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Abstract

Many learning algorithms concern themselves with learning
from large amounts of data without human interaction. Syn-
thetic characters that interact with human beings present a
wholly different problem: they must learn quickly from few
examples provided by a non-expert teacher. Training must
be intuitive, provide feedback, and still allow training of non-
trivial new behaviours. We present a learning mechanism that
allows an autonomous synthetic character to learn sequences
of actions from natural interaction with a human trainer. The
synthetic character learns from only a handful of training ex-
amples, in a realtime and complex environment. Building
on an existing framework for training a virtual dog to per-
form single actions on command and explore its action and
state space, we give the dog the ability to notice consistent
reward patterns that follow sequences of actions. Using an
approximate online algorithm to check the Markov property
for an action, the dog can discover action sequences that re-
liably predict rewards and turn these sequences into actions,
allowing them to be associated with speech commands. This
framework leads to a natural and easy training procedure that
is a version of Backward Chaining, a technique commonly
used by animal trainers to teach sequences of actions.

Introduction
The work described in this paper relates to work on learn-
ing in interactive synthetic characters, specifically synthetic
dogs. Blumberg (2002) gives a comprehensive overview of
the learning problems solved by dogs and their computa-
tional equivalents. The synthetic dog used in this work, Do-
bie, is an autonomous animated dog that learns from people
in much the same way real dogs learn from people (Blum-
berget al. 2001). Drawing on previous work in interactive
reinforcement learning, the virtual pup can be trained us-
ing a common technique for animal training called “clicker
training”. Clicker training works by associating the sound
of a toy clicker with a food reward, and subsequently using
the clicking noise as a reward signal during training. Dobie
can be trained to perform actions in response to speech com-
mands using this method (“sit!”, “down!”) and can also be
lured into new motor patterns (rolling over or standing up,
for example) which can again be associated with commands.

To learn from clicker training in a natural and practical
way, Dobie solves several problems at the same time. Dobie
must discover which percepts and actions matter in getting

Figure 1: Dobie in his world, with the trainer’s virtual hands
and clicker

rewards and has to correctly assign credit to the right com-
binations of percepts and actions to associate speech com-
mands with motor sequences. All of this learning must oc-
cur in the realtime, continuous virtual environment Dobie in-
habits (see Figure 1). The environment includes the trainer’s
hands, moved in 3D space via a mouse or hand position sen-
sor, the hands’ states (scolding, clicking, luring with food),
other characters (a distracting butterfly, for example) as well
as the trainer’s speech input from a microphone. Dobie’s
own state includes his position and orientation in space, and
the complex state of it motor control system, which allows
him to assume any natural pose a dog might assume and
to follow motor paths that interpolate realistically between
these poses. One unique aspect of Dobie consists of the fact
that he can learn these things in a short time from natural
interaction with his trainer by exploiting the predictability
of his world and making good use of explicit and implicit
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supervisory signals to guide his explorations.
Dobie, as described in our previous work (Blumberget

al. 2001), could not learn sequences of actions. Generally,
the current perception and action state and a short time win-
dow around it were all that Dobie paid attention to in that
incarnation, making it impossible for him to use cues from
his history or action patterns that extend over several steps.
Real dogs, however, can be trained to perform sequences
of actions using a technique known as Backward Chaining.
In this paper we present a history based state disambigua-
tion algorithm that lets Dobie learn by a version of Back-
ward Chaining while maintaining the paradigm of easy and
intuitive training. Specifically, we let Dobie evaluate the
predictive power of sequences of actions through our state
space discovery algorithm (OFESI) previously designed for
user modeling problems (Gorniak & Poole 2000a). This al-
gorithm has the necessary property of providing quick lo-
cal measurements of the “Markovness” of the current state,
i.e. how much history helps in predicting future rewards.
If some chains of actions do prove useful in predicting re-
wards according to this measure, we let Dobie innovate new
actions that consist of chains of already known actions, and
associate these chains with commands.

