience/
goals Automated

Director

Abstract
Game Model

Figure 1: The Adaptive Opponent Architecture.

Game Environment
(Full Spectrum

Command)
mission
details

Player
History

136

different goals for the AI opponent to achieve and different
force configurations. Furthermore, the player may be
opposed by different levels of opponent sophistication such
as an opponent with a well-defined military doctrine or an
asymmetric opponent using unpredictable and improvised
tactics.

Planning is one technique for generating novel strategic-
level tactics for RTS games in which the opponent is
expected to carry out goal-based behaviors. The
advantages of planning include:

• Variability can be achieved by initializing the
planner with different initial world states, different
goals, and different sets of operations (possibly
encoding doctrine) that can be carried out by
opponent forces.

• Complete1 planners can find and choose among any
number of solutions for achieving a goal.

• Planning and execution can be interleaved so that
the opponent, like the player, is not required to have
a completely specified plan.

• Explicit models of plan failure exist so that
opponent tactical execution can be monitored.
There are well-known algorithms for replanning in
the event that plan execution does fail.

Partial-order planning algorithms such as UCPOP
(Penberthy and Weld 1992) allow for unrestricted
parallelism (Knoblock 1994). Parallel execution is
essential for strategic force planning because it enables unit
forces to perform tasks in parallel while still retaining
loose coordination. Hierarchical task network (HTN)
planners (Sacerdoti 1977) plan on multiple levels of
abstraction achieving a degree of cognitive plausibility due
to the application of schema-like task networks. Task
networks can be used to encode doctrine as well as more
free-form tactics. HTN planners, however, rely on pre-
defined task networks that cannot be readily adapted to
novel circumstances.
 The Decompositional Partial Order Causal Link
(DPOCL) planner (Young, Pollack, and Moore 1994) is a
partial-order planner based on UCPOP but extended to
perform hierarchical decomposition of abstract operators.
DPOCL meets all the requirements of a strategic

1 Completeness is a property of planners such that the
search space of a complete planner contains all possible
solution plans.

deliberative planner for an opponent AI in an RTS game.
DPOCL uses an operator library that contains both abstract
and primitive operators. Abstract operators are
decomposed into successively more primitive operators by
applying decomposition rules.
 Partial-order planning is a process of searching for a
sequence of operations – abstract and primitive – that
achieve a particular goal. This is achieved by non-
deterministically backward-chaining from the goal
conditions to be achieved. Operators have preconditions –
facts about the state of the world that must be true for the
operator to be applicable – and effects – facts about the
state of the world that are changed by successful execution
of the operator. New operators are instantiated by the
planner to satisfy the goal conditions as well as the
preconditions of operators already in the plan.
Decomposition rules are applied to abstract operators.
Unlike task networks, decomposition rules can be partial;
the DPOCL planning algorithm is applied recursively to
fill in missing details. Partial decomposition rules can be
applied to a wide variety of circumstances and allow for
innovation whereas a task network has a very specific set
of circumstances that it can be applied to.

Strategic AI Example
Suppose the opponent force (OPFOR) is an asymmetric
force occupying a base. The game scenario defines the
OPFOR’s goal – to keep the base secure – and initial
configuration. For simplicity, suppose the OPFOR
consists of three units: two of which carry rifles and one of
which carries a grenade launcher.
 Without a script, the AI opponent must develop a novel
plan for keeping the base secure. At the time of writing,
the strategic AI system can generate nearly 30 unique plans
in under five minutes for the example domain model
described here. Many of these plans however involve
similar action sequences with different permutations of
force allocations. The following discussion traces the
generation of just one plan.
 The goal can be achieved by a single operator Secure-
Base-Against-Attack. The operator is abstract because
it specifies what needs to be done, but not at a level that
can be tactically executed by unit forces. The Secure-
Base-Against-Attack has a single precondition – the
OPFOR team must be at the base – that is established by
the initial conditions of the scenario.

Goal

Init

(base-secure)
(at-base opfor)

2: Defend (u1, building14)

1: Secure-Base-Against-Attack (opfor)

3: Secure-Perimeter (opfor)

4: Patrol (u2, patrolpath2)

5: Ambush (u3, region3)

(at u1 …)

(at u2 …)

(at u3 …)

6: Move (u1, building14)

7: Move (u2, patrolpath2)

8: Move (u3, region3)

(at u1 …)

(at u2 …)

(at u3 …)

Figure 2: A hierarchical strategic plan.

