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Abstract 
Opponent behavior in today's computer games is often the 
result of a static set of Artificial Intelligence (AI) behaviors 
or a fixed AI script.  While this ensures that the behavior is 
reasonably intelligent, it also results in very predictable 
behavior.  This can have an impact on the replayability of 
entertainment-based games and the educational value of 
training-based games.  This paper proposes a move away 
from static, scripted AI by using a combination of 
deliberative and reactive planning.  The deliberative 
planning (or Strategic AI) system creates a novel strategy 
for the AI opponent before each gaming session.  The 
reactive planning (or Tactical AI) system executes this 
strategy in real-time and adapts to the player and the 
environment.  These two systems, in conjunction with a 
future automated director module, form the Adaptive 
Opponent Architecture.  This paper describes the 
architecture and the details of the deliberative and reactive 
planning components. 

Introduction  
In most of today’s computer and video games the behavior 
of AI opponents is controlled by a static script or some 
other form of fixed behavior encoding.  This well-
controlled but limited approach to opponent behavior has 
both advantages and disadvantages.  Since the behavior is 
tightly controlled it is easier for developers to guarantee 
that the AI opponents will behave predictably and therefore 
ensure the intended gaming experience.  Also, scripted or 
fixed AI techniques can be less computationally and 
memory intensive since a range of strategies don’t need to 
be stored or considered during execution.  However, the 
limited nature of fixed AI opponents can have a negative 
impact on the long-term replayability of games.  The 
player’s early experiences, while the AI’s behaviors are 
still novel, are enjoyable.  But as the player learns to 
predict and counter the AI opponent’s single approach, the 
experience starts to feel stale.  After a fairly small number 
of game sessions the game experience switches from 
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exploring how to counter the AI to simply applying the 
same tried and true counter-strategy yet another time. 
 As games and game technology are used more and more 
frequently for non-entertainment applications, the current 
static techniques for generating opponent behavior show 
some additional limitations.  For example, Full Spectrum 
Command (FSC) (van Lent, Fisher and Mancuso 2004) is a 
game-based training aid developed to help U.S. Army and 
Singapore Armed Forces company commanders learn the 
cognitive skills involved in commanding troops.  In each 
game level, or mission, the AI opponent is controlled by a 
script created by the human mission designer.  The first 
time a student plays a mission this script is unknown and 
the students must practice the cognitive skills FSC seeks to 
train.  However, the third or fourth time through the 
mission the player knows the AI script and can use this 
knowledge to win rather than exercising the target 
cognitive skills.  This becomes particularly apparent when 
students start selecting actions that are, in general, very 
poor choices but work well against the specific AI script 
for that mission.   
 The work described here seeks to use a combination of 
deliberative and reactive planning to move away from AI 
opponents that rely on a single, fixed strategy.  A 
deliberative planner (DPOCL) is used as the central 
component of the Strategic AI system while a reactive 
planner (Soar) is the core of the Tactical AI system.  An 
Automated Director that tracks player history and tailors 
the experience is a planned future component.  Collectively 
this system is the Adaptive Opponent Architecture.  The 
Strategic AI subsystem operates before each game session 
to create a novel strategy for the AI opponent based on the 
scenario environment, parameters and the AI opponent’s 
goals.  The Tactical AI subsystem controls the execution of 
this strategy through real-time interaction with the game 
environment during the game session.  The Tactical AI 
subsystem is also responsible for purely reactive actions 
and local modifications to the strategy.  This combination 
of deliberative and reactive planning results in dynamic, 
unpredictable behavior by AI opponents that challenges the 
player to constantly adapt and adjust their own strategies.  
The Adaptive Opponent Architecture increases the 
replayability of entertainment-based games and the 
learning value of education-based games.   
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 Full Spectrum Command has been selected as the first 
target application of the Adaptive Opponent Architecture.  
Since FSC straddles the fence between computer game and 
training tool, it allows us to demonstrate the value of 
deliberative and reactive planning in both entertainment 
and educational applications.  FSC is a one or two player 
PC-game in which the player commands a company of 120 
light infantry soldiers divided into three platoons.  A game 
session in FSC consists of three phases: planning, 
execution and after-action review.  In the planning phase 
the player reads the mission description and creates a high-
level plan coordinating the actions of the three platoons to 
achieve the mission goal.  This emphasis on pre-mission 
planning sets FSC apart from most games that jump to the 
action as quickly as possible.  In the execution phase the 
player monitors the platoons as they execute the plan and 
modifies/updates the plan as necessary through 
fragmentary orders (Fragos).  In the after-action review 
phase the player reviews mission statistics and their plan, 
gets to see the opponent’s plan for the first time, and can 
replay the mission with key points highlighted.  The 
Adaptive Opponent Architecture fits well into this three 
phase design with the Strategic AI operating during the 
planning phase and the Tactical AI operating during the 
execution phase.   
 The next section of this paper describes the Adaptive 
Opponent Architecture in more detail.  The following two 
sections describe the deliberative planning-based Strategic 
AI and the reactive planning-based Tactical AI.  The next 
section describes the current status of the work and a 
number of next steps currently being explored and then 
wraps up with some conclusions.   

