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Abstract 
This paper describes a goal-based architecture which 
provides a single source for all high level decisions made by 
AI players in real-time strategy games. The architecture is 
easily extensible, flexible enough to be rapidly adapted to 
multiple different games, and powerful enough to provide a 
good challenge on a random, unexplored map without 
unfair advantages or visible cheating. This framework was 
applied successfully in the development of two games at 
TimeGate Studios – Kohan2: Kings of War and Axis & 
Allies. 

Overview  
Our mission was to create AI players for two 
simultaneously developed real-time strategy games 
(Kohan2: Kings of War and Axis & Allies). After having 
worked on previous projects that required large amounts of 
custom-written AI code for each decision made, we 
decided that our primary objective was to provide a single, 
easily extensible source for all high-level decisions. In 
addition, we needed to provide a solid challenge against a 
human player on a random map, with no economic or 
military advantage and no visible cheating. Finally, we had 
some tertiary objectives such as support for different AI 
personalities, user-created AIs, limited teamwork between 
allied AIs, and the ability for human players to use team 
commands to influence the actions of allied AIs. 

In order to accomplish these goals, we developed a two-
layered architecture. The strategic AI uses our goal engine 
to make broad decisions which outline the overall strategy 
to be followed. It is computationally expensive, but uses a 
time-sliced architecture and only needs to think 
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occasionally. The reactive AI then fills in the second-to-
second decisions involved in implementing that strategy. 

Our general philosophy throughout this project was that 
it is much better to give the AI the ability to make its own 
decisions about what to do based on the current situation 
rather than hard coding or scripting the AIs decisions. We 
felt that this was vital for replayability and for the AI to be 
flexible enough to play successfully on random maps. We 
also felt (correctly, as it turned out) that this philosophy 
would promote emergent behavior that would make the AI 
far more effective than anything we might script. With all 
of that said, we also recognized that there are situations in 
which the designer knows best. Particularly in the early 
game, there are certain steps which should be reproduced 
every time in order to give the AI a strong opening. 

Architecture 

Goals 
The basic building blocks of our architecture are goals. 
Every action that a player might make is described as a 
goal, which can be assigned a priority which indicates the 
importance of executing that action given the current 
situation. A simplified set of goal types might include: 

ATTACK – attack an enemy player 
DEFEND – defend your own or an allied position 

against enemy attack 
RECOVER – retreat a damaged actor to a safe 

location where it can be repaired 
EXPLORE – explore the map, either to discover new 

locations or to scout for new enemy construction in 
areas you’ve already seen 

RECRUIT – build new military or civilian actors 
CONSTRUCT – build new buildings 
GIVE – give money or actors to an allied player 
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DESTROY – sell a building or disband an actor  

Each goal type can have many instances, and goal 
instances can be dynamically generated and destroyed. For 
example, you might have one ATTACK goal for each 
enemy actor, dynamically creating and destroying these 
goals as targets enter and exit the game world. The vast 
majority of the logic is placed in the goal itself, rather than 
in the engine, so that custom goals can be written which 
generate their priority based on whatever information 
seems appropriate. 

Goals are implemented by subclassing from a base class. 
The subclass must include code to determine whether the 
goal is currently active, whether it is finished, and what its 
base and current priorities are, as well as an indication of 
what sorts of resources (such as money or military actors) 
are required for execution.  

A goal is active if it is currently reasonable to execute it. 
Consider, for example, the RECOVER goal. This goal 
allows an actor to recover when it is damaged, with a 
priority that depends on the amount of damage the actor 
has taken. If the actor is currently at full health then this 
goal is inactive, which allows us to short circuit the 
priority calculations and reduce the number of goals we are 
comparing in the optimization step (more on all this later). 

A goal is finished if, for one reason or another, we can 
get rid of it entirely. For example an ATTACK goal is 
finished if we successfully destroy the target actor. A 
CONSTRUCT goal is finished once the building in 
question has been built. Marking a goal as finished gives 
us a way to schedule the instance for deletion at a safe 
time. 

The base priority is the relative priority of that goal 
compared to all others given the current game environment 
but assuming some reasonable allocation of resources. For 
example, the base priority of the ATTACK and DEFEND 
goals assumes that the total friendly strength assigned to 
the goal is 1.2 times the total enemy strength in the region 
(a tweakable setting defined for each AI personality). 
Similarly, the CONSTRUCT and RECRUIT goals assume 
that sufficient resources can be reserved to pay for the 
actor being created. 

