

TimeGate Studios, Inc.

14140 Southwest Freeway, Suite 400
Sugar Land, TX 77478
denis@timegate.com

Abstract
This paper describes a goal-based architecture which
provides a single source for all high level decisions made by
AI players in real-time strategy games. The architecture is
easily extensible, flexible enough to be rapidly adapted to
multiple different games, and powerful enough to provide a
good challenge on a random, unexplored map without
unfair advantages or visible cheating. This framework was
applied successfully in the development of two games at
TimeGate Studios – Kohan2: Kings of War and Axis &
Allies.

Overview
Our mission was to create AI players for two
simultaneously developed real-time strategy games
(Kohan2: Kings of War and Axis & Allies). After having
worked on previous projects that required large amounts of
custom-written AI code for each decision made, we
decided that our primary objective was to provide a single,
easily extensible source for all high-level decisions. In
addition, we needed to provide a solid challenge against a
human player on a random map, with no economic or
military advantage and no visible cheating. Finally, we had
some tertiary objectives such as support for different AI
personalities, user-created AIs, limited teamwork between
allied AIs, and the ability for human players to use team
commands to influence the actions of allied AIs.

In order to accomplish these goals, we developed a two-
layered architecture. The strategic AI uses our goal engine
to make broad decisions which outline the overall strategy
to be followed. It is computationally expensive, but uses a
time-sliced architecture and only needs to think

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

occasionally. The reactive AI then fills in the second-to-
second decisions involved in implementing that strategy.

Our general philosophy throughout this project was that
it is much better to give the AI the ability to make its own
decisions about what to do based on the current situation
rather than hard coding or scripting the AIs decisions. We
felt that this was vital for replayability and for the AI to be
flexible enough to play successfully on random maps. We
also felt (correctly, as it turned out) that this philosophy
would promote emergent behavior that would make the AI
far more effective than anything we might script. With all
of that said, we also recognized that there are situations in
which the designer knows best. Particularly in the early
game, there are certain steps which should be reproduced
every time in order to give the AI a strong opening.

Architecture

Goals
The basic building blocks of our architecture are goals.
Every action that a player might make is described as a
goal, which can be assigned a priority which indicates the
importance of executing that action given the current
situation. A simplified set of goal types might include:

ATTACK – attack an enemy player
DEFEND – defend your own or an allied position

against enemy attack
RECOVER – retreat a damaged actor to a safe

location where it can be repaired
EXPLORE – explore the map, either to discover new

locations or to scout for new enemy construction in
areas you’ve already seen

RECRUIT – build new military or civilian actors
CONSTRUCT – build new buildings
GIVE – give money or actors to an allied player

33

Proceedings of the First
Artificial Intelligence and Interactive

Digital Entertainment Conference

Denis Papp

420 Massachusetts Ave
Lexington, MA 02420
kad@bluefang.com

Kevin Dill
A Goal-Based Architecture for Opposing Player AI

DESTROY – sell a building or disband an actor

Each goal type can have many instances, and goal
instances can be dynamically generated and destroyed. For
example, you might have one ATTACK goal for each
enemy actor, dynamically creating and destroying these
goals as targets enter and exit the game world. The vast
majority of the logic is placed in the goal itself, rather than
in the engine, so that custom goals can be written which
generate their priority based on whatever information
seems appropriate.

Goals are implemented by subclassing from a base class.
The subclass must include code to determine whether the
goal is currently active, whether it is finished, and what its
base and current priorities are, as well as an indication of
what sorts of resources (such as money or military actors)
are required for execution.

A goal is active if it is currently reasonable to execute it.
Consider, for example, the RECOVER goal. This goal
allows an actor to recover when it is damaged, with a
priority that depends on the amount of damage the actor
has taken. If the actor is currently at full health then this
goal is inactive, which allows us to short circuit the
priority calculations and reduce the number of goals we are
comparing in the optimization step (more on all this later).

A goal is finished if, for one reason or another, we can
get rid of it entirely. For example an ATTACK goal is
finished if we successfully destroy the target actor. A
CONSTRUCT goal is finished once the building in
question has been built. Marking a goal as finished gives
us a way to schedule the instance for deletion at a safe
time.

