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Abstract

Automating camera control for third-person perspec-
tive computer games is a difficult and time-consuming
task. One of the challenges games developers confront
is how to manage the trade-off between implementation
complexity and system usability. In this study, we in-
vestigate the application of constraint weighting tech-
niques to the autonomous camera control problem. We
demonstrate that this technique can significantly sim-
plify autonomous camera control and reduce the gap be-
tween implementation and usability requirements. We
describe the use of weighting profiles to control the
behaviour of the camera and specialized heuristics for
efficiently searching for the solution. We also de-
scribe a novel integrated visibility maintenance method.
As part of the experimental study, we implemented a
3D game engine that supports dynamic environments;
and demonstrate the effectiveness of the use of con-
straint solving techniques for autonomous camera con-
trol problems.

Introduction
Controlling an autonomous camera in third-person perspec-
tive computer games provides a unique set of challenges.
The combination of high quality visual results, restricted
computational power (for real-time applications) and unpre-
dictable target movement often forces trade-offs between the
capabilities of the camera system and efficient performance.

The primary function of a camera system is to maintain
the visual coherency of the target. This requires the camera
to maintain the position and alignment of the target in rela-
tion to the camera. Additional challenges such as maintain-
ing smooth movement and acceleration, and visibility main-
tenance (occlusion avoidance) of the target provide areas of
great difficulty when developing autonomous camera sys-
tems.

There are numerous proposed methods for addressing
these challenges, originating from such diverse disciplines
as robotics, medical imaging and virtual cinematogra-
phy. Existing research has considered constraint satis-
faction (Drucker & Zeltzer 1994; Bares & Lester 1999;
Bares, Thainimit, & McDermott 2000; Halper & Olivier
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2000; Halper, Helbing, & Strothotte 2001), potential fields
(Beckhaus 2001), intelligent agents (Hornung 2003) and
image-based visual servoing (Marchand & Courty 2000;
Courty & Marchand 2001; Marchand & Courty 2002) for
autonomous camera control. However, there is no generic
solution to this problem.

The somewhat ad-hoc combinations of differing cam-
era control methods and visibility maintenance systems has
yet to produce an effective, unified methodology. Our re-
search is directed towards achieving this goal by integrating
constraint-weighted local search and ray-casting for visibil-
ity.

There are four major requirements of a successful au-
tonomous camera system1:

1. Autonomy: The camera must be able to move while
maintaining the visual properties (e.g. size and orienta-
tion) and visibility of the target without intervention from
the user (or level designer via triggers).

2. Reactive: The camera must be able to work reactively,
without predictive information about future target posi-
tions.

3. Real-time: The camera must operate in real-time, with-
out detriment to existing game engine components.

4. Dynamic: The camera must be able to deal with dynamic
environments and multiple and dynamically changing tar-
gets.

In this paper we describe a detailed investigation of using
constraint satisfaction techniques for representing and solv-
ing these camera control problems. Since the camera con-
trol problem involves a set of infeasible constraints, we use
constraint weighting to give a preference order to these con-
straints. We then apply an incomplete but efficient constraint
solving technique, known as Stochastic Local Search, for
finding the best position of the camera for each frame. Our
approach extends our existing work (Bourne & Sattar 2004a;
2004b) and takes into account a meta-level visibility con-
straint that influences the efficiency and structure of the un-
derlying constraint solver.

The rest of this paper is organized as follows: the next
section covers the necessary related work in the field. The

1This is not a comprehensive list of the requirements of all au-
tonomous camera systems.

3

Proceedings of the First  
Artificial Intelligence and Interactive 

Digital Entertainment Conference  
(AIIDE-2005)



representation used by our system is described in Problem
Modelling, while the constraint solver is described in detail
in Constraint Solving. A description of our system imple-
mentation and the experimental results is in Evaluation and
Results, followed by the conclusion and direction for future
research.

