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Abstract 
 

Planning in real-time offers several benefits over the 
more typical techniques of implementing Non-Player 
Character (NPC) behavior with scripts or finite state 
machines.  NPCs that plan their actions dynamically 
are better equipped to handle unexpected 
situations.  The modular nature of the goals and 
actions that make up the plan facilitates re-use, 
sharing, and maintenance of behavioral building 
blocks.  These benefits, however, come at the cost of 
CPU cycles.  In order to simultaneously plan for 
several NPCs in real-time, while continuing to share 
the processor with the physics, animation, and 
rendering systems, careful consideration must taken 
with the supporting architecture.  The architecture 
must support distributed processing and caching of 
costly calculations.  These considerations have 
impacts that stretch beyond the architecture of the 
planner, and affect the agent architecture as a 
whole.  This paper describes lessons learned while 
implementing real-time planning for NPCs for 
F.E.A.R., a AAA first person shooter shipping for PC 
in 2005. 

 
Introduction 

 

Planning in real-time is an alternative to the more common 
techniques of modeling character behavior with scripts or 
finite state machines (FSMs).  Rather than traversing a 
predefined graph of state transitions, a planning Non-
Player Character (NPC) searches for a sequence of actions 
to satisfy some goal. 

(Orkin 2004) details the three main benefits of 
planning for game developers.  NPCs that plan in real-time 
are better equipped to handle unexpected situations.  Goals 
and actions provide modular building blocks of behavior 
that are easier to share, re-use, and maintain.  The planning 
architecture provides separation between the data and 
implementation that maps well to the workflow of game 
development teams.  These benefits, however, come at the 
cost of CPU cycles. 

In this paper, we discuss considerations that must be 
taken into account when designing the agent architecture 
for NPCs that plan in real-time.  These considerations are 
lessons learned over the past two years developing a 
planning-based AI for F.E.A.R. (Monolith 2005a), a AAA 
first person shooter shipping for PC in 2005. 

In order for multiple NPCs to plan in real-time while 
sharing the processor with the animation, rendering and  
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physics systems, NPCs need to minimize the number of 
planner search iterations and keep precondition evaluations 
as light weight as possible.  We accomplished this by 
distributing the processing of costly preconditions over 
many frames, and caching results for the planner to inspect 
on-demand.  Distributed processing and caching have 
impacts that extend far beyond the planner, affecting the 
agent architecture as a whole.  Planning in real-time 
requires careful consideration of every aspect of the agent 
architecture. 
 

Gameplay Description 
 

Core gameplay in F.E.A.R. involves combat with between 
four and eight human, robotic, or supernatural enemies at a 
time.  The upper limit on the number of characters is bound 
by the renderer.  Humans form squads to advance in cover, 
suppress and flank, and search in formation.  Less-than-
human enemies work alone, cloaking, sticking to walls, 
lunging from the shadows, and leaping into the ceiling to 
ambush again.  All of the combat behavior is performed by 
NPCs planning actions to satisfy goals.  Squads behaviors 
are not directly implemented with the planner, but squads 
delegate tasks to NPCs, which they accomplish by 
planning actions.  Squad members may autonomously 
choose to satisfy a higher priority goal rather than 
responding to the squad’s task.  For instance, an NPC will 
choose to run from a grenade to save his own life, rather 
than holding position and laying suppression fire to cover 
an ally. 
 

Agent Architecture 
 

Our agent architecture resembles the MIT Media Lab’s C4 
(Burke et al. 2001).  An agent is composed of a 
blackboard, working memory, a handful of subsystems, 
and some number of sensors.  Sensors detect changes in 
the world, and deposit these perceptions in dynamic 
working memory.  The planner uses these perceptions to 
guide its decision-making, and ultimately communicates 
instructions to subsystems through the blackboard.  
Subsystems include the targeting, navigation, animation, 
and weapons systems. 

Sensors perceive external visible and audible stimuli, 
as well as internal stimuli such as pain and desires.  Some 
sensors are event-driven while others poll.  Event-driven 
sensors are useful for recognizing instantaneous events like 
sounds and damage.  Polling works better for sensors that 
need to extract information from the world.  For example, a 
sensor may generate a list of potential tactical positions.  
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All knowledge generated by sensors is stored in working 
memory in a common format called a 
WorkingMemoryFact. 