The algorithm presented in this paper does not share the
goals of standard machine learning algorithms. Standard al-
gorithms usually have access to large amounts of examples
and are evaluated based on how well they learn the patterns
represented by those examples and how well they general-
ize to new examples. The algorithm we present here has
access to very few examples relative to the complexity of
the problem (less than 30 examples for a continuous, real-
time 3D world and a complex internal state), and its goal is
to provide an intuitive real-time sequence training method
for a non-expert user that is inspired by known dog training
methods. Drawing from known training methods lets us ex-
ploit insights from dog trainers, such as precisely timed re-
wards signals, easily maintainable shared attention between
dog and trainer, as well as the incremental approach to build-
ing up sequences step by step. These insights let us design
an algorithm that is able to mimic the quick, focused and
incremental learning behaviour of real dogs while providing
the same type of feedback to the trainer, but the result should
not be evaluated like traditional learning algorithms because
we make no claims about accuracy or generalization except
that the dog must learn the intended sequences reliably and
quickly, and that failures must be obvious to the trainer.

Clicker Training for Dobie
This section gives a short overview of clicker training for
real dogs as well as Dobie’s computational version of learn-
ing from clicker training. Details can be found in (Blumberg
et al. 2001).

Clicker training (Wilkes 1995) substitutes the sound of a
mechanical clicker for a food reward. This allows for eas-
ier and more accurate training because feedback can be im-
mediate and non-interruptive, and the clicker lets the trainer
mark the exact point in time when the dog earns the reward,
as opposed to when the dog receives the reward. Clicker

training proceeds in three stages. First, a food reward is as-
sociated with the noise of the clicker. Then, the clicker is
used to reward desirable behaviours the dog naturally per-
forms (or that the trainer lures the dog into performing).
Dogs begin to perform these behaviours spontaneously and
more frequently, and by selectively rewarding better ver-
sions of the core behaviours the trainer can guide the dog
towards the final desired motion. Finally, the trainer adds
a discriminative stimulus such as a gesture or a vocal com-
mand at the beginning of the dog’s action. For the sequence
learning paradigm that is the main topic of the paper, we
keep the basic paradigm of clicker training intact: the dog
is trained to distinguish valuable actions and sequences of
actions from others, and after that a cue is associated with
them.

Dobie is an animated dog. He has a hierarchically struc-
tured perception system that concisely models and learns
to model such inputs as Dobie’s virtual surroundings, the
trainer’s graphical hands (controlled by a physical input de-
vice like a vision system), the trainer’s spoken utterances
and rewards and punishments dealt by the trainer. The
hierarchical organization makes searching the state space
tractable for Dobie, focusing search and innovation on small
parts of the percept space. While many percepts are impor-
tant in this paper in that they can serve as triggers for actions
and action sequences, we are primarily interested in Dobie’s
perception of rewards through the trainer’s clicks. It is our
goal to find action sequences that reliably predict this type
of percept.

The learning algorithm presented in this paper integrates
most tightly with Dobie’s action system, which in turn builds
on a pose-graph based motor system. This system lets Do-
bie perform motor actions that correspond to hand crafted
animations as well as interpolate amongst these to produce
novel yet realistic motor patterns. All and only these varied
motor actions known to Dobie can be incorporated in a chain
of actions learned through the work discussed here.

To perform clicker training Dobie works with so-called
action tuples that are augmented state-action pairs contain-
ing information on which percept (utterance, object per-
ceived, etc.) triggers this tuple and which action should be
performed in response. Tuples probabilistically compete for
activation based on activation of their triggers and statistics
collected summarizing their reliability, novelty and value. A
major problem that Dobie solves consists of assigning credit
to the correct action tuple when he receives a reward. His de-
ciding criteria in assigning credit are time windows around
the action that determine which behaviour was visible when
or just before the reward occured, possibly assigning credit
to an action executed some time in the past.