Adaptive Opponent Architecture 
The Adaptive Opponent Architecture, shown in Figure 1, 
consists of a three-tiered collection of AI modules that 
communicate with the game environment and each other to 
control the behavior of the AI opponents in support of 
entertainment or other game goals.  The boxes with dashed 
outlines show components designated for future work.  The 
top-tier module is an automated director that tracks the 
player’s history over a series of game sessions and tailors 

the scenario details of each new game session to make each 
new session entertaining and consistent with previous 
sessions.  For example, the automated director might adjust 
the level of difficulty to match the player’s abilities and 
vary the details to ensure the player experiences some 
novel aspects of the environment each game session.  The 
automated director module is planned future work.  We 
hope to capitalize on the ongoing research in this area (e.g. 
Magerko and Laird 2003; Young et al. 2004). 
 The next module is the Strategic AI module which is 
based on the DPOCL domain-independent deliberative 
planner (see next section for more details).  The Strategic 
AI module takes as input a set of mission details from the 
game environment (and eventually the automated director).  
These game details include the initial state of the game 
session, the AI opponent’s goal for the game session, and 
the actions available to the AI opponent.  The Strategic AI 
module then uses an abstracted model of the game to create 
a mission plan for the AI opponent.  This mission plan is 
encoded as an execution matrix in which each row 
represents a sequence of actions by a specific platoon and 
each column is a slice of time in the mission.  Transitions 
between time slices in the mission can be fixed to a 
specific time or variable depending on environmental 
conditions.  Determining when the conditions indicating a 
step transition are satisfied is one of the roles of the 
Tactical AI.  The deliberative planning process performed 
by the Strategic AI is the same process a player performs 
during the planning stage (for the player’s side) or a 
mission designer performs during the authoring of a 
mission (for the AI opponent’s side).   
 The final module of the Adaptive Opponent Architecture 
is the Soar-based Tactical AI.  The Tactical AI takes the 
execution matrix as input and interacts with the game 
environment in real-time through a pre-defined set of 
sensors and actions.  Sensor input, received multiple times 
a second, gives the Tactical AI information about the 
immediate state of the game environment.  Based on this 
sensor input both goal-based actions (directed by the 
execution matrix) and reactive actions are selected and 
passed back to the game environment to control the AI 
opponent entities.  Goal-based actions primarily focus on 
executing the mission plan generated by the Strategic AI.  
Example goal-based actions might include moving to a 
checkpoint, clearing a building, or ambushing an enemy 
unit.  Reactive actions are selected in response to events in 
the environment and are influenced by, but separate from, 
the mission plan.  Example reactive actions might include 
returning fire when fired upon, seeking cover, or fleeing 
when heavily outnumbered. 

Deliberative Planning: Strategic AI 
The Strategic AI module requires the ability to generate 
any number of high-level plans for the AI opponent that 
are novel, meaning significantly different in some 
recognizable way from previous plans used by the system.  
To promote variability, each game session may provide 
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different goals for the AI opponent to achieve and different 
force configurations.  Furthermore, the player may be 
opposed by different levels of opponent sophistication such 
as an opponent with a well-defined military doctrine or an 
asymmetric opponent using unpredictable and improvised 
tactics.   