The base priority is the relative priority of that goal
compared to all others given the current game environment
but assuming some reasonable allocation of resources. For
example, the base priority of the ATTACK and DEFEND
goals assumes that the total friendly strength assigned to
the goal is 1.2 times the total enemy strength in the region
(a tweakable setting defined for each AI personality).
Similarly, the CONSTRUCT and RECRUIT goals assume
that sufficient resources can be reserved to pay for the
actor being created.

The current priority is the priority of the goal with the
resources actually assigned. For example the ATTACK
and DEFEND goals will have higher priority if you assign
more strength to them, and lower priority if you assign less
strength. Likewise, the priority of the EXPLORE goal will
vary depending on the location of the scout actor assigned.

A goal is selected if we are actually going to execute it.

The Think Cycle
High-level strategic decisions are made by periodically
running through the goal engine’s “think” process. Goals
selected during one think will remain active at least until
the next time the goal engine thinks.

The vast majority of thinks are scheduled approximately
30 seconds apart, but we also have support for certain
event-driven thinks. For example we might want to think
immediately when we capture an enemy city, or when we
build a new structure. We generally only use event-driven
thinks early in the game, when it is essential that no time
be wasted if we are to remain competitive with human
players.

The first step of the think cycle is to go through all of
the goals and find those which are either finished or
currently inactive. These goals are culled from the list of
candidates so that we don’t waste further time on them.

Next, we determine the base priority of each candidate
goal. To this we add a random fuzzy factor, and if the goal
was selected in the previous think cycle we also add a
bonus for goal inertia. The goal inertia bonus is generally
larger than the fuzzy factor, and is intended to prevent the
AI from flip-flopping between two similarly attractive
actions.

Now that we know the priority of all the active goals,
we face a fairly standard resource allocation problem. The
specific resources to be assigned could include actors,
money, or whatever other resources are necessary to
execute a goal. For example we assign military actors to
attack and defend goals, money and builder actors to
CONSTRUCT goals, and scout actors to EXPLORE goals.
We need to allocate these resources to each goal in such a
way as to optimize the total priority of all selected goals.
This problem is made more complicated by the fact that the
priority of a goal may vary depending on the resources
assigned to that goal. Our third and fourth steps address
this problem.

In our third step, we sort the goals by priority and
generate an initial resource assignment to each one. For
each goal we assign just enough resources to have a
reasonable chance of success – in general, this is the same
as the resource assignment assumed when the base priority
is calculated.

For goals which require money, such as CONSTRUCT
or GIVE, we apply the notion of goal commitment. The
general idea is that we want to be able to save up sufficient
money to execute the more expensive goals as long as that
money can be obtained within a reasonable amount of
time. In practice, this means that we specify the maximum
amount of time we’re willing to wait and save money in
order to accomplish a goal. When we come to a goal for
which we have insufficient cash on hand but all other
resources (such as builder actors) are available, we check
how long it will take to save the required cash at our
current income rate. If this is less than the specified time
limit then we mark all lower priority goals which require
monetary resources as inactive for this think cycle in order
to prevent them from using resources needed for this goal.

The fourth step is actor optimization. In this step, we go
through all the goals which require military actors (such as
ATTACK and DEFEND goals) and calculate the change in
overall priority if we move actors between them. In certain

34

cases it might be advantageous to launch one extremely
strong attack, for example, while in other cases you might
have enough forces to launch two or more weaker attacks.

Similar to goal commitment, we found some cases
where it was advantageous to lock actors onto a goal. This
is an issue which needs to be approached cautiously, since
it violates our basic philosophy that it is better to let the AI
make its own decisions rather than hard-coding behavior.
In almost all cases you want the AI to retain the flexibility
to be able to change its mind when the situation changes,
but there are a few specific circumstances where it was
necessary to override that.

There are two situations in which we lock actors. First,
if an actor is assigned to an ATTACK goal and it has
already engaged the enemy forces it is targeting, it appears
like a mistake for that actor to leave in the middle of the
attack to fulfill another goal (unless it is forced to retreat,
of course). Even if this reassignment is the correct course
of action (which is extremely rare), the player perceives
that the AI has made an error. We always want to maintain
the illusion of intelligence in the eyes of the player, and
doing so requires first and foremost that we avoid actions
which appear to be poorly selected. The second situation is
when an actor is on a RECOVER goal, we lock it until it
has reached full strength (assuming there is a safe location
available for recovery). Prior to adding this lock we would
frequently observe the AI using actors when they were not
quite fully healed, and again this appeared like the AI was
making a mistake.