The decision-making mechanism is the primary 
difference between our architecture and C4, as we have 
replaced C4’s “Action Tupples” with a real-time planner.  
When the sensors detect significant changes in the state of 
the world, the agent re-evaluates the relevance of his goals.  
Only one goal may be active at a time.  When the most 
relevant goal changes, the agent uses the planner to search 
for the sequence of actions that will satisfy the goal.  The 
planner validates action preconditions with 
WorkingMemoryFacts.  An action activates by setting 
values on member variables of the blackboard.  
Subsystems update at some constant rate, and change their 
behavior according to instructions placed on the 
blackboard.  For example, the GotoTarget action sets a 
new destination on the blackboard.  The following update, 
the navigation system responds by finding a path to the 
new destination. 
 

Distributed Processing 
 

While searching for a sequence of actions to satisfy a goal, 
the planner needs to validate each candidate action’s 
preconditions.  Some of these preconditions may be costly 
to compute, relying on ray intersection or pathfinding 
procedures.  The planner needs to complete the entire 
search within one frame without interrupting the overall 
performance of the game, so it cannot afford to do costly 
computations on-demand.  Instead, we use sensors to 
amortize the cost of these expensive computations over 
many frames, and cache results in working memory. 

An NPC may have any number of sensors.  Each 
sensor updates every frame if necessary, but many update 
less frequently or only in response to an event.  Sensors 
perform ray intersection tests, pathfinding, and other 
expensive operations such as sorting or analyzing tactical 
positions.  SensorSeeEnemy is an example of a sensor 
that remains dormant until some visual stimuli arrives, at 
which time the sensor performs a ray intersection test.  
SensorNodeCombat is a sensor that polls the world 
three times per second, searching for potential places to 
hide or fire from covered positions.  This sensor collects a 
list of potentially valid nodes, and then sorts them based on 
their distance from the NPC.  Validity is based on radii 
associated with the nodes that must contain the NPC’s 
current target. 

Initially, we only allowed NPCs to update one sensor 
per agent update.  This kept the processing load as light as 
possible, but we discovered that this was too restrictive, 
resulting in noticeably delayed reactions.  We found a 
better solution is to give the sensor’s update routine a 
Boolean return value, and return true only if the sensor has 
performed a significant amount of work.  It is up to the 

programmer to determine what fits this criterion.  Each 
frame, the NPC iterates over the sensors that do not need to 
update every frame, and continues to allow sensors to 
process until one returns true.  All sensors that have an 
update rate of 0.0 update every frame, so these sensors 
generally perform lightweight operations. 

In addition to evenly distributing the processing of 
multiple tasks, we also use sensors to incrementally 
process a single large task over many frames.  When an 
NPC discovers a threat along the path to his current tactical 
destination, he crouches in place and re-evaluates possible 
destinations.  Each frame, the PassTarget sensor finds 
the path to a known tactical position, and determines if the 
path is clear from danger.  This process is repeated every 
frame until a safe route to a tactical position can be found.  
Distributed processing of sensors allows us to add 
intelligence to our NPCs that we could not previously 
support, due to the prohibitive cost of computing multiple 
paths per frame. 

Constantly processing sensors certainly leads to more 
total processing than a system relying on lazy evaluation, 
but the overall load is more consistent and controlled.  
Sensors provide the planner with a constant stream of up-
to-date data, eliminating the need for the planner to burden 
the CPU with processing beyond what is required by the 
search for a valid plan. 
 

Caching 
 

Sensors cache perceptions in working memory, in the form 
of WorkingMemoryFacts.  All types of knowledge are 
stored in this common format.  A WorkingMemoryFact 
is a record containing a set of associated attributes.  
Different subsets of attributes are assigned depending on 
the type of knowledge the fact represents.  We have ten 
possible types of knowledge, including Character, 
Object, Disturbance, Task, PathInfo, and 
Desire Facts. 