The current priority is the priority of the goal with the 
resources actually assigned. For example the ATTACK 
and DEFEND goals will have higher priority if you assign 
more strength to them, and lower priority if you assign less 
strength. Likewise, the priority of the EXPLORE goal will 
vary depending on the location of the scout actor assigned. 

A goal is selected if we are actually going to execute it. 

The Think Cycle 
High-level strategic decisions are made by periodically 
running through the goal engine’s “think” process. Goals 
selected during one think will remain active at least until 
the next time the goal engine thinks. 

The vast majority of thinks are scheduled approximately 
30 seconds apart, but we also have support for certain 
event-driven thinks. For example we might want to think 
immediately when we capture an enemy city, or when we 
build a new structure. We generally only use event-driven 
thinks early in the game, when it is essential that no time 
be wasted if we are to remain competitive with human 
players. 

The first step of the think cycle is to go through all of 
the goals and find those which are either finished or 
currently inactive. These goals are culled from the list of 
candidates so that we don’t waste further time on them. 

Next, we determine the base priority of each candidate 
goal. To this we add a random fuzzy factor, and if the goal 
was selected in the previous think cycle we also add a 
bonus for goal inertia. The goal inertia bonus is generally 
larger than the fuzzy factor, and is intended to prevent the 
AI from flip-flopping between two similarly attractive 
actions. 

Now that we know the priority of all the active goals, 
we face a fairly standard resource allocation problem. The 
specific resources to be assigned could include actors, 
money, or whatever other resources are necessary to 
execute a goal. For example we assign military actors to 
attack and defend goals, money and builder actors to 
CONSTRUCT goals, and scout actors to EXPLORE goals. 
We need to allocate these resources to each goal in such a 
way as to optimize the total priority of all selected goals. 
This problem is made more complicated by the fact that the 
priority of a goal may vary depending on the resources 
assigned to that goal. Our third and fourth steps address 
this problem. 

In our third step, we sort the goals by priority and 
generate an initial resource assignment to each one. For 
each goal we assign just enough resources to have a 
reasonable chance of success – in general, this is the same 
as the resource assignment assumed when the base priority 
is calculated. 

For goals which require money, such as CONSTRUCT 
or GIVE, we apply the notion of goal commitment. The 
general idea is that we want to be able to save up sufficient 
money to execute the more expensive goals as long as that 
money can be obtained within a reasonable amount of 
time. In practice, this means that we specify the maximum 
amount of time we’re willing to wait and save money in 
order to accomplish a goal.  When we come to a goal for 
which we have insufficient cash on hand but all other 
resources (such as builder actors) are available, we check 
how long it will take to save the required cash at our 
current income rate. If this is less than the specified time 
limit then we mark all lower priority goals which require 
monetary resources as inactive for this think cycle in order 
to prevent them from using resources needed for this goal. 

The fourth step is actor optimization. In this step, we go 
through all the goals which require military actors (such as 
ATTACK and DEFEND goals) and calculate the change in 
overall priority if we move actors between them. In certain 
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cases it might be advantageous to launch one extremely 
strong attack, for example, while in other cases you might 
have enough forces to launch two or more weaker attacks. 

Similar to goal commitment, we found some cases 
where it was advantageous to lock actors onto a goal. This 
is an issue which needs to be approached cautiously, since 
it violates our basic philosophy that it is better to let the AI 
make its own decisions rather than hard-coding behavior. 
In almost all cases you want the AI to retain the flexibility 
to be able to change its mind when the situation changes, 
but there are a few specific circumstances where it was 
necessary to override that.  

There are two situations in which we lock actors. First, 
if an actor is assigned to an ATTACK goal and it has 
already engaged the enemy forces it is targeting, it appears 
like a mistake for that actor to leave in the middle of the 
attack to fulfill another goal (unless it is forced to retreat, 
of course). Even if this reassignment is the correct course 
of action (which is extremely rare), the player perceives 
that the AI has made an error. We always want to maintain 
the illusion of intelligence in the eyes of the player, and 
doing so requires first and foremost that we avoid actions 
which appear to be poorly selected. The second situation is 
when an actor is on a RECOVER goal, we lock it until it 
has reached full strength (assuming there is a safe location 
available for recovery). Prior to adding this lock we would 
frequently observe the AI using actors when they were not 
quite fully healed, and again this appeared like the AI was 
making a mistake.  