(at-base opfor)

(at u1 …)
(at u2 …)
(at u3 …)

137

 Secure-Base-Against-Attack must be decomposed
into primitive-level operations before the plan can be
considered complete. The planner non-deterministically
tries all decomposition rules that apply and uses a heuristic
function to rate the desirability of each possibility. The
heuristic evaluates the plan-so-far on optimality, the
effective use of unit capabilities, whether or nor the plan is
similar to ones used in previous game session, and on
pedagogical and entertainment objectives (from the
automated director). Suppose a decomposition rule is
chosen that has the OPFOR secure the base by defending a
central building, building14, and securing the base’s
perimeter. Securing the perimeter is further decomposed
into one unit patrolling the perimeter and another setting
up an ambush for the player’s forces.
 The decompositions in the example are partial; they do
not specify how unit1 gets to building14 or how
unit2 and unit3 get to their assigned stations. That is,
Defend(unit1, building14) has a precondition that
unit1 is at the building that is not specified a-priori. The
decomposition is filled in by satisfying the open
preconditions on actions in the sub-plan. The complete
opponent AI plan is shown in Figure 2. It is beneficial for
the Strategic AI to do some high-level path planning even
though the Tactical AI could accomplish this without
guidance so that the planner can heuristically evaluate the
effectiveness of certain paths based on the global impact of
the entire strategic plan.

Interfacing Strategic AI with Full Spectrum
Command
Once a strategic-level plan has been constructed, the AI
opponent must execute it. Full Spectrum Command uses
an execution matrix where each row represents an
opponent force unit. The strategic plan is converted to an
execution matrix by discarding the abstract operators and
collecting the primitive operators for each unit. The total
ordering of primitive operators for each unit is preserved.
Thus {6, 2} is the sequence in the matrix for unit1 (see
Figure 2). Each unit’s sequence is guaranteed to execute
correctly (assuming no unanticipated interference, e.g.
from the player’s forces) by virtue that the strategic plan is
sound2.

Limitations of Deliberative Planning
Full Spectrum Command provides a strategic planning
phase that allows the AI opponent sufficient time to build a
strategic plan before the game begins. The tactical,
reactive AI substrate means that much uncertainty can be
handled by unit entities without replanning and allows for
higher-level strategic planning, reducing the frequency that

2 Soundess is a property of partial-order plans such that a
sound plan is one that is guaranteed to execute correctly in
a world with no uncertainty. DPOCL plans are sound
(Young, Pollack, and Moore, 1994).

plans fail. The computational complexity of partial-order
planning, however, is problematic when plan failure does
occur because a new plan must be built while game
execution is ongoing. Application of decomposition rules
increases efficiency. However, to make replanning
feasible, the AI opponent can build contingency plans
ahead of time for the (likely) event of plan failure. Young
et al. (2004) demonstrate a technique for preemptively
building contingency plans for possible failures before the
execution phase begins in the context of interactive stories.

Reactive Planning: Tactical AI
The Tactical AI module addresses the execution-related
details of the plans created in the Strategic AI. These plans
specifically target unit-level (platoon) tasks that can then
be decomposed into single entity (soldier) actions in the
game, such as Move-To, Fire-At, and Change-Stance.
Deliberative planners use an abstracted model of the task
and environment to create a plan in which all the necessary
steps are represented. Executing these steps in the actual
game environment and responding to the player’s actions
and environmental cues is the role of the Tactical AI. In
addition, the decisions required to execute entity actions
must occur very quickly after the triggering cues in order
to maintain a synchronized, immersive game experience.
This requires a more reactive approach not supported by
most deliberative planners. Full Spectrum Command
includes an AI system that uses a hierarchy of C++ objects
to reactively execute the player’s (or mission designer’s)
plan (van Lent, Fisher, and Mancuso 2004). While this
hard-coded approach is reliable and makes quality
assurance easier, it lacks the variability and
unpredictability in entity actions that can surprise and
entertain the player across multiple game sessions.
 There are many ways of achieving agent reactivity.
Examples include finite state machines, rule-based
systems, reactive planners (e.g. Firby 1989), and cognitive
models (e.g. Lehman, Laird, and Rosenbloom 1998). Due
to cognitive plausibility and historical success modeling
tactical military behavior, we chose Soar (Lehman, Laird,
and Rosenbloom 1998) as the core of the Tactical AI
system. In addition to remaining focused on its current
goal, Soar is also distractible – or interruptible – reacting to
changes in its environment such as unexpected enemy
positions. Because Soar is not constrained to a linear
search through a single problem space, it may change
context in reaction to new or unexpected events in the
environment (Newell 1990). Soar maintains a goal stack
for each unit which dynamically grows and shrinks in
response to orders from the Strategic AI and “distractions”
from the environment. Each Soar rule is capable of firing
at any time, allowing deviations from the current
deliberative tasks due to changes in the environment.
 The traditional approach to controlling multiple units or
entities with Soar agents would involve instantiating one
instance of the Soar architecture per unit or entity. This
approach allows each unit to perceive and act in the world