Once we’ve completed actor optimization we can mark
the goals which we are executing as selected and issue the
appropriate commands. The goal engine then sleeps until
the next think.

The Reactive AI
The goal engine provides only the high level strategy,
which will carry us over relatively long time periods.
Obviously, a finer granularity AI is needed to make the
second-to-second decisions which keep the AI
competitive. For this we used the reactive AI, or RAI. The
RAI runs on a one second think cycle, and makes decisions
such as selecting formations, coordinating arrival of actors,
ordering damaged actors to retreat, and selecting targets
for military actors in combat. Unlike the SAI it is
lightweight enough that it doesn’t require interruption
during its decision cycle.

Egos
One important requirement of our system is that the
designers want to be able to create multiple distinct
personalities for the AI. For example we might have AIs
that prefer certain types of actors, AIs that prefer a rushing
strategy, AIs that prefer to build a strong economic base
before attacking, and so forth. In addition, we want to
allow the players to create their own AIs. This proved to

be valuable during beta testing, when several testers
assisted with final polish.

In order to support this requirement, we use a data-
driven design. Each opposing player is described by an AI
profile, which consists of a name, a brief description, a list
of the nations or races that the profile can best support, and
a list of the egos which can be used by that profile
(including a starting ego to be used when the game
begins).

The vast majority of the data required to run the AI is
contained in the egos. A fully defined ego typically
includes thousands of lines of values – although we do
have support for inheritance, so many of those values are
defined once and then inherited by all other egos. A typical
AI profile includes at least three egos (one for the early
game, one for when things are going well, and one for
emergencies), although many of the player-created profiles
contain far more than that. The information provided here
represents only a tiny subset of the total amount of data
provided in the ego, but it includes what we believe to be
the most important (and commonly used) sections.

Each ego first contains a list of filters which have to be
satisfied in order for that ego to be activated. It is the
responsibility of the designer to ensure that the filters are
set up so that there will always be at least one ego
available (although this failure is handled gracefully).
Once an ego is selected, it will continue to be used until
one or more of its filters are no longer satisfied. At that
point, we activate the first acceptable ego on the list.

We have a fairly powerful filter system, in which any of
a variety of tracked statistics can also be used to filter egos.
The following are the most commonly used statistics.

• current monetary income
• number of cities controlled
• number of military actors available

One thing we do not filter on is elapsed time, again due to
our philosophy of allowing the AI to make its own
decisions based on the game situation. It is infeasible to
predict how quickly the AI will develop given a random
map and an unpredictable set of opponents. For example,
in one game the AI might control three cities in the first ten
minutes of the game, while in another the AI struggles for
longer than that just to obtain a second city. From a design
point of view, it is better to find ways to filter based on the
game situation rather than using an arbitrary measure
which has no bearing on the events which have actually
occurred.

The next section of the ego includes control parameters
for the goal engine and RAI. For example, values to enable
or disable event-based thinks of various types, and flow
control requirements for the network traffic. It also
includes the fuzzy factor and goal inertia to be used when
calculating base priority.

The ego can include construction templates, which give
it sets of buildings which should be built together in cities.

35

All of the stock egos include at least one construction
template which ensures that we have a city which can build
strong military actors. Another commonly used
construction template encourages strong economic
development in the remaining cities. Construction
templates simply provide a bonus to the construct goal – it
is up to the designer to determine whether that bonus
should be large (making it a mandate) or small (making it a
suggestion).

We also support military templates, which tell the ego
which military actors to use together. For example we
might have an ego that prefers to mix infantry and ranged
actors, or one which likes to use a mix of light and heavy
cavalry. Again, these can be mandates or suggestions, and
we can also control what portion of our total actors will be
influenced by these templates.

Next we have controls which allow us to tweak the
overall balance between goal types. These include additive
and multiplicative bonuses for each goal type. Any goal
with a base priority greater than zero will have these
bonuses applied. One of the most useful pieces of
debugging output we have is a spreadsheet which contains
every candidate goal considered during the course of a
game, when it was considered, and its base and current
priorities. This allows us to easily balance the overall
priorities of the different goal types. It also gives us a first
indication of what has gone wrong when we see the AI
making poor decisions.