Once we’ve completed actor optimization we can mark 
the goals which we are executing as selected and issue the 
appropriate commands. The goal engine then sleeps until 
the next think. 

The Reactive AI 
The goal engine provides only the high level strategy, 
which will carry us over relatively long time periods. 
Obviously, a finer granularity AI is needed to make the 
second-to-second decisions which keep the AI 
competitive. For this we used the reactive AI, or RAI. The 
RAI runs on a one second think cycle, and makes decisions 
such as selecting formations, coordinating arrival of actors, 
ordering damaged actors to retreat, and selecting targets 
for military actors in combat. Unlike the SAI it is 
lightweight enough that it doesn’t require interruption 
during its decision cycle. 

Egos 
One important requirement of our system is that the 
designers want to be able to create multiple distinct 
personalities for the AI. For example we might have AIs 
that prefer certain types of actors, AIs that prefer a rushing 
strategy, AIs that prefer to build a strong economic base 
before attacking, and so forth. In addition, we want to 
allow the players to create their own AIs. This proved to 

be valuable during beta testing, when several testers 
assisted with final polish.  

In order to support this requirement, we use a data-
driven design. Each opposing player is described by an AI 
profile, which consists of a name, a brief description, a list 
of the nations or races that the profile can best support, and 
a list of the egos which can be used by that profile 
(including a starting ego to be used when the game 
begins). 

The vast majority of the data required to run the AI is 
contained in the egos. A fully defined ego typically 
includes thousands of lines of values – although we do 
have support for inheritance, so many of those values are 
defined once and then inherited by all other egos. A typical 
AI profile includes at least three egos (one for the early 
game, one for when things are going well, and one for 
emergencies), although many of the player-created profiles 
contain far more than that. The information provided here 
represents only a tiny subset of the total amount of data 
provided in the ego, but it includes what we believe to be 
the most important (and commonly used) sections. 

Each ego first contains a list of filters which have to be 
satisfied in order for that ego to be activated. It is the 
responsibility of the designer to ensure that the filters are 
set up so that there will always be at least one ego 
available (although this failure is handled gracefully). 
Once an ego is selected, it will continue to be used until 
one or more of its filters are no longer satisfied. At that 
point, we activate the first acceptable ego on the list. 

We have a fairly powerful filter system, in which any of 
a variety of tracked statistics can also be used to filter egos. 
The following are the most commonly used statistics. 

• current monetary income 
• number of cities controlled 
• number of military actors available 

One thing we do not filter on is elapsed time, again due to 
our philosophy of allowing the AI to make its own 
decisions based on the game situation. It is infeasible to 
predict how quickly the AI will develop given a random 
map and an unpredictable set of opponents. For example, 
in one game the AI might control three cities in the first ten 
minutes of the game, while in another the AI struggles for 
longer than that just to obtain a second city. From a design 
point of view, it is better to find ways to filter based on the 
game situation rather than using an arbitrary measure 
which has no bearing on the events which have actually 
occurred. 

The next section of the ego includes control parameters 
for the goal engine and RAI. For example, values to enable 
or disable event-based thinks of various types, and flow 
control requirements for the network traffic. It also 
includes the fuzzy factor and goal inertia to be used when 
calculating base priority. 

The ego can include construction templates, which give 
it sets of buildings which should be built together in cities. 
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All of the stock egos include at least one construction 
template which ensures that we have a city which can build 
strong military actors. Another commonly used 
construction template encourages strong economic 
development in the remaining cities. Construction 
templates simply provide a bonus to the construct goal – it 
is up to the designer to determine whether that bonus 
should be large (making it a mandate) or small (making it a 
suggestion). 

We also support military templates, which tell the ego 
which military actors to use together. For example we 
might have an ego that prefers to mix infantry and ranged 
actors, or one which likes to use a mix of light and heavy 
cavalry. Again, these can be mandates or suggestions, and 
we can also control what portion of our total actors will be 
influenced by these templates. 