Most importantly, Dobie has the ability to extend his per-
cept tree through learning models for new percepts (e.g. the
speech utterance “sit”), and using such novel percept models
to trigger specialized action tuples. Through the structured
representations of percept and action spaces Dobie can ef-
ficiently determine which action and which percept to spe-
cialize into new instances when credit is assigned. Through
these mechanisms, Dobie replicates a relatively accurate in-
stantiation of clicker training for real dogs.
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To do Dobie justice, it should be noted that he can learn
much more than command associations with a known set of
actions. By placing a virtual piece of food in his or her vir-
tual hand, the human trainer can teach Dobie through ‘lur-
ing’. Dobie will try to get his nose as close as possible to
the virtual piece of food, letting the trainer coax him into
performing new motor patterns (e.g. rolling over) that were
not part of his repertoire initially. By comparing the new
paths through his motor space to known actions, Dobie can
instantiate entirely new motor actions in response to luring,
and proceed to associate them with commands during nor-
mal clicker training. For the purposes of this paper lured
motor actions behave exactly like standard motor actions in
that they can become part of sequences Dobie learns.

Teaching Animals Sequences by Backward
Chaining

Experienced trainers can teach dogs to perform complex be-
haviour sequences like dancing the Macarena (Burch & Bai-
ley 1999). The main set of techniques to accomplish such a
feat is called chaining. A common paradigm within this set
is that of Backward Chaining. In Backward Chaining, the
sequence of actions is built starting with the last action in
the chain, and incrementally adding the actions preceding it
during the training cycle. The learning problems posed to
dogs by sequence learning and some possible mechanisms
that might solve them are discussed in (Blumberg 2002).

Before trying to teach a sequence, the trainer reinforces
all actions that will be part of the sequence by rewarding the
dog when it performs one of them. In response, the dog will
perform these actions more frequently. Even once the ac-
tions are being integrated into the chain, the trainer will still
need to reward them individually on occasion to keep them
strong (Ramirez & Shedd 1999). Once the dog performs all
the actions frequently enough to provide the opportunity to
start chaining them, Backward Chaining training can begin.

First, the trainer associates the last action in the chain with
a cue, say a gesture or a verbal command (Burch & Bailey
1999). Reward always occurs after this action. Once the
dog has learned the cue association and performs the action
reliably in response to the cue, the trainer adds an action
before this one. “Adding” an action here consists of only
rewarding the dog after the last action if it was preceded by
the correct penultimate action, and associating a new cue
with this sequence of two actions. In this way, actions can
be added to the beginning of the chain incrementally, while
the more reliable part of the sequence occurs towards the
end, closer to the reward.

Some of the literature on training claims that “each sub-
sequent behaviour reinforces the earlier one” (Ramirez &
Shedd 1999). We choose to interpret these claims as indicat-
ing that the animal learns to identify useful pairs and chains
of actions that lead to a final reward, rather than taking it lit-
erally for its implication of an implicit reward produced by
later actions.

Detecting Useful Sequences of Actions

OFESI (OFfline Explicit State Induction) is one of a fam-
ily of algorithms to perform keyhole state construction for
Markov models (Gorniak & Poole 2000a). These algorithms
assume that one can observe an agent acting in a shared en-
vironment without access to the agent’s internal state or the
environment’s full state. That is, they assume a coarser but
accessible version of the agent’s state space, and try to de-
rive a more detailed and predictive state space by watching
the agent make decisions. To refine the state space these al-
gorithms record the observable state/action history the agent
follows. They then use the instances of each state in this
history and the chains of state/action pairs leading up to the
instances to evaluate whether a state should be split. The as-
sumption is that a state is a good state if from the histories
collected it looks Markovian, that is, if history does not help
in predicting the events that occur after the state. Siblings of
the algorithm presented here solve this problem for on-line
prediction (ONISI, (Gorniak & Poole 2000b)) and for the
general case of inducing structure for Hidden Markov Mod-
els (SIHMM, (Gorniak 2000)). While we designed ONISI as
an on-line algorithm for next-action prediction, it is unsuit-
able for our purposes here as it does not build the state space
it operates in (the first ’I’ in ONISI stands for ’Implicit’), and
thus does not explicitly provide the target sequence we want
Dobie to learn. Here, we concentrate on adapting OFESI
(Gorniak & Poole 2000a) for Dobie’s realtime environment,
as it explicitly refines state spaces to predict other agents’
behaviour. OFSEI in its original form applies only to simple
Markov models with unlabeled state transitions and without
rewards. The problem here thus consists of adapting its state
splitting mechanism to an environment that includes actions
and rewards, and to make it work in an online non-batch en-
vironment.