Planning is one technique for generating novel strategic-
level tactics for RTS games in which the opponent is 
expected to carry out goal-based behaviors.  The 
advantages of planning include: 

• Variability can be achieved by initializing the 
planner with different initial world states, different 
goals, and different sets of operations (possibly 
encoding doctrine) that can be carried out by 
opponent forces. 

• Complete1 planners can find and choose among any 
number of solutions for achieving a goal. 

• Planning and execution can be interleaved so that 
the opponent, like the player, is not required to have 
a completely specified plan. 

• Explicit models of plan failure exist so that 
opponent tactical execution can be monitored.  
There are well-known algorithms for replanning in 
the event that plan execution does fail. 

Partial-order planning algorithms such as UCPOP 
(Penberthy and Weld 1992) allow for unrestricted 
parallelism (Knoblock 1994).  Parallel execution is 
essential for strategic force planning because it enables unit 
forces to perform tasks in parallel while still retaining 
loose coordination.  Hierarchical task network (HTN) 
planners (Sacerdoti 1977) plan on multiple levels of 
abstraction achieving a degree of cognitive plausibility due 
to the application of schema-like task networks.  Task 
networks can be used to encode doctrine as well as more 
free-form tactics.  HTN planners, however, rely on pre-
defined task networks that cannot be readily adapted to 
novel circumstances. 
 The Decompositional Partial Order Causal Link 
(DPOCL) planner (Young, Pollack, and Moore 1994) is a 
partial-order planner based on UCPOP but extended to 
perform hierarchical decomposition of abstract operators.  
DPOCL meets all the requirements of a strategic 
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deliberative planner for an opponent AI in an RTS game.  
DPOCL uses an operator library that contains both abstract 
and primitive operators.  Abstract operators are 
decomposed into successively more primitive operators by 
applying decomposition rules.   
 Partial-order planning is a process of searching for a 
sequence of operations – abstract and primitive – that 
achieve a particular goal.  This is achieved by non-
deterministically backward-chaining from the goal 
conditions to be achieved.  Operators have preconditions – 
facts about the state of the world that must be true for the 
operator to be applicable – and effects – facts about the 
state of the world that are changed by successful execution 
of the operator.  New operators are instantiated by the 
planner to satisfy the goal conditions as well as the 
preconditions of operators already in the plan.  
Decomposition rules are applied to abstract operators.  
Unlike task networks, decomposition rules can be partial; 
the DPOCL planning algorithm is applied recursively to 
fill in missing details.  Partial decomposition rules can be 
applied to a wide variety of circumstances and allow for 
innovation whereas a task network has a very specific set 
of circumstances that it can be applied to.   

Strategic AI Example 
Suppose the opponent force (OPFOR) is an asymmetric 
force occupying a base.  The game scenario defines the 
OPFOR’s goal – to keep the base secure – and initial 
configuration.  For simplicity, suppose the OPFOR 
consists of three units: two of which carry rifles and one of 
which carries a grenade launcher. 
 Without a script, the AI opponent must develop a novel 
plan for keeping the base secure.  At the time of writing, 
the strategic AI system can generate nearly 30 unique plans 
in under five minutes for the example domain model 
described here.  Many of these plans however involve 
similar action sequences with different permutations of 
force allocations.  The following discussion traces the 
generation of just one plan.   
 The goal can be achieved by a single operator Secure-
Base-Against-Attack.  The operator is abstract because 
it specifies what needs to be done, but not at a level that 
can be tactically executed by unit forces.  The Secure-
Base-Against-Attack has a single precondition – the 
OPFOR team must be at the base – that is established by 
the initial conditions of the scenario.   
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 Secure-Base-Against-Attack must be decomposed 
into primitive-level operations before the plan can be 
considered complete.  The planner non-deterministically 
tries all decomposition rules that apply and uses a heuristic 
function to rate the desirability of each possibility.  The 
heuristic evaluates the plan-so-far on optimality, the 
effective use of unit capabilities, whether or nor the plan is 
similar to ones used in previous game session, and on 
pedagogical and entertainment objectives (from the 
automated director).  Suppose a decomposition rule is 
chosen that has the OPFOR secure the base by defending a 
central building, building14, and securing the base’s 
perimeter.  Securing the perimeter is further decomposed 
into one unit patrolling the perimeter and another setting 
up an ambush for the player’s forces.   
 The decompositions in the example are partial; they do 
not specify how unit1 gets to building14 or how 
unit2 and unit3 get to their assigned stations.  That is, 
Defend(unit1, building14) has a precondition that 
unit1 is at the building that is not specified a-priori.  The 
decomposition is filled in by satisfying the open 
preconditions on actions in the sub-plan.  The complete 
opponent AI plan is shown in Figure 2.  It is beneficial for 
the Strategic AI to do some high-level path planning even 
though the Tactical AI could accomplish this without 
guidance so that the planner can heuristically evaluate the 
effectiveness of certain paths based on the global impact of 
the entire strategic plan. 