A Fact record contains a total of 16 member attributes.   
The most commonly assigned attributes are the position, 
direction, stimulus type, object handle, and update time.  
Each attribute has an associated confidence value that 
ranges from 0.0 to 1.0.  Below is a pseudo-code 
representation of a WorkingMemoryFact: 

 
WorkingMemoryFact 
{ 
 Attribute<Vector3D> Position 

Attribute<Vector3D> Direction 
Attribute<StimulusType> Stimulus 
Attribute<Handle>  Object 

 Attribute<float>  Desire 
 ... 
 float   fUpdateTime 
} 
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Where each Attribute looks like this: 
 
Attribute<Type> 
{ 
 Type Value 
 float fConfidence 
} 

   
Confidence Values 
 

The meaning of the confidence value associated with each 
attribute varies widely, but is unified conceptually.   
Confidence may represent an NPC’s current stimulation, 
proximity to some object, or degree of desire.  When 
applied to the Stimulus attribute, confidence represents 
how confident the NPC is that he is sensing some stimulus.  
For example, the confidence of a Character Fact’s 
Stimulus attribute indicates the current level of visual 
stimulation that the NPC is aware of for this character.  
The confidence associated with the Position attribute 
represents the NPC’s confidence in this location as a 
destination.   A sensor that searches for tactical positions 
uses the confidence value of the Position attribute to 
indicate how close the node is to the NPC.  The sensor 
sorts the nodes by distance and normalizes the confidence 
values to fall between 0.0 and 1.0.  The node with the 
highest positional confidence is the closest.  The intensity 
of an NPC’s Desire attribute is characterized by his 
confidence that he is feeling this desire.   The confidence 
value of a Desire Fact’s Desire attribute indicates the 
NPC’s current urge to satisfy some desire. 

The planner can take advantage of the consistent 
knowledge representation and associated confidence values 
while validating preconditions.  Working memory provides 
generic query functions to search for a matching Fact, a 
count of matching Facts, or a Fact with the maximum 
positional or stimulus confidence.  Using this consistent 
interface, the planner can query working memory for the 
nearest tactical position, or the most visible enemy.   

 
Centralized Knowledge 
 

Caching all knowledge in a consistent format does not 
directly improve the efficiency of the planner, but rather 
provides a means of a global optimization.  Facts could be 
hashed into bins based on the type of knowledge, or sorted 
in some manner.  At a minimum, the most recently or most 
frequently accessed Fact could be cached for immediate 
retrieval.  We did not find linear searches through working 
memory to be a performance bottleneck, so we did not 
apply any optimizations.  As the number of Facts scales, it 
may be worthwhile to pursue query optimization. 

Centralizing knowledge in working memory or on the 
blackboard provides the NPC with a persistent context that 
is often lost in FSM or scripted systems, as the NPC 

transitions between states or scripts.  For instance, if the 
NPC eliminates a threat, he can immediately query 
working memory to determine who to target next.  If the 
NPC stops climbing a ladder to fire at someone below, the 
knowledge that he was in the process of climbing a ladder 
persists on the blackboard.  If knowledge is instead stored 
in member variables of states or scripts, information is 
often lost when an NPC’s behavior changes. 

 
Garbage Collection 
 

One notable issue that caching introduces is that of garbage 
collection.  Over the course of the game, working memory 
fills up with Facts that may be no longer useful to the NPC.  
It is unclear who is responsible for cleaning out irrelevant 
facts.  Some of our sensors take the C++ approach to 
garbage collection, where the creator is responsible for 
destroying the Facts that it deposited.  For instance, 
SensorNodeCombat clears existing Facts about tactical 
positions from working memory before creating new ones.  
This scheme does not work as well for sensors like 
SensorHearDisturbance, which creates Facts for 
each disturbance detected, and waits for the planner to 
respond by sending the NPC to investigate, and then clear 
Disturbance Facts upon completion.  We left it in the 
programmer’s hands to clean up Facts in different ways on 
a case by case basis.  A safer approach may be to assign an 
expiration time to all Facts, and collect garbage 
periodically.  Subsystems could extend expiration times 
where necessary. 
 

