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Abstract

Speech and natural language are natural and convenient ways
to interact with artificial characters. Current use of language
in games, however, is limited to menu systems and inter-
player communication. To achieve smooth linguistic commu-
nication with synthetic agents, research should focus on how
language connects to the situation in which it occurs. Taking
account of the physical scene (where is the speaker located,
what is around her, when does she speak?) as well as the func-
tional aspects of the situation (why did he choose to speak?
What are his likely plans?) can disambiguate the linguistic
signal in form and content. We present a game environment
to collect time synchronized speech and action streams, to
visualize these data and to annotate them at different stages
of processing. We further sketch a framework for situated
speech understanding on such data, taking into account as-
pects of the physical situation as well as the plans players
follow. Our results show that this combination of influences
achieves remarkable improvements over the individual situ-
ation models despite the very noisy and spontaneous nature
of the speech involved. This work provides a basis for devel-
oping characters that use situated natural spoken language to
communicate meaningfully with human players.

Introduction
Many of the latest multiplayer games provide ways for play-
ers to communicate with each other via natural language,
either by using typed messages, or increasingly by speech.
Given the increasing popularity of online multiplayer envi-
ronments and their need for convenient and efficient ways to
coordinate strategies, share information and socially banter,
it should come as no surprise that game designers are resort-
ing to language as a natural communication medium. The
same need to coordinate, share information and banter ex-
ists between human players and synthetic characters in the
game. In this case, however, current games resort to a com-
bination of point-and-click interfaces and menu driven dia-
logues, often to the frustration of both game designers and
players. These interfaces are awkward, unnatural and incon-
venient. Using natural language and speech to communi-
cate with in-game characters, on the other hand, seems like
an overly hard problem due to the noisy and spontaneous
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nature of the language used and its syntactic and semantic
complexity.

In contrast, we believe that natural language and speech
can be used as a communication medium with synthetic
characters if we leverage the same contextual information
that human beings use - the physical, referential context and
the functional, intentional context. We argue here that it is
possible to capture many aspects of context because of the
relative ease of forming a model of the situation the speaker
finds him- or herself in when playing a game. In-game ob-
jects and characters are easily accessible in terms of their
location, properties and visual appearance, and can serve
as a basis for reference during speech understanding. On
the intentional level, the design of the game provides many
clues as to the players’ possible plans and needs. Games
thus provide an ideal research platform for studying how to
leverage the situated nature of speech to produce better un-
derstanding algorithms in realistic conditions. At the same
time, such research can feed directly into game platform de-
sign and lead to synthetic characters that reliably understand
a player’s speech.

In this paper, we first present a game environment based
on Bioware’s Neverwinter Nights (Bioware Inc. 2002) role
playing game that lets us capture players’ action and speech
in a sample scenario. Acknowledging the amount and com-
plexity of data captured in this way, tools to visualize and
annotate them play a central role in the next section of the
paper. We then demonstrate a simple version of a situational
model for the game, one that captures aspects of the physi-
cal in-game situation and recognizes the player’s plans. Our
Framework for Understanding Situated Speech (FUSS) oc-
cupies the remainder of the paper, integrating the situational
model into a probabilistic speech understanding process. We
show that this approach, despite the present simplicity of the
situational model, can disambiguate a significant number of
referents using both the physical and the intentional parts of
the model. Either part alone does not nearly perform as well.
Finally, we sketch the use of such an understanding frame-
work in building a prototype synthetic character that under-
stands noisy, spontaneous speech commands in the game.

Related Work
Some work that involves understanding language using situ-
ation models includes Schuler’s reference to a symbolically
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encoded situation during speech parsing (Schuler 2003),
Narayanan’s interpretation of news stories using an action
representation (Narayanan 1997), and our own grounding of
spatial language in visual scenes (Gorniak & Roy 2004). In
contrast to these approaches, which deal dealing solely with
visual scenes or abstract action models, we here particularly
focus on language that occurs when speakers share a com-
mon history and common future plans, making reliance on
shared intentions a common occurrence. Of these related
works, only Schuler also uses a speech recognizer as in-
put (as opposed to transcribed speech or text), but does not
maintain ambiguities all the way down to semantic inter-
pretation as we do here. Speech sausages and probabilis-
tic Earley parsing are well known in the speech recogni-
tion literature (Mangu, Brill, & Stolcke 1999; Stolcke 1995),
and stochastic context free grammars have recently been
proposed for plan recognition in other domains (Bobick &
Ivanov 1998; Pynadath & Wellman 2000).

The Game

Figure 1: The in-game perspective of a player in Neverwin-
ter Nights, playing the module used in this paper.