Next we have controls which allow us to tweak the 
overall balance between goal types. These include additive 
and multiplicative bonuses for each goal type. Any goal 
with a base priority greater than zero will have these 
bonuses applied. One of the most useful pieces of 
debugging output we have is a spreadsheet which contains 
every candidate goal considered during the course of a 
game, when it was considered, and its base and current 
priorities. This allows us to easily balance the overall 
priorities of the different goal types. It also gives us a first 
indication of what has gone wrong when we see the AI 
making poor decisions. 

Finally, we have a plethora of values used to tune the 
priorities for each goal type as well as the RAI. Here are 
some common tricks we use to tune goal priorities: 

• Additive and multiplicative bonuses, which can be 
used to scale any numerical value depending on its 
importance to the ego. An additive bonus is only 
applied if the value is already greater than zero. 

• Exponents, which can be used to curve the range of 
values. For example when you have insufficient 
strength to launch an attack, the goal is still given 
some priority but that priority drops off 
exponentially based on the ratio between your 
strength and the enemy’s strength. 

• Minimum and maximum values, which keep some 
components from getting too large (or, in the case 
of a multiplier, too small). 

• Inversion. In some cases, certain egos want a value 
to be large while others want it to be small. For 
example, some egos prefer to explore close to 
known territory while others prefer to explore 
distant areas first. The first strategy helps us to find 
useful areas such as hostile lairs and resource 
locations, while the second strategy is more 
effective in searching for enemy players. In order 
to control this, we give the option to take the 
inverse of that value (1 / value) for that component 
of the priority. We then use a multiplicative bonus 

and a maximum value to scale the result 
appropriately 

• Repeat penalties. For example, we might have a 
repeat penalty for recruiting certain actor types. We 
apply the penalty once for each existing actor of 
that type. If we have so many actors of that type 
that the total priority is less than zero, then we 
won’t recruit any more. 

• One time bonuses. These are similar to repeat 
penalties but are only applied if we don’t have any 
actors of the specified type. For example we might 
have a one time bonus to build a structure which 
allows us to recruit certain types of actors. By 
using one time bonuses with different values we 
can exert a high level of control over the order in 
which the ego constructs its initial structures. 

• Fuzzy factors. In many cases we need a bit of extra 
randomness. For example we use a fuzzy factor in 
the RECRUIT goal to influence the selection of the 
specific actors to be recruited. 

The result is a complicated yet extremely powerful set of 
parameters for describing how strongly to weight every 
consideration used by the AI. It is obviously still the 
responsibility of the programmer to identify what factors 
the AI should consider, but designers or even players can 
then make AIs with highly distinct preferences by 
tweaking the weights of those considerations. 

Cheating 
The original goal was to create an AI that did not cheat at 
all. For the most part we accomplished this. However we 
did find that in very limited circumstances it was useful to 
provide the AI with information that it technically should 
not possess, but which would often be available to a 
human player through intuition and meta-knowledge of 
how random map generation works.  

Our first cheat was to provide the AI with perfect 
knowledge of enemy strengths (but not actual troop 
locations). We tracked enemy strength using a modified 
influence map, and when doing so we included the 
strengths of actors that were concealed from the AI by the 
fog of war. We did not provide the AI with specific 
knowledge of those actors or allow it to attack actors (or 
buildings) that it could not see. While the information 
provided is technically more than a human would have, we 
find that a moderately experienced player actually has a 
fairly good intuition of enemy strengths, so we didn’t feel 
that we were being unreasonable in providing a similar 
intuition to the computer player. 

This cheat had two significant benefits. First, it saved us 
the headache of trying to track the probable location of 
actors which the AI has seen once and then lost into the 
fog. This is a difficult (and bug-prone) problem. Second, it 
creates the illusion of an AI that is intelligent. Reviewers 
raved about an AI which could launch diversionary 
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attacks, probe, and use all sorts of advanced strategies. In 
reality, much of this was an illusion created by the fact that 
the AI was tracking the players changing troop strengths 
and reacting accordingly. Judging by player reactions, it 
seems that this illusion made the AI quite a bit more fun to 
play against. 