Background
A Constraint Satisfaction Problem (CSP) is defined as a
triple 〈V, D, R〉, with a set of variables V , a domain D of
values for each variable V and a set of relations R. A con-
straint is defined as a relation over a set of variables that is a
subset of the cartesian product of the variables’ domains.

The problem is reduced to efficiently determining an as-
signment to the variables such that all constraints are satis-
fied. If there is no consistent assignment (not all constraints
can be satisfied), the problem is over-constrained (Freuder
& Wallace 1996). These problems can be addressed by clas-
sifying constraints into hard (satisfaction is mandatory), and
soft (satisfaction is preferable, but can be violated to satisfy
other constraints).

The simplest constraint-based camera system uses a hard-
constraint implementation based around polar or spherical
co-ordinates (Stone 2004). The camera’s position and orien-
tation is solved directly in relation to the target. Smooth and
controlled movements are generated by damping the con-
straint values. The damping ratio’s are very sensitive, and
incorrect values can cause the camera to oscillate. It is com-
mon for these systems to have a large number of parameters
(greater than 50) to control the camera.

Some recent work has attempted to address these damp-
ing issues by using pre-defined constraint relaxation percent-
ages (Halper, Helbing, & Strothotte 2001)2. In the gen-
eral case, these relaxation percentages can alleviate some
of the sensitivity of tuning the damping ratios. However,
this still artificially locks the camera to pre-defined move-
ment abilities (acceleration/deceleration, rotational freedom,
maximum speed).

The work by (Bares et al. 2000) uses a weighting method
for constraints (ranged between 0.0 and 1.0, where 1.0
makes a constraint hard). The constraints are satisfied us-
ing a recursive generate-and-test method, starting at a coarse
resolution and refining over successive passes. The occlu-
sion constraint is evaluated for each of the candidate solution
that passes the generate-and-test solver.

A novel approach involves the use of pre-defined cam-
era paths that are used in combination to provide the cam-
era’s movement (Christie, Languenou, & Granvilliers 2002).
The interactive nature of computer games makes the com-
mitment to a pre-defined path a non-optimal solution.

Various visibility evaluation methods have been investi-
gated and applied to camera control. The most common
are ray-casting methods (Giors 2004; Tomlinson, Blumberg,
& Nain 2000) and shadow generation (Drucker & Zeltzer
1994; Halper, Helbing, & Strothotte 2001).

2The spherical co-ordinate approach was used before it was for-
mally published.

The time complexity of both methods increases as the
environment becomes more complex. The ray-casting ap-
proach is often preferable as it consumes only minimal CPU
time for evaluation. The shadow generation approach con-
sumes CPU time to process the environments bounding vol-
umes and the GPU fill-rate for creating the shadow informa-
tion.

The integration of the visibility maintenance strategy and
the camera control method is rarely attempted. The camera
engine described in (Halper, Helbing, & Strothotte 2001)
integrates the shadow approach with hard-constraint method
described above.

The constraint satisfaction paradigm has been well estab-
lished as an academic research area for over 40 years. The
extensive study of these problems provides a wealth of in-
formation regarding the nature of the problems, as well as
numerous representations and methods of searching for so-
lutions. It is therefore desirable to utilize this information
to addressing new problems (such as camera control). Our
solution addresses inadequacies in existing works through
the use of well-known constraint satisfaction representations
and algorithms, which are detailed in the following sections.

Problem Modelling
The camera control problem is represented as a sequence of
individual over-constrained problems. The visual properties
of the target are achieved using soft constraints. No informa-
tion about predicted target states are used by the constraint
solver, thereby addressing requirement 2 (reactive).

In our representation, the variables V consist of each axis
for the camera’s position (X, Y and Z). The domain D for
each variable V is a restricted set of the values in 3D space
the camera can occupy. The relations R (constraints) define
the visual properties of the camera.