Neverwinter Nights (Bioware Inc. 2002) includes an ed-
itor allowing the creation of custom game worlds and has a
large and active online player base. A typical in-game view
as seen by a player of our game module is shown in Fig-
ure 1. The two player module is structured around a puzzle.
To simplify dialogue aspects of the data, we only allow one
of the players to speak. The other (played by the experi-
menter), is in the same real-world room as the first player
(the study participant), but does not speak and does not act
autonomously - he or she only does as instructed. In this way
we restrict interaction to be similar to what commanding an
intelligent but passive machine controlled character would
be like. However, we do not restrict the language used in
any way (except indirectly through the choice of puzzle),
and the speaking study participant knows that a human be-
ing is listening to his or her commands.

Figure 2 shows the map of the puzzle used for data col-
lection. Both players’ avatars start in the large room in the

Chest

Lever Door

Fire Bowl

Figure 2: A diagram of the map used for data collection,
with dashed lines indicating dependencies between objects.

bottom half of the map. The coloured symbols in the map
represent objects (explained in the map legend), whereas the
dashed arrows indicate the dependencies between objects
that must be followed to solve the puzzle. The overall goal
is to light both fire bowls at the same time. The players were
only told about this overall goal, without knowing how to
accomplish it. One chest contains a key that unlocks the
second chest, which in turn contains a key that unlocks one
of the doors. One of the levers opens the door to the second
chest, whereas the other two levers (one behind the second
door) light a fire bowl each. The puzzle cannot be solved by
a single player due to timing constraints: the right door on
the map can be opened with one of the levers, but it closes
again after a short time, making it impossible for the same
person to pull the lever and run through the door. Similarly,
each fire bowl extinguishes itself after a few seconds unless
both are lit, making it impossible for a single person to light
both quickly enough. Participants usually solved the puzzle
within 15 minutes.

During data collection, we recorded player’s in-game ac-
tions, and his or her speech using a head-worn microphone.
This yields a complete transcript of in-game actions and
time-synchronized audio events. We ran our own utter-
ance segmenter on the recorded audio, which produced 554
speech segments across 6 sessions (Yoshida 2002), and man-
ually transcribed these utterances.

Visualizing and Annotating the Data
Figure 3 shows the interface we have developed for brows-
ing and annotating the data we collected. At the bottom of
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Figure 3: The tool used to replay, parse and annotated the utterances in their situational context

the window we find a panel showing a timeline of the events
that occurred during the session. Events can be filtered us-
ing the check boxes above, quickly examined via overlayed
information, and the user can zoom into and pan across dif-
ferent sections of the timeline. Furthermore, the timeline
provides controls to step through a replay of the events, dur-
ing which audio events are replayed and the map reflects
player actions. The map panel is shown above and to the
right of the timeline, and shows a picture very close to the
one players see during game play, except that the camera
can be arbitrarily controlled by the user and players are rep-
resented by red arrows.

The remainder of the window is filled with controls that
let the user annotate a specific utterance. In the figure, the
utterance “can you just keep on pressing on the other lever”
has been selected. Above the map is a parse tree of the ut-
terance. We initialize parse trees with the Stanford Parser
Stanford Parser (Klein & Manning 2003) using a standard
grammar for written English. This does not capture many of
the phenomena encountered in spontaneous, situated speech,
and so the parse tree panel allows the user to correct the
parse tree, which is interactively re-formatted. The controls
on the left show information about the currently selected
syntactic node, and allow for re-parsing of the original ut-
terance. Below these controls are the annotation markers for

the current utterance. While the top set of these is largely un-
used in the study presented here (except to exclude noisy or
off-topic utterances), the node annotation button below lets
the user select a referent for the currently highlighted syn-
tactic constituent. In the case shown, the user has selected
the noun phrase “the other lever” and used the map panel to
indicate the lever this utterance refers to, which is translated
into the appropriate reference indicator by the interface.

Using this tool, we selected 90 utterances that contain
noun phrases directly referring to a physical object in the
game world, such as “activate the lever for me” or “can you
come over here and pick this”, but not “do that again” or “on
the left”. We annotated each of these noun phrases with its
correct referent. We built a closed vocabulary trigram lan-
guage model for the speech recognizer using the transcripts
from the other sessions. The speech recognizer produced
utterances of an average length of 23 words, while the tran-
scribed utterances only average to 7 words each. Most of the
extra hypothesized word slots stem from silences and noise
within or around the actual speech utterance.

The Intentional Situation Model
While the physical situation model we employ for speech
understanding in the game world simply consists of the
physical objects present in the puzzle, the intentional model
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is more complex. Despite the task players engaged in be-
ing an exploratory one, it was one with a clear goal (light-
ing both fires) and a limited number of ways to achieve this
goal. We only show results about the predictive aspect of
plan recognition in this paper, but it is important to keep in
mind that players explicitly and implicitly refer to different
levels within their own plan. For example “pull the lever”
and “let me out” may be asking the other player to engage in
exactly the same action, but bind to different levels of a plan
hierarchy.