Figure 2 shows the schema OFESI employs in perform-
ing a Markov check, adapted to the problem Dobie faces in
evaluating his own actions. Instead of states, Dobie consid-
ers sequences of motor actions that can either be followed
by a reward (“Click!”) or not. The algorithm considers all
distinct fixed length history sequences that have preceded an
action, for example “down” in Figure 2. This action is asso-
ciated with a reward distribution (here, for “down” a reward
(7 instances) is as likely as no reward (also 7 instances)).
Each of the history segments is also associated with a re-
ward distribution (for example, the last sequence in Figure 2
predicts no rewards). OFESI answers the question whether
these sequences can be grouped to form new actions that
better predict future rewards than the action alone.

To approximate an answer to this question, OFESI first
randomly groups the history segments associated with a
state into two groups, and sums the sequence predictions
per group to compute a prediction for the group. The lower
part of Figure 2 shows an example split, where the first se-
quence is in a group by itself, and the remaining sequences
are grouped together, predicting a ratio of 1 reward to 6 per-
formances of sequences within this group.

To evaluate the quality of a split, OFESI uses the infor-
mation needed to fully predict the next action (Shannon &
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Figure 2: OFESI action splitting method for synthetic char-
acters

Weaver 1949):

I(A) = −
N∑

i=1

P (ri) log P (ri) (1)

whereA is the full set of action sequences leading up to an
actiona, andP (ri) is the probability with which a reward
of typei chosen fromN rewards will be credited toa. Cur-
rently for DobieN = 2, namely he either gets a reward
or not, but the OFESI algorithm allows for any number of
different types of rewards (or state transitions, in OFESI’s
original formulation).

A subsetA1 of the sequence setA induces a new re-
ward distributionPA1(ri) and leaves a remaining informa-
tion need of

R(A1) = −
N∑

i=1

PA1(ri) log PA1(ri), (2)

for that part of the original sequence set, so the split ofA
into A1 andA2 yields an information gain of

G(A,A1, A2) = I(A)− P (A1)R(A1)− P (A2)R(A2),
(3)

whereP (A1) is the probability with which the predictions
grouped into substateA1 occur, obtained by adding the
probabilities of sequences within the subset (similarly for
P (A2)). WhenG is maximized, the subsets producing it
are best new action sets in the sense that for the history
recorded and the finite length of sequences considered they
maximally improve the predictive power of the two new sets
of sequences over the original set associated with an action.

To perform the maximization, OFESI employs a stochas-
tic local search (Hoos 1998) which is likely to find a good
split after a reasonable number of steps, especially in the
case of only two types of rewards. The search starts with
two random subsets of sequences and moves exactly one se-
quence from one set to the other. The algorithm moves the
sequences that increases information gain the most with a
pre-set probabilityp (for Dobiep = 0.95), and moves a ran-
dom sequence with probability1 − p. Other parameters to
the search are the number of steps after which a sequence
can be moved again and when to perform a reset after the
search has stagnated. In the relatively simple problem Do-
bie solves (with a small number of reward types, few possi-
ble actions and short history sequences) these parameters do
not play a major role as the algorithm almost always finds
the optimal solution in a few steps.