138

independently and to use Soar’s internal operator stack to
encode their goals. However, this approach involves a
more complex interface to the game and makes
communication between units and entities more difficult
(although possibly more realistic). Instead, the Tactical AI
system uses a Forest of Goals approach (Taylor and Wray
2004). In this approach one Soar agent (representing the
overall commander) controls each unit and entity and
maintains a separate goal stack (not using Soar’s operator
stack) for each. This approach has three advantages. First,
it supports a hierarchical, parent-child task structure while
allowing certain child nodes to act completely reactively.
Second, the tasks that can execute reactively can also be
triggered in a goal-directed fashion to achieve the Strategic
AI’s goals. Thus, an entity move command might be a
reaction to incoming enemy fire or a part of a move-to-
building plan step. Finally, the Forest of Goals approach
allows the system to manage many more units than if each
unit were controlled by its own instance of Soar.
 The plan-based goals given by the Strategic AI are
broken down into unit directives which are in turn broken
down into entity level directives. Certain tasks also have
the ability to fire reactively and independently of the
current goal-directed task sequence. In this way the
Tactical AI system will be able to respond very quickly to
unexpected events such as enemy fire without having to go
through a deliberative planning phase. After responding
reactively it will be able to either revert to executing its
prior plan step or run through the goal-decision process
again to select an alternative.

Tactical AI Example
Continuing with the example presented in the Strategic AI
section, suppose the OPFOR plan has decomposed
securing the base into Defend(unit1, building14)
and SecurePerimeter(opfor). SecurePerimeter is
decomposed into Patrol(unit2, patrolpath2) and
Ambush(unit3, region3). Full Spectrum Command
assigns tasks at the platoon level, which in this case would
be Defend, Patrol, and Ambush. It is at this point that the
Strategic AI populates FSC’s task stack and the Tactical AI
takes these tasks as input. Once inside of Soar, the
decomposition of these three tasks can occur. For
example, the Patrol action will decompose into a series of

Move-To(unit, checkpoint) actions. From here, the
unit move-to’s are further decomposed into Move-
To(entity, checkpoint), which is an action that the
game can interpret and execute through the internal path
planning mechanism. If there was no additional input from
the game (i.e. state updates), it is at this point that the
action is sent to the game for execution.
 The introduction of variability comes with sensor
information updating the Tactical AI’s internal state.
While a platoon-level task is decomposed, sensor
information is arriving from the game and also populating
the input-link. It is this state information that dictates how
Soar executes the unit-level tasks, all the time polling the
game for additional updates that can change the current
goal stack as well as fire reactive actions.

Interfacing Tactical AI with Full Spectrum
Command
The interface of Soar with FSC is based off an event-
driven cycle, whereby messages from the simulation
dictate how the AI makes decisions. Traditionally, games
and simulations use a time-based (“tick”) cycle in which
the AI takes input and sends output back to the game for
execution at some time interval. This event-driven
approach reduces the amount of information that is sent to
Soar and reduces extraneous state information that can
adversely increase decision cycle time slices.
 The complete flow of information into and out of the
Tactical AI system is shown in Figure 3. The General Soar
Kernel Interface (GSKI) is used as the middleware
between the Soar kernel and Full Spectrum Command as it
provides a clean and efficient API for working memory
sensor and action I/O. Because an important aspect of
games is a smooth frame-rate it was decided to keep the AI
in a separate, asynchronous thread to reduce any delays in
the processing of actions. Each time a message (e.g.
NPCMoved, NPCArrived) arrives in the AI thread, the
interface pushes it through the input-link and updates the
state of the world through sensors. These sensors include
unit/entity positions, current activity (moving, firing), task
(ambush, patrol), and terrain information (building
locations, exits, rooms). This information is encoded in
working memory and used in the next set of decision
cycles. After completing a decision cycle entity-level
actions are sent out on the output-link directly to the game
for execution. The entity-level actions include, but are not
limited to, move, fire, stance, follow, and stop.

Limitations of Reactive Planning
It should be noted that the AI is inherently limited by the
simulation it is tied to. What is and is not simulated should
be taken into consideration when designing the available
actions to agents. A good example of this is the fact that
our Tactical AI does not contain the concept of suppressing
fire due to the fact that it is not simulated. This concept
could easily be added but it would likely result in an AI
that performs worse than before since it will have expected

Figure 3: The tactical AI interface.