Lightweight Planning 
 

Outsourcing costly operations to sensors relieves the 
planner of much of the processing burden while searching.  
The planner’s search operation itself is the last obstacle in 
reliably planning fast enough for real-time.  We have taken 
a number of steps to minimize the search space, and 
optimize precondition validation. 

We minimize the search space by placing strict 
limitations on the representation of action preconditions 
and effects.  Preconditions and effects are represented 
symbolically, as a fixed sized array of key-value pairs.  
Appendix B contains a complete listing of our enumerated 
symbols, which are paired with four byte values.  The 
value may be an integer, float, bool, handle, enum, or a 
reference to another symbol.  The planner uses the 
precondition symbols to minimize the search space to only 
those actions that have effects matching the preconditions 
existing in the plan generated so far.  In other words, the 
search only takes potentially fruitful branches rather than 
testing every combination of actions.  Actions are stored in 
a hash table sorted by the effect symbols, so the planner 
can instantly find a list of candidates to satisfy some 
precondition.  One action may be referenced by multiple 
hash table bins if it has multiple effects. 

107



In addition to the symbolic preconditions, we further 
prune the search tree with “context preconditions.”  
Actions may optionally provide a context precondition 
validation function of arbitrary code to prevent the action 
from further consideration.  This validation function is 
where the planner queries values cached in working 
memory, or on the blackboard.  For example, an NPC 
reacting to a disturbance checks his working memory to 
determine which disturbances he is aware of.  If the NPC 
has detected a dangerous disturbance like an incoming 
grenade, he will consider the ReactToDanger or 
EscapeDanger actions, rather than the 
InspectDisturbance or LookAtDisturbance 
actions.  All four of these actions have the symbolic effect 
of setting the DisturbanceExists symbol to false.  
An action may also have a context effect function, which 
runs arbitrary code after the action completes execution. 

The planner represents its view of the current state of 
the world using the same array structure as that used to 
represent symbolic preconditions and effects.  This makes 
it trivial to validate any precondition.  We index the array 
by the enumerated symbols, so we can instantly determine 
if the planner believes that WeaponArmed is true, or 
AtNode equals “node66” in the current world state. 

Storing the symbols in a fixed sized array of key-value 
pairs does restrict preconditions and world state 
representation in several ways.  First, we have no means of 
describing who a symbol refers to.  Next, preconditions are 
limited to a conjunction of clauses.  Each symbol may only 
be used in one clause of an action’s complete precondition 
expression.  Finally, the total number of unique symbols 
needs to be managed, to minimize memory consumption 
since each node of the search tree contains a copy of the 
state of the world determined so far.   

In our initial prototype, we tried to support more 
arbitrary precondition expressions, but were unable to get 
the required performance.  We thought it might be useful 
to be able to express preconditions like: 

 
((Bob AtNode “node33”) ^ 

(Joe AtNode “node43”)) V  
(Bill AtNode “node99”) 
 
Allowing variable numbers of clauses with repeated 

symbols led to dynamic memory allocations and slower 
precondition validation.  With the fixed sized array 
indexed by symbol, we get instant look-ups of any value.  
Evaluating an arbitrary expression requires either 
interpreting expressions at runtime, or walking compiled 
expression trees.  We developed strategies to work within 
the limitations of a fixed array of symbols, and have not 
found that these limitations to cause problems.  It is 
possible that the limitations may be more problematic for 
other genres of games. 

Our primary strategy for dealing with our limitations 
is the adoption of an “agent centric” representation.  All 
symbols describe properties relative to the agent himself.  
This relieves us from having to keep track of who is 
associated with each symbol.  An NPC does not need to 
consider the health of every potential enemy inside the 
planner.  All that matters is finding a plan that satisfies 
TargetIsDead.  Subsystems are responsible for the 
details.  The target selection subsystem is responsible for 
constantly identifying the current target out of the known 
threats cached in working memory. 

We deal with the limited total number of symbols by 
keeping each symbol as general as possible.  Many 
symbols have evolved over the course of two years of 
development as needed.  For instance, 
ReactedToDamage evolved from a Boolean symbol 
into ReactedToEvent, which describes an enumerated 
value for the event that the NPC reacted to. 