Interfacing Strategic AI with Full Spectrum 
Command 
Once a strategic-level plan has been constructed, the AI 
opponent must execute it.  Full Spectrum Command uses 
an execution matrix where each row represents an 
opponent force unit.  The strategic plan is converted to an 
execution matrix by discarding the abstract operators and 
collecting the primitive operators for each unit.  The total 
ordering of primitive operators for each unit is preserved.  
Thus {6, 2} is the sequence in the matrix for unit1 (see 
Figure 2).  Each unit’s sequence is guaranteed to execute 
correctly (assuming no unanticipated interference, e.g. 
from the player’s forces) by virtue that the strategic plan is 
sound2. 

Limitations of Deliberative Planning 
Full Spectrum Command provides a strategic planning 
phase that allows the AI opponent sufficient time to build a 
strategic plan before the game begins.  The tactical, 
reactive AI substrate means that much uncertainty can be 
handled by unit entities without replanning and allows for 
higher-level strategic planning, reducing the frequency that 
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plans fail.  The computational complexity of partial-order 
planning, however, is problematic when plan failure does 
occur because a new plan must be built while game 
execution is ongoing.  Application of decomposition rules 
increases efficiency.  However, to make replanning 
feasible, the AI opponent can build contingency plans 
ahead of time for the (likely) event of plan failure.  Young 
et al. (2004) demonstrate a technique for preemptively 
building contingency plans for possible failures before the 
execution phase begins in the context of interactive stories. 