Finally, we have a plethora of values used to tune the
priorities for each goal type as well as the RAI. Here are
some common tricks we use to tune goal priorities:

• Additive and multiplicative bonuses, which can be
used to scale any numerical value depending on its
importance to the ego. An additive bonus is only
applied if the value is already greater than zero.

• Exponents, which can be used to curve the range of
values. For example when you have insufficient
strength to launch an attack, the goal is still given
some priority but that priority drops off
exponentially based on the ratio between your
strength and the enemy’s strength.

• Minimum and maximum values, which keep some
components from getting too large (or, in the case
of a multiplier, too small).

• Inversion. In some cases, certain egos want a value
to be large while others want it to be small. For
example, some egos prefer to explore close to
known territory while others prefer to explore
distant areas first. The first strategy helps us to find
useful areas such as hostile lairs and resource
locations, while the second strategy is more
effective in searching for enemy players. In order
to control this, we give the option to take the
inverse of that value (1 / value) for that component
of the priority. We then use a multiplicative bonus

and a maximum value to scale the result
appropriately

• Repeat penalties. For example, we might have a
repeat penalty for recruiting certain actor types. We
apply the penalty once for each existing actor of
that type. If we have so many actors of that type
that the total priority is less than zero, then we
won’t recruit any more.

• One time bonuses. These are similar to repeat
penalties but are only applied if we don’t have any
actors of the specified type. For example we might
have a one time bonus to build a structure which
allows us to recruit certain types of actors. By
using one time bonuses with different values we
can exert a high level of control over the order in
which the ego constructs its initial structures.

• Fuzzy factors. In many cases we need a bit of extra
randomness. For example we use a fuzzy factor in
the RECRUIT goal to influence the selection of the
specific actors to be recruited.

The result is a complicated yet extremely powerful set of
parameters for describing how strongly to weight every
consideration used by the AI. It is obviously still the
responsibility of the programmer to identify what factors
the AI should consider, but designers or even players can
then make AIs with highly distinct preferences by
tweaking the weights of those considerations.

Cheating
The original goal was to create an AI that did not cheat at
all. For the most part we accomplished this. However we
did find that in very limited circumstances it was useful to
provide the AI with information that it technically should
not possess, but which would often be available to a
human player through intuition and meta-knowledge of
how random map generation works.

Our first cheat was to provide the AI with perfect
knowledge of enemy strengths (but not actual troop
locations). We tracked enemy strength using a modified
influence map, and when doing so we included the
strengths of actors that were concealed from the AI by the
fog of war. We did not provide the AI with specific
knowledge of those actors or allow it to attack actors (or
buildings) that it could not see. While the information
provided is technically more than a human would have, we
find that a moderately experienced player actually has a
fairly good intuition of enemy strengths, so we didn’t feel
that we were being unreasonable in providing a similar
intuition to the computer player.

This cheat had two significant benefits. First, it saved us
the headache of trying to track the probable location of
actors which the AI has seen once and then lost into the
fog. This is a difficult (and bug-prone) problem. Second, it
creates the illusion of an AI that is intelligent. Reviewers
raved about an AI which could launch diversionary

36

attacks, probe, and use all sorts of advanced strategies. In
reality, much of this was an illusion created by the fact that
the AI was tracking the players changing troop strengths
and reacting accordingly. Judging by player reactions, it
seems that this illusion made the AI quite a bit more fun to
play against.

Our second cheat was in the domain of exploration.
Quite simply, we found that occasionally the AI would
simply fail to find the enemy (or anything else of interest)
until fairly late in the game, and therefore would never get
off the ground. Obviously, an AI which doesn’t present
any challenge in this way isn’t a lot of fun to play against,
and even if it’s something that happens only occasionally
we would like to minimize that frequency. In order to do
this, we provided the AI with a small bonus to explore
areas with “interesting” items (such as monster lairs,
resource points, enemy buildings, etc). Exactly how large
the bonus was and which sorts of items the AI would look
for depended on the ego. We found that experienced
players are able to predict with a fair level of accuracy
where these interesting areas are likely to be based on past
observation of randomly created maps, so this seemed like
reasonable information to give to the AI as well.

Related Work
The philosophy behind our AI borrows much from the
Dark Reign model for Strategic AI (Davis 1999). Although
the implementation details of our systems vary, the general
architecture and desired results are much the same.