 
Planning with A* 

 

The planner conducts the actual search by running the A* 
algorithm.  Using A* allows us to leverage the wealth of 
published optimizations developed for navigational path 
planning (Higgins 2002).  Plus, A* supports guiding the 
search with heuristics and cost metrics.  Our heuristic aims 
to minimize the number of unsatisfied symbols in the goal 
state.  We apply a cost to actions to force A* to consider 
more specific actions before more general ones.  For 
instance, try to AttackFromCover before the general 
purpose Attack. 

Our use of A* is easiest to describe with a brief 
example.  An NPC who wants to satisfy the KillEnemy 
goal needs to formulate a plan that results in setting the 
TargetIsDead symbol to true.  All other symbols in the 
goal state are initially unset, as they are irrelevant to 
satisfying KillEnemy. 

A* calculates the heuristic distance to the goal state as 
1.0, because we have one unsatisfied symbol, and the 
actual distance so far is 0.0.  The planner finds two 
candidate actions that have the effect of setting 
TargetIsDead to true:  Attack and 
AttackFromCover.  Both of these actions have a 
precondition that WeaponLoaded is true, but this is 
already the case, so this precondition symbol is ignored.  
AttackFromCover has an additional precondition that 
AtNodeType equals kNode_Cover. 

When the planner computes the distances from these 
candidate actions, both have an actual distance of 1.0, but 
AttackFromCover has a heuristic distance of 1.0 while 
Attack’s heuristic distance is 0.0.  This is due to the 
extra precondition symbol on AttackFromCover.  The 
planner validates the cheapest plan formulated so far, and 
finds that the single Attack action is a valid plan for 
satisfying the KillEnemy goal. 
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We would like NPCs look intelligent by preferring to 
take cover before firing.  Associating a cost with each 
action makes this possible.  By giving the generic Attack 
action a cost of 5.0, while the other actions remain at the 
default cost of 1.0, we can guide A* towards our preferred 
plan.  When we factor in the cost per action, the one step 
Attack plan has an actual distance of 5.0, while the 
actual distance of the two step plan GotoNode, 
AttackFromCover is 2.0.  The NPC will fire from 
cover if possible. 

 
Planning and Dynamic Behavior 

 

The complexity added by distributed processing, caching, 
and planning is only worthwhile if it results in noticeably 
more dynamic behavior.  NPCs that plan in real-time can 
handle subtlety and dependencies, and the biggest benefit 
comes from the ability to re-plan. 
 
Subtlety 
 

NPCs who detect that they are within the blast radius of 
incoming grenades run away, or crouch and flinch.  We 
were surprised to find NPCs outside of the blast radius 
turning their heads to watch the grenades land.  We did not 
intentionally implement this behavior.  NPCs were trying 
to satisfy the EscapeDanger goal, but found the actions 
EscapeDanger and ReactToDanger were invalid 
due to the distance from the NPC to the grenade.  The NPC 
found the next best candidate action, 
LookAtDisturbance,  to set the 
DisturbanceExists symbol to false.  This action was 
intended for NPCs reacting to disturbance sounds, but 
worked well as a reaction to distant flying grenades.  These 
nuances add depth to behavior, and fall out for free when 
NPCs formulate their own plans in real-time. 
 
Dependencies 
 

The planner chains actions with other actions to satisfy 
dependencies in the form of preconditions.  Some of these 
dependencies may originate from objects in the game 
world.  Invisible game objects placed by designers to 
specify tactical positions may optionally have 
dependencies on other objects.  For instance, an NPC 
needs to flip the table over before taking cover behind it.  
The planner handles dependencies like this by chaining 
additional actions.  The final plan will look like this: 

 
GotoNode(TableNode) 
UseObject(Table) 
GotoNode(NodeCover78) 
AttackFromCover() 
 
There is no limit to the number of dependencies that 

can be chained.  Perhaps an NPC will need to activate a 

generator to turn on the power before operating a crane to 
drop a cargo container that he can use for cover. 
 
Re-Planning 
 

Our final example of dynamic behavior puts all of the 
pieces together while illustrating the power of re-planning.  
An NPC’s SeeEnemy sensor detects a threat in a nearby 
office, and adds a Character fact to working memory.  The 
target selection system responds to the new fact by 
specifying a new target on the blackboard.  The NPC re-
evaluates his goals, and selects KillEnemy as the most 
relevant. 