139

outcomes that are vastly different from what the simulation
will deliver.

Status and Next Steps
The current instantiation of the Adaptive Opponent
Architecture consists of the Strategic AI module (based on
the DPOCL planner) and the Tactical AI module (based on
Soar) integrated and operating with Full Spectrum
Command. The Strategic AI system takes input from FSC,
generates a plan (see Figure 2 for an example), and
populates FSC’s internal task representation with that plan.
Either FSC’s pre-existing AI system or the Tactical AI
module (based on Soar) can then execute this plan.
Currently the implementation of unit and entity-level tasks
is the weakest element of the system. Six entity-level
actions have been implemented from a total of three
platoon-level tasks, six unit-level tasks and seven entity-
level tasks. However, a full end-to-end scenario (with
limited Tactical AI tasks) using both the Strategic and
Tactical AI modules has been demonstrated.
 Immediate next steps include completing the Tactical AI
task implementation, fully implementing strategic AI
replanning, and conducting some evaluations of the
Adaptive Opponent Architecture. One planned evaluation
will compare the pre-existing game-industry AI system
with the more research-influenced Tactical AI system.
Criteria for comparison will include computational and
memory efficiency, approximate development time,
variability of behavior, and easy of extension. Another
planned comparison will compare the range of plans
generated by the Strategic AI to the range of plans
generated by human players and mission designers.
 Longer term next steps will include the investigation of
the Automated Director module and the application of the
Adaptive Opponent Architecture to other game
environments. In the current year the Adaptive Opponent
Architecture will be integrated with a second game-based
training simulation, the Joint Fires and Effects Training
System, currently in use to train soldiers at Ft. Sill.

Conclusions
The Adaptive Opponent Architecture is a three-tiered
approach to making an AI opponent more unpredictable
and adaptable while still achieving certain pedagogical or
entertainment goals. This approach also increases
replayability in training and entertainment games. The
Automated Director focuses on adapting the experience
over many sessions. The Strategic AI focuses on adapting
the high-level strategic decisions of the AI opponent. The
Tactical AI focuses on adaptive behavior at the unit
execution level.
 The Adaptive Opponent Architecture is being applied to
Full Spectrum Command, a game-based training aid that
contains elements of both training and entertainment. As
primarily a training-aid, FSC needs to be replayable so that

student player is challenged to exercise their cognitive
skills instead of learning the script and making choices that
are, in general, poor choices but work well against the AI
opponent. Replayability is also an important property for
games with entertainment value because the player
continues to be challenged and motivated.

Acknowledgements
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions
expressed do not necessarily reflect the position or the
policy of the United States Government, and no official
endorsement should be inferred.

References
Firby, J.R. 1989. Adaptive execution in complex dynamic
worlds. Ph.D. dissertation, Yale University.
Knoblock, C.A. 1994. Generating parallel execution plans
with a partial-order planner. Proc. of the 2nd Int. Conf. on
Artificial Intelligence Planning Systems.
Lehman, J., Laird, J., & Rosenbloom, P. 1998. A gentle
introduction to soar, an architecture for human cognition.
In S. Sternberg & D. Scarborough (Eds.) Invitation to
Cognitive Science (Second Edition), Volume 4: Methods,
models, and conceptual issues. Cambridge, MA: The MIT
Press.
Magerko, B. & Laird, J. E., 2003. Building an Interactive
Drama Architecture, 1st Int. Conf. on Technologies for
Interactive Digital Storytelling and Entertainment.
Newell, A. 1990. Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.
Penberthy, J.S. & Weld, D. 1992. UCPOP: A sound,
complete, partial-order planner for ADL. Proc. of the 3rd
Int. Conf. on Knowledge Representation and Reasoning.
Sacerdoti, E.D. 1977. A Structure for Plans and Behavior.
New York: Elsevier.
Taylor, G. & Wray, R.E. 2004. A Behavior Design Pattern
Library. Ann Arbor, MI: Soar Technology, Inc.
van Lent, M., Fisher, B. and Mancuso, M., 2004. “An
Explainable Artificial Intelligence System for Small-unit
Tactical Behavior”, The 16th Innovative Applications of
Artificial Intelligence Conference.
Young, R.M., Pollack, M.E., & Moore, J.D. 1994.
Decomposition and causality in partial-order planning.
Proceedings of the 2nd Int. Conf. on Artificial Intelligence
and Planning Systems.
Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin,
R.J., & Saretto, C.J. 2004. An architecture for integrating
plan-based behavior generation with interactive game
environments. Journal of Game Development, 1, 51-70.

140