The GRUE system presented in (Gordon & Logan 2004)
matches resources to goals fairly strictly. In contrast, the
goal engine can vary the priority of a goal based not only
on which resources are assigned but how many resources
of a particular type are assigned. This can be arbitrarily
complicated (for instance giving a bonus to the priority of
an attack goal which has both ranged and melee units
assigned). On the other hand, GRUE can handle chaining
multiple goals (for instance acquire the machine gun in
order to attack the enemy). The goal engine simply
executes whichever goals are highest priority at the current
point in time.

The SOAR Quakebot (Laird 2000) implements a death
match player for Quake II. Although SOAR is designed to
reason about goals, this architecture lacks the ability to
execute multiple goals at the same time. While that makes
sense for a Quakebot controlling a single agent, it would
obviously not work well for an RTS AI.

The being-in-the-world agent (DePristo & Zubek 2001)
uses a hybrid architecture approach with a truth
maintenance and reasoning component formulating the
high level goals for a reactive layer. Although this system
was successful in executing goals and surviving in the
complex world of a Multi-user Dungeon, it ran into
problems representing continuous resources (such as gold)
and re-enabling invalidated goals in the truth maintenance
system. Rather than trying to make every goal conform to

the requirements of our reasoning engine, the goal engine
places the majority of the logic in the goal itself so that it
can be customized to the needs of that particular task.

Finally, this section would be remiss if it failed to
mention the AI Game Programming Wisdom books (Rabin
2002; Rabin 2003). These books have a wide variety of
articles on game AI, many of which could be related to our
work in one way or another.

Conclusions
Overall, our architecture was a tremendous success (it
delivered a fun, challenging game experience) and
received significant critical acclaim. We believe that the
most important factor in this success was our decision to
avoid hard-coded decisions to the greatest extent possible,
and instead create an AI which contains the intelligence
needed to make its decisions on the fly based on the
current perceived situation. Our data driven design and
easily expansible architecture also made it far easier to
keep up with the ever-changing design of the game than it
had been on previous projects. This was critical to our
success when we had design changes being made late in
the project.

Creating egos turned out to be more difficult than we
had hoped; it requires a fairly technical mindset and a solid
understanding of the design philosophy behind the AI.
Although we hoped to have designer-created egos, in
practice the AI programmer ended up doing the majority of
the data work as well. Some beta-testers did create their
own profiles, and some were extremely good (able to beat
the shipping profiles on a random map), but doing so
required significant support on our part. Some time could
be invested to improve this situation, such as tutorials and
tools, but the bottom line is that any architecture this
powerful and flexible will be complex. In fact, there are
many advantages to having the AI programmer create the
profiles, because this helps understand the code changes
needed to solve problems and limitations encountered.

Perhaps the biggest failure was one not inherent in the
design, but rather a matter of focus. Our primary focus was
to develop an AI which could handle random maps, but we
lost track of the (often divergent) needs of the campaign
AI. The campaign missions were scripted and the
designers needed the ability to control behavior or
communicate objectives to the AI in ways which we did
not support. This resulted in some cases where the AI was
awkward or simply disabled in the campaign. Had we
recognized this problem earlier and focused on it, we
believe both modes of play could have been well
supported.

Acknowledgements
The authors would like to thank the rest of the team at
TimeGate Studios for making this work possible. A great
deal of time and effort went into these two projects, and

37

the AI greatly benefited from the feedback and assistance
we received from all involved.

References
Davis, I. L. 1999. Strategies for Strategy Game AI. In
Proceedings of the 1999 AAAI Spring Symposium on
Artificial Intelligence and Computer Games.
DePristo, M., and Zubek, R. 2001. being-in-the-world. In
Proceedings of the 2001 AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment.
Gordon, E., and Logan, B. 2004. Game Over: You have
been beaten by a GRUE. In Proceedings of the 2004 AAAI
Workshop on Challenges in Game AI.
Laird, J. 2000. It knows what you’re going to do: Adding
anticipation to a Quakebot. In Proceedings of the AAAI
2000 Spring Symposium on Artificial Intelligence and
Interactive Entertainment.
Rabin, S. ed. 2002 AI Game Programming Wisdom.
Hingham, Mass.: Charles River Media
Rabin, S. ed. 2003 AI Game Programming Wisdom 2.
Hingham, Mass.: Charles River Media

38