Constraint Set
Some existing work uses different constraint representa-
tions, typically in terms of more specific visualization abili-
ties (Halper, Helbing, & Strothotte 2001). Our constraint set
can represent the same visual qualities (via reformulation),
but uses a representation specifically designed for optimal
evaluation performance.

The minimal set of constraints required to adequately rep-
resent the visual properties of the camera (requirement 1)
and the real-time performance (requirement 3) 3 are :

1. Height: represents the height relationship between the
target height and the camera (positive or negative).

2. Distance: represents the distance relationship between
the target position and the camera (must be positive).

3. Orientation: represents the angular alignment between
the target facing vector and the camera’s view vector (be-
tween 0◦ and 360◦).

4. Frame Coherence: represents the minimal cost improve-
ment before the camera moves (must be positive).

3Each additional constraint increases the computational com-
plexity of the constraint solver. Simple representations are quicker
for evaluation purposes.
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Height
∣∣DesiredHeight− (camy − objy)

∣∣ ∗ HeightWeight

Distance

∣∣∣∣DesiredDistance−
√(

(camx − objx)2 + (camy − objy)2 + (camz − objz)2
)∣∣∣∣ ∗ DistanceWeight

Orientation
∣∣Orientationdesired − (Orientationobject • (cam − viewpoint) ∗ 180

π )
∣∣ ∗ OrientationCost

Table 1: Constraint evaluations and cost generation.

Each constraint requires 2 parameters: one for the value of
the constraint; and the second for the constraint weight. The
weight is used to indicate the preference of satisfaction for
the constraint, where a higher weight = better satisfaction.
The weight values have no preset limits, as in (Bares et al.
2000), and cannot be used to make the constraints hard.

The weights are unique for each constraint, and the set of
weights is referred to as the weighting profile. The values of
the weights are normalized in relation to the scale of values
of the constraint (distance values are often much greater than
height values), so the relative weighting of the constraints is
maintained regardless of scale.

Multiple Dynamic Targets
Some implementations consider the camera’s viewpoint to
be part of the CSP. Our implementation uses a weighted av-
erage strategy to select the camera viewpoint for multiple
targets (addressing requirement 4). The average position be-
tween multiple points (targets) is evaluated mathematically
in relation to the weights, rather than integrating this into the
CSP.

This is done for two reasons: multiple-target situations
constitute a minority of time (most of the time there is a sin-
gle target); and the trade-off between computational com-
plexity of solving it as a CSP and the frequency of multiple-
target situations does not justify this representation for the
single target case.

Constraint Solving
The camera’s position for each frame is determined by as-
signing values to variables such that the lowest cost solution
is found. A series of potential solutions are processed to
determine the lowest cost of solution, which is used for the
camera’s position for each frame.

The cost of a constraint is determined by calculating the
difference between the desired constraint value and the cur-
rent potential solution value (Table 1 describes the cost cal-
culations for our constraints). The total cost of a solution is
the sum of all individual constraint costs.

The cost surface of the problem has many local minima
(potentially-optimal solutions). Because strict adherence to
the constraint values is not practical (requires damping or
soft constraints), often the orientation constraint must be vi-
olated to some degree. This causes the problem to be over-
constrained the majority of the time.

As there is often no perfect solution, the search is reduced
to finding the best local minima. The large domain sizes
required necessitate the use of a constraint solver that can

traverse large parts of the search space quickly. Stochastic
local search algorithms are ideal for this purpose, and is the
constraint solver used in our camera system.

generate random initial solution
for i = 0 to max flips

if all constraints satisfied
return assignment (solution)

end if
evaluate all possible moves from assignment
select move according to heuristic
enact move

end for

Figure 1: Local Search pseudo-code.

The generic form of the local search algorithm is shown in
Figure 1. The constraint solver implemented in our system
uses a modified form of this algorithm. Because the problem
is over-constrained, a perfect solution can not be returned. In
our method, the cost of the potential solution is calculated
and the best solutions are kept. Once the