Reactive Planning: Tactical AI 
The Tactical AI module addresses the execution-related 
details of the plans created in the Strategic AI.  These plans 
specifically target unit-level (platoon) tasks that can then 
be decomposed into single entity (soldier) actions in the 
game, such as Move-To, Fire-At, and Change-Stance.  
Deliberative planners use an abstracted model of the task 
and environment to create a plan in which all the necessary 
steps are represented.  Executing these steps in the actual 
game environment and responding to the player’s actions 
and environmental cues is the role of the Tactical AI.  In 
addition, the decisions required to execute entity actions 
must occur very quickly after the triggering cues in order 
to maintain a synchronized, immersive game experience.  
This requires a more reactive approach not supported by 
most deliberative planners.  Full Spectrum Command 
includes an AI system that uses a hierarchy of C++ objects 
to reactively execute the player’s (or mission designer’s) 
plan (van Lent, Fisher, and Mancuso 2004).  While this 
hard-coded approach is reliable and makes quality 
assurance easier, it lacks the variability and 
unpredictability in entity actions that can surprise and 
entertain the player across multiple game sessions.   
 There are many ways of achieving agent reactivity.  
Examples include finite state machines, rule-based 
systems, reactive planners (e.g. Firby 1989), and cognitive 
models (e.g. Lehman, Laird, and Rosenbloom 1998).  Due 
to cognitive plausibility and historical success modeling 
tactical military behavior, we chose Soar (Lehman, Laird, 
and Rosenbloom 1998) as the core of the Tactical AI 
system.  In addition to remaining focused on its current 
goal, Soar is also distractible – or interruptible – reacting to 
changes in its environment such as unexpected enemy 
positions.  Because Soar is not constrained to a linear 
search through a single problem space, it may change 
context in reaction to new or unexpected events in the 
environment (Newell 1990).  Soar maintains a goal stack 
for each unit which dynamically grows and shrinks in 
response to orders from the Strategic AI and “distractions” 
from the environment.  Each Soar rule is capable of firing 
at any time, allowing deviations from the current 
deliberative tasks due to changes in the environment.    
 The traditional approach to controlling multiple units or 
entities with Soar agents would involve instantiating one 
instance of the Soar architecture per unit or entity.  This 
approach allows each unit to perceive and act in the world 
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independently and to use Soar’s internal operator stack to 
encode their goals.  However, this approach involves a 
more complex interface to the game and makes 
communication between units and entities more difficult 
(although possibly more realistic).  Instead, the Tactical AI 
system uses a Forest of Goals approach (Taylor and Wray 
2004).  In this approach one Soar agent (representing the 
overall commander) controls each unit and entity and 
maintains a separate goal stack (not using Soar’s operator 
stack) for each.  This approach has three advantages.  First, 
it supports a hierarchical, parent-child task structure while 
allowing certain child nodes to act completely reactively.  
Second, the tasks that can execute reactively can also be 
triggered in a goal-directed fashion to achieve the Strategic 
AI’s goals.  Thus, an entity move command might be a 
reaction to incoming enemy fire or a part of a move-to-
building plan step.  Finally, the Forest of Goals approach 
allows the system to manage many more units than if each 
unit were controlled by its own instance of Soar. 
 The plan-based goals given by the Strategic AI are 
broken down into unit directives which are in turn broken 
down into entity level directives.  Certain tasks also have 
the ability to fire reactively and independently of the 
current goal-directed task sequence.  In this way the 
Tactical AI system will be able to respond very quickly to 
unexpected events such as enemy fire without having to go 
through a deliberative planning phase.  After responding 
reactively it will be able to either revert to executing its 
prior plan step or run through the goal-decision process 
again to select an alternative.   

Tactical AI Example 
Continuing with the example presented in the Strategic AI 
section, suppose the OPFOR plan has decomposed 
securing the base into Defend(unit1, building14) 
and SecurePerimeter(opfor).  SecurePerimeter is 
decomposed into Patrol(unit2, patrolpath2) and 
Ambush(unit3, region3).  Full Spectrum Command 
assigns tasks at the platoon level, which in this case would 
be Defend, Patrol, and Ambush.  It is at this point that the 
Strategic AI populates FSC’s task stack and the Tactical AI 
takes these tasks as input.  Once inside of Soar, the 
decomposition of these three tasks can occur.  For 
example, the Patrol action will decompose into a series of 

Move-To(unit, checkpoint) actions.  From here, the 
unit move-to’s are further decomposed into Move-
To(entity, checkpoint), which is an action that the 
game can interpret and execute through the internal path 
planning mechanism.  If there was no additional input from 
the game (i.e. state updates), it is at this point that the 
action is sent to the game for execution.   
 The introduction of variability comes with sensor 
information updating the Tactical AI’s internal state.  
While a platoon-level task is decomposed, sensor 
information is arriving from the game and also populating 
the input-link.  It is this state information that dictates how 
Soar executes the unit-level tasks, all the time polling the 
game for additional updates that can change the current 
goal stack as well as fire reactive actions. 