Our second cheat was in the domain of exploration. 
Quite simply, we found that occasionally the AI would 
simply fail to find the enemy (or anything else of interest) 
until fairly late in the game, and therefore would never get 
off the ground. Obviously, an AI which doesn’t present 
any challenge in this way isn’t a lot of fun to play against, 
and even if it’s something that happens only occasionally 
we would like to minimize that frequency. In order to do 
this, we provided the AI with a small bonus to explore 
areas with “interesting” items (such as monster lairs, 
resource points, enemy buildings, etc). Exactly how large 
the bonus was and which sorts of items the AI would look 
for depended on the ego. We found that experienced 
players are able to predict with a fair level of accuracy 
where these interesting areas are likely to be based on past 
observation of randomly created maps, so this seemed like 
reasonable information to give to the AI as well. 

Related Work 
The philosophy behind our AI borrows much from the 
Dark Reign model for Strategic AI (Davis 1999). Although 
the implementation details of our systems vary, the general 
architecture and desired results are much the same. 

The GRUE system presented in (Gordon & Logan 2004) 
matches resources to goals fairly strictly. In contrast, the 
goal engine can vary the priority of a goal based not only 
on which resources are assigned but how many resources 
of a particular type are assigned. This can be arbitrarily 
complicated (for instance giving a bonus to the priority of 
an attack goal which has both ranged and melee units 
assigned). On the other hand, GRUE can handle chaining 
multiple goals (for instance acquire the machine gun in 
order to attack the enemy). The goal engine simply 
executes whichever goals are highest priority at the current 
point in time. 

The SOAR Quakebot (Laird 2000) implements a death 
match player for Quake II. Although SOAR is designed to 
reason about goals, this architecture lacks the ability to 
execute multiple goals at the same time. While that makes 
sense for a Quakebot controlling a single agent, it would 
obviously not work well for an RTS AI. 

The being-in-the-world agent (DePristo & Zubek 2001) 
uses a hybrid architecture approach with a truth 
maintenance and reasoning component formulating the 
high level goals for a reactive layer. Although this system 
was successful in executing goals and surviving in the 
complex world of a Multi-user Dungeon, it ran into 
problems representing continuous resources (such as gold) 
and re-enabling invalidated goals in the truth maintenance 
system. Rather than trying to make every goal conform to 

the requirements of our reasoning engine, the goal engine 
places the majority of the logic in the goal itself so that it 
can be customized to the needs of that particular task. 

Finally, this section would be remiss if it  failed to 
mention the AI Game Programming Wisdom books (Rabin 
2002; Rabin 2003).  These books have a wide variety of 
articles on game AI, many of which could be related to our 
work in one way or another. 

Conclusions 
Overall, our architecture was a tremendous success (it 
delivered a fun, challenging game experience) and 
received significant critical acclaim. We believe that the 
most important factor in this success was our decision to 
avoid hard-coded decisions to the greatest extent possible, 
and instead create an AI which contains the intelligence 
needed to make its decisions on the fly based on the 
current perceived situation. Our data driven design and 
easily expansible architecture also made it far easier to 
keep up with the ever-changing design of the game than it 
had been on previous projects. This was critical to our 
success when we had design changes being made late in 
the project. 

Creating egos turned out to be more difficult than we 
had hoped; it requires a fairly technical mindset and a solid 
understanding of the design philosophy behind the AI. 
Although we hoped to have designer-created egos, in 
practice the AI programmer ended up doing the majority of 
the data work as well. Some beta-testers did create their 
own profiles, and some were extremely good (able to beat 
the shipping profiles on a random map), but doing so 
required significant support on our part. Some time could 
be invested to improve this situation, such as tutorials and 
tools, but the bottom line is that any architecture this 
powerful and flexible will be complex. In fact, there are 
many advantages to having the AI programmer create the 
profiles, because this helps understand the code changes 
needed to solve problems and limitations encountered. 

Perhaps the biggest failure was one not inherent in the 
design, but rather a matter of focus. Our primary focus was 
to develop an AI which could handle random maps, but we 
lost track of the (often divergent) needs of the campaign 
AI. The campaign missions were scripted and the 
designers needed the ability to control behavior or 
communicate objectives to the AI in ways which we did 
not support. This resulted in some cases where the AI was 
awkward or simply disabled in the campaign. Had we 
recognized this problem earlier and focused on it, we 
believe both modes of play could have been well 
supported. 
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