To recognize such hierarchical plans from players’ ac-
tions, we employ a predictive probabilistic context free
grammar parser, namely an Earley parser (Earley 1970;
Stolcke 1995). Due to the predictive nature of the Earley
parser it is possible to estimate the probability of a symbol
being parsed at the next step by summing the probabilities of
all rules currently being considered by the parser that have
the symbol in question as the next symbol in their tail. Dur-
ing plan recognition, this lets us predict which objects the
player will likely want the other character to interact with
next, namely those that are involved in actions estimated as
likely in the next steps of the plans currently in progress.

To train the plan parser, we abstracted the event traces of
each data collection session into a higher level description
that only contains the crucial events, such as object interac-
tions and room changes. Subsequently, we hand-crafted a
grammar that captures the sequence of events necessary to
solve the puzzle in a hierarchical fashion, including multi-
ple ways to solve the puzzle (e.g. opening a door to let the
other character into a room vs. asking him to open the door).
The grammar also includes sets of rules that have NOOP (a
’skip’ symbol) as a top-level symbol so that exploration by
the player is captured. We then estimated probabilities for
this grammar using rule counts from the sessions other than
the one being tested.

Grounding Language in the Situation Model
The predictions made by the plan parser now need be in-
tegrated with the words in an utterance and their referen-
tial targets to determine a most likely referent. We once
more employ a probabilistic context free grammar parser,
this time one that parses in a non-predictive bottom up mode,
to robustly find grammatical fragments in the utterance. For
each of the data collection sessions, we used the corrected
parse trees of five sessions to learn a probabilistic context
free grammar for the remaining one.

We augment the lexicon with information indicating the
possible referents of words. As the parser completes syn-
tactic constituents, it assigns a combination of their child
constituents’ referents to the newly created one. Methods
like this one that drive semantic interpretation via syntac-
tic parsing can achieve good referent resolution performance
when they use more sophisticated physical situation models,
as long as the situation is constrained such that the speaker’s
intention is clear from his or her utterance and the physical
scene (Gorniak & Roy 2004). In our task here, a more so-
phisticated physical model that includes distance measures,
containment relationships and object properties would en-
hance the performance when combined with semantic bind-

ings that make use of these features. However, due to the
strong planning aspect in the task used here, speakers did
not use language containing explicit spatial references of-
ten. Rather, they most often referred to objects via simple
deterministic noun phrases (“the lever”), despite there being
multiple possible referents for such a phrase. Thus, the com-
bination of physical and intentional model proposed here is
not only beneficial, but necessary for referent resolution in
this case.

The language parser yields a set of grammatical fragments
with associated probabilitiesP (wi...k|G), the probability of
words i throughk in the utterance given the grammarG.
When binding to possible referents as described above, the
parser also producesP (R|wi...k), the probability of refer-
ents given a segment of the utterance. Using Bayes’ law
we can convert this intoP (wk...i|R) (the necessary prior
will be discussed below), multiply it byP (wi...k|G) (us-
ing some believable independence assumptions) and apply
Bayes once more to yieldP (R|wk...i, G), the probability
that the utterance fragment refers to an entity in the situ-
ation model. Note that while in the discussion here enti-
ties are assumed to be physical objects, they could equally
well be other things, such as plan fragments produced by
the parser, as discussed above. The necessary prior for this
second application of Bayes’ law isP (R), the probability
of referents. To integrate the intentional model into the un-
derstanding process, we use its predictions as priors at this
point. In this way, bottom up physical language grounding
and top-down intentional language grounding produce a co-
herently integrated estimate of the most likely referent.

Capturing Ambiguity in Speech
Typed text is one possibility for communicating with syn-
thetic characters using natural language, but it is an incon-
venient one in the game context. Often the player is using
his or her hands for other game controls, such as command-
ing his or her own avatar, and typing messages in addition
quickly becomes an annoyance. Speech offers itself as a
convenient alternative, but as it is produced spontaneously
in the middle of a game it is likely to be acoustically, lexi-
cally and syntactically noisy. Our data bears this out, and the
Sphinx 4 speech recognizer we use for our system achieves
only a 50% word error rate. This is partially due to the very
small size of our sample data set producing the language
models, but probably represents a realistic figure for a more
complex game requiring a larger vocabulary as well as dia-
logue.