Interfacing Tactical AI with Full Spectrum 
Command 
The interface of Soar with FSC is based off an event-
driven cycle, whereby messages from the simulation 
dictate how the AI makes decisions.  Traditionally, games 
and simulations use a time-based (“tick”) cycle in which 
the AI takes input and sends output back to the game for 
execution at some time interval.  This event-driven 
approach reduces the amount of information that is sent to 
Soar and reduces extraneous state information that can 
adversely increase decision cycle time slices. 
 The complete flow of information into and out of the 
Tactical AI system is shown in Figure 3.  The General Soar 
Kernel Interface (GSKI) is used as the middleware 
between the Soar kernel and Full Spectrum Command as it 
provides a clean and efficient API for working memory 
sensor and action I/O.  Because an important aspect of 
games is a smooth frame-rate it was decided to keep the AI 
in a separate, asynchronous thread to reduce any delays in 
the processing of actions.  Each time a message (e.g. 
NPCMoved, NPCArrived) arrives in the AI thread, the 
interface pushes it through the input-link and updates the 
state of the world through sensors.  These sensors include 
unit/entity positions, current activity (moving, firing), task 
(ambush, patrol), and terrain information (building 
locations, exits, rooms).  This information is encoded in 
working memory and used in the next set of decision 
cycles.  After completing a decision cycle entity-level 
actions are sent out on the output-link directly to the game 
for execution.  The entity-level actions include, but are not 
limited to, move, fire, stance, follow, and stop. 

Limitations of Reactive Planning 
It should be noted that the AI is inherently limited by the 
simulation it is tied to.  What is and is not simulated should 
be taken into consideration when designing the available 
actions to agents.  A good example of this is the fact that 
our Tactical AI does not contain the concept of suppressing 
fire due to the fact that it is not simulated.  This concept 
could easily be added but it would likely result in an AI 
that performs worse than before since it will have expected 

Figure 3: The tactical AI interface. 
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outcomes that are vastly different from what the simulation 
will deliver. 

Status and Next Steps 
The current instantiation of the Adaptive Opponent 
Architecture consists of the Strategic AI module (based on 
the DPOCL planner) and the Tactical AI module (based on 
Soar) integrated and operating with Full Spectrum 
Command.  The Strategic AI system takes input from FSC, 
generates a plan (see Figure 2 for an example), and 
populates FSC’s internal task representation with that plan.  
Either FSC’s pre-existing AI system or the Tactical AI 
module (based on Soar) can then execute this plan.  
Currently the implementation of unit and entity-level tasks 
is the weakest element of the system.  Six entity-level 
actions have been implemented from a total of three 
platoon-level tasks, six unit-level tasks and seven entity-
level tasks.  However, a full end-to-end scenario (with 
limited Tactical AI tasks) using both the Strategic and 
Tactical AI modules has been demonstrated. 
 Immediate next steps include completing the Tactical AI 
task implementation, fully implementing strategic AI 
replanning, and conducting some evaluations of the 
Adaptive Opponent Architecture.  One planned evaluation 
will compare the pre-existing game-industry AI system 
with the more research-influenced Tactical AI system.  
Criteria for comparison will include computational and 
memory efficiency, approximate development time, 
variability of behavior, and easy of extension.  Another 
planned comparison will compare the range of plans 
generated by the Strategic AI to the range of plans 
generated by human players and mission designers.  
 Longer term next steps will include the investigation of 
the Automated Director module and the application of the 
Adaptive Opponent Architecture to other game 
environments.  In the current year the Adaptive Opponent 
Architecture will be integrated with a second game-based 
training simulation, the Joint Fires and Effects Training 
System, currently in use to train soldiers at Ft. Sill. 

Conclusions 
The Adaptive Opponent Architecture is a three-tiered 
approach to making an AI opponent more unpredictable 
and adaptable while still achieving certain pedagogical or 
entertainment goals.  This approach also increases 
replayability in training and entertainment games.  The 
Automated Director focuses on adapting the experience 
over many sessions.  The Strategic AI focuses on adapting 
the high-level strategic decisions of the AI opponent.  The 
Tactical AI focuses on adaptive behavior at the unit 
execution level.   
 The Adaptive Opponent Architecture is being applied to 
Full Spectrum Command, a game-based training aid that 
contains elements of both training and entertainment.  As 
primarily a training-aid, FSC needs to be replayable so that 

student player is challenged to exercise their cognitive 
skills instead of learning the script and making choices that 
are, in general, poor choices but work well against the AI 
opponent.  Replayability is also an important property for 
games with entertainment value because the player 
continues to be challenged and motivated. 
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