Two parameters control OFESI’s decision as to whether
a split is considered successful.Gmin is the minimum in-
formation gain that needs to be achieved, andRmin is the
minimum sum of reward/no-reward instances that each set
of sequences must predict. For natural training in Dobie we
foundGmin = 0.1 andRmin = 5 to be reasonable values.

If a successful splits occurs, OFESI can be run recursively
on the resulting sets of sequences to see whether further
splits are possible. We discuss the implications of this pos-
sibility in the next Section.

Sequence Learning for Dobie
As Dobie performs actions and learns perceptual associa-
tions, he keeps track of which actions he performed in which
order and whether he credited them with a reward as dis-
cussed in a previous section. He keeps an efficient look-up
index to quickly access all fixed length history segments pre-
ceding the current action. When he performs an action and
has made the decision as to whether this action received a
reward or not, he runs OFESI as described in the previous
section to determine whether a sequence of actions exists in
his history to predict a reward better than the current action
alone. If he finds such a sequence, he adds the best candidate
action sequence to his action repertoire.

Note that OFESI seeks the best split and does not neces-
sarily produce a group containing only a single action se-
quence for each successful split. Currently, Dobie picks an
action sequence to turn into an action in a two step pro-
cess: he first picks the set predicting the most rewards, and
within that set picks the sequence predicting the most re-
wards. Note, however, that with consistent training through
backwards chaining OFESI does reliably produce a set con-
taining only the intended action sequence. Only if the trainer
ambiguously and somewhat consistently rewards different
action sequences will a set containing more than one action
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sequence be created. This points to a common problem in
training animals, namely that the trainer has to be very care-
ful about identifying which action a dog thinks it is perform-
ing, and must only reward the intended actions. Dobie could
deal with multiple sequences in a set in a different way, in-
stantiating multiple chaining actions at a time to see which
ones will be associated which commands. This is easily pos-
sible within the proposed framework, but would likely be
confusing to the human trainer. Finally, also note that OFESI
can produce more than two sets by hierarchically continuing
to split result sets. This is similar to the case in which a set
contains several action sequences, but now Dobie has much
better reason to believe that he should instantiate two new
actions as not only their summed rewards improve on the
original action, but distinguishing between them again im-
proves reward predictability. Overall, however, during con-
sistent and incremental training through Backward Chaining
neither of these cases appears.

We now show how the described variation on OFESI
works together with already existing learning behaviours in
Dobie to let him learn from training by Backward Chain-
ing. First, individual behaviours that will later be part of a
sequence are independently reinforced. That is, the trainer
clicks in response to Dobie performing one of the desired
actions, increasing the likelihood of Dobie choosing the ac-
tion in the future. Once Dobie performs the range of actions
comprising the sequence autonomously and consistently, the
last action in the chain is associated with a speech command
using the usual association training. In response, Dobie in-
novates a specialized version of this action, one that is trig-
gered by the appropriate speech command. Once Dobie re-
liably responds to the new command, the trainer stops giv-
ing the command arbitrarily, and rather starts giving it in
response to Dobie performing the penultimate action in the
desired chain. If Dobie now performs the last action in the
chain when it is not preceded by the penultimate action, he
does not receive a reward. Once Dobie has performed this
action sequence followed by a reward a number of times,
running OFESI at every time step lets him split off the se-
quence as a new action. After some time, the trainer can start
associating a speech command with the sequence, and Do-
bie will innovate a specialized version of the sequence that
is triggered by the command.