To overcome this problem, we have augmented the speech
recognizer with ’sausage’ generation facilities. Sausages are
compact representations of possible hypotheses produced
by a speech recognizer (Mangu, Brill, & Stolcke 1999;
Hakkani-Tur & Riccardi 2003). Figure 4 shows a sausage
from the data for the spoken utterance “Can you open the
gate again.” Nodes are shown in order of decreasing proba-
bility from top to bottom with the correct nodes highlighted.
“<noop>” and “<sil>” are special words that stand for a
possible word skip (i.e. the possibility that no word oc-
curred in this slot) and a silence word, respectively. The
example shows that the correct word is often not the one
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Figure 4: A sample sausage produced by Sphinx 4 for the utterance “Can you open the gate again”.

with the highest probability, and that confusion varies from
a single word choice to more than 10 choices. When follow-
ing the path through the sausage that produces the fewest
word errors (the “sausage oracle”), we achieve a word error
rate of 23%. As we care less about transcribing the correct
words and more about understanding the speaker’s intention,
this rate represents a more realistic speech recognizer perfor-
mance for our task.

The sausage representation allows us to compute the like-
lihood of any path or set of paths through the sausage. In-
stead of single words, we offer each word in a slot with
its associated probability to the probabilistic parser. The
parser thus considers all possible paths through the sausage
as is proceeds, and integrates the speech recognizer’s acous-
tic and language model probabilities into the understanding
framework. By computing the probabilities of the relevant
subsets of the sausage, we can also compute the needed
priors for the integration of referent probabilities discussed
above.

A Synthetic Character that Responds to
Speech Commands

We have implemented a machine controlled character for
Neverwinter Nights that uses the FUSS presented here to
do a player’s bidding. During gameplay, we continuously
update the physical and intentional situation models as the
game progresses, and perform speech recognition, parsing,
and binding to the situation models whenever the player
speaks. The synthetic character currently only fulfills rel-
atively simple commands such as opening chests and attack-
ing monsters, but it does so robustly and by taking into ac-
count the situation. For example, it will interpret the same
utterance (e.g. “pull the lever”) differently at two differ-
ent points in time, and understand correctly despite the top
speech recognizer hypothesis being the wrong one.

Given the 90 utterances that had noun phrases directly re-
ferring to objects in the physical game setting, we asked the
question of how often often this character would be able to
determine the correct referent using the framework sketched

Physical Only PlanRecognition Only Full Model
27/90(30%) 21/90(23%) 50/90(56%)

Table 1: Fraction of referents correctly understood

here. Table 1 shows the fraction of correctly determined ref-
erents using only the physical bindings, only the plan bind-
ings, and using the integration of both aspects of the situa-
tion model into the understanding process. Integrating both
aspects of the model clearly goes a long way towards robust
disambiguation, even with utterances this noisy. We have al-
ready discussed other ways to improve disambiguation per-
formance through more sophisticated physical models and
language bindings, and expand on this below.

Figure 5 shows the successful disambiguation of the
sausage in Figure 4. The relevant words of the sausage are
shown at the top of the figure, followed by a few of the con-
stituents the linguistic parser assigns to them (the full Earley
parse contains thousands of constituents). The parser finds
the lengthy and highly probable phrase from the sausage
shown here, and the physical binding of “gate” produces the
highly skewed probability distribution on the left, where the
two bars correspond to the two doors in the puzzle. At the
bottom of the figure is another partial parse, this time of the
event stream. The solidly outlined boxes correspond to the
last few events and constituents found, whereas the boxes
with dashed outlines are predicted constituents. Thus, the
player has just asked for the first chest (chest 4) to be un-
locked, and has retrieved the Chest Key from it. It stands to
reason that he or she will now attempt to access the second
chest to use this key (and acquire the Door Key in the pro-
cess), and the plan parser properly predicts this. To do so,
the player must enter the East room, and the parser thus pre-
dicts that he or she will next ask the other player to pull the
lever that opens the door. Whether this will be expressed by
referring to the lever or the door itself is arbitrary, and thus
the probability distribution produced by the plan recognizer
at this stage is confused between the two objects as likely
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Figure 5: An example linguistic and plan parse fragment showing disambiguation of the sausage from Figure 4: “Can you open
the gate again”.

referents. Merging the two distributions as described above
yields a clear target.

Conclusion
We have argued that natural language and especially speech
are the ideal communication channels for interaction with
synthetic characters in game environments. We have sug-
gested that games make an ideal platform for investigating
frameworks that help such characters understand noisy and
spontaneous speech by capturing its ambiguities and resolv-
ing them using the current game situation. The presented
framework, FUSS, achieves robust referent disambiguation
by taking into account both the objects present when an ut-
terance occurs as well as the speaker’s current plans. We
believe that this approach can be taken much further with
more sophisticated situation models and language bindings.
For example, players in our study smoothly go from utter-
ances like “pull the lever for me” to “open the door” to “hit
me again” to “let me out” (all commanding the other char-
acter to perform the same action), a progression touching on
the physical and planning realms mentioned here, but also
including aspects of spatial confinement and change of lan-
guage due to shared experience and repetition. We believe
that integrating these insights into FUSS will lead to better
coverage and more robust performance. Conversely, this re-
search shows that robust situated speech understanding by
synthetic characters in games is possible, and will hopefully
lead to their deployment in future games.
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