The NPC formulates a plan to GotoTarget and 
Attack, using a melee weapon.  While closing in on the 
threat, the enemy slams the door to the office and blocks it 
with his body.  The closed door invalidates the path to the 
target, in turn invalidating the GotoTarget action. 

After re-evaluating his goals, the NPC determines that 
TraverseLink is now the most relevant.  He needs to 
find a way to traverse the NavMeshLink containing the 
door.  He formulates a plan with a single action, 
TraverseBlockedDoor.  The NPC kicks the door, but 
it still does not open.  TraverseBlockedDoor has a 
context effect function that records that the door is still 
blocked in working memory. 

The plan has completed, so the NPC once again re-
evaluates his goals.  The TraverseLink goal is no 
longer relevant due to the cached WorkingMemoryFact 
indicating that the door in front of him is impassable.  He 
once again tries to satisfy the KillEnemy goal with the 
plan GotoTarget and Attack.  The path planner takes 
into account the working memory fact indicating that the 
door is impassable, and finds an alternate route.  The NPC 
runs around to the side of the office, dives through the 
window, and attacks the enemy.  Diving through the 
window actually requires one more round of re-planning, 
because the window is a NavMeshLink traversable with 
the TraverseLink goal. 
 

Future Work 
 

Our experience applying real-time planning to games has 
met or exceeded our goals.  We have been able to produce 
more dynamic behavior than previously possible with our 
technology, while keeping the system modular, 
maintainable, and reusable.  In fact, we already have a 
second game in development using the planning based AI 
systems; Condemned for Xbox2 (Monolith 2005b).  There 
is plenty of room for improvement in future generations of 
the system, however.  Our planner has no scheduling 
facility, so all ordering of actions has to be enforced 
through more restrictive preconditions.  This can lead to 
less generic, reusable actions.  We could benefit from the 
introduction of a scheduler, enforcing orderings such as 
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DrawWeapon then GotoTarget, instead of 
GotoTarget then DrawWeapon.  We could also benefit 
from adding a hierarchy to support compound actions.  
There are situations where designers always want a 
specific sequence of actions to occur, and it would be 
much simpler to specify an unbreakable compound action 
than to enforce a sequence of actions by chaining 
preconditions and effects.  Finally, we have only applied 
planning to the actions of individual NPCs.  In the future, 
generating plans for squads of NPCs in real-time could 
produce more dynamic, robust coordinated behaviors. 
 

Appendix A:  Symbols 
 

kSymbol_AnimPlayed 
kSymbol_AtNode 
kSymbol_AtNodeType 
kSymbol_AtTargetPos 
kSymbol_DisturbanceExists 
kSymbol_Idling 
kSymbol_PositionIsValid 
kSymbol_RidingVehicle 
kSymbol_ReactedToWorldStateEvent 
kSymbol_TargetIsAimingAtMe 
kSymbol_TargetIsDead 
kSymbol_TargetIsFlushedOut 
kSymbol_TargetIsSuppressed 
kSymbol_TraversedLink 
kSymbol_UsingObject 
kSymbol_WeaponArmed 
kSymbol_WeaponLoaded 

 
Appendix B:  Actions 

 

Animate 
Attack 
AttackFromNode 
AttackFromVehicle 
AttackGrenade 
AttackGrenadeFromCover 
AttackLunge 
AttackMelee 
AttackReady 
BlindFireFromCover 
DismountVehicle 
DodgeRoll 
DodgeShuffle 
DrawWeapon 
EscapeDanger 
FlushOutWithGrenade 
Follow 
GetOutOfTheWay 
GotoNode 
GotoNodeOfType 
GotoTarget 
GotoValidPosition 

HolsterWeapon 
Idle 
InspectDisturbance 
InstantDeath 
LookAtDisturbance 
MountVehicle 
ReactToDanger 
Recoil 
Reload 
SuppressionFire 
SurveyArea 
TraverseBlockedDoor 
TraverseLink 
UseSmartObjectNode 
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