There are two strategies to train Dobie to perform se-
quences of length longer than two. One option, shown in
Figure 3, is to set the length of history segments consid-
ered by OFESI to a number larger than two. Dobie can still
be trained by backward chaining, but OFESI will split off a
whole set of sequences (namely the ones ending in the de-
sired action pair). This strategy now requires Dobie to turn
this set as a whole into a new action, which randomly selects
one of its member sequences when activated. A subsequent
split would produce a set that all agree in the last two actions,
and so on. We have not implemented this strategy, mainly
because the search and triggering problems become harder
with longer sequences, making it easy for Dobie to draw
wrong conclusions. The alternative approach is to restrict
Dobie to considering length two action sequences and to re-
peat the training procedure, but this time with the freshly

Figure 3: Learning long action chains, first proposal

trained action pair as the last action of a new pair. This ap-
proach seems more straightforward and realistic to us, be-
cause it requires less bookkeeping and search on the dog’s
side and provides a more intuitive chaining paradigm for the
trainer, because the shorter chains can already be associated
with commands to facilitate training. In the first proposal
only the completed chain can be triggered by a command,
which leads to a large sequence space for trainer and dog to
explore together until the correct action sequence is estab-
lished.

Figure 4: Learning long action chains, implemented pro-
posal
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Discussion and Future Work
We have implemented this second strategy for using OFESI
to let Dobie learn sequences of actions by Backward Chain-
ing. As expected, he learns to perform sequences relatively
quickly in response to very consistent rewards, and even
manages to ignore some reward inconsistencies due to the
approximate and probabilistic nature of the sequence identi-
fication algorithm employed. The length of actions learned
using the implemented paired chaining method is limited
only by the trainer’s patience and ability to remember long
sequences to provide consistent rewards. Practically, it is
possible to train Dobie to perform a two step sequence of
known actions in a single training session lasting under 15
minutes, but longer sequences quickly grow in time require-
ments, mostly because the sequences themselves take longer
to perform. Note again that while 15 minutes seems like
eons for standard machine learning algorithms, these are 15
minutes of realtime interaction with a human trainer (less
than 30 actual examples) and should be compared to teach-
ing a very attentive and willing to learn real dog a very short
sequence of actions.

The first extension to this approach to sequence learning
we would like to see within Dobie is a generalization to ac-
tions other than the motor action leaf nodes of the action
tree. This requires a subtler mechanism for measuring an
action’s duration. Further down the line we hope to inte-
grate attention foci and object directed sequences into this
paradigm, letting Dobie learn pick up/drop off sequences as
well as preying behaviours.

As a final remark, we wish to point out that we have in-
terpreted the literature on Backward Chaining in a specific
way when it comes to associating a cue with parts of the ac-
tion sequence being learned. Much of the trainers’ advice
seems to assume that a cue being associated with a new ac-
tion prepended to the sequence can immediately be useful in
triggering the sequence. In our algorithmic interpretation of
the Backward Chaining process, the dog has to identify the
new action as a valuable addition to the chain before a cue
can be associated with this chain. We believe that this inter-
pretation is consistent with the implications of clicker train-
ing in general where cue association follows identification of
desirable actions. Note that to the trainer the cue may well be
useful immediately, even before Dobie identifies the correct
action sequence: it can be associated with the new action
to be added, at first triggering it independently of the sub-
sequent actions, and only later switching to an association
with the new sequence. This makes it easy for the trainer to
trigger the action, and as Dobie only gets rewarded if he fol-
lows up with the correct remaining sequence, it speeds his
learning of the total sequence.

Conclusion
We have demonstrated an online adaptation of an algorithm
that checks the Markov property of a state given an agent’s
history. Inspired by dogs’ ability to learn sequences of ac-
tions from training by Backward Chaining, we have shown
how this algorithm can be used to replicate this type of learn-
ing in an interactive synthetic dog that can already learn sin-

gle action associations from clicker training. We have im-
plemented this approach for Dobie, an animated dog, and
shown it to to allow for intuitive and relatively robust train-
ing of sequences by human trainers. Not only has this ap-
proach yielded a usable and efficient algorithm to teach syn-
thetic creatures sequences of actions, but it also instantiates a
concrete algorithmic interpretation of real dogs’ learning of
sequences. This instantiation has already let us question the
nature of some aspects of the training process of real dogs,
and will hopefully prove an interesting model for designers
of virtual and trainers of real creatures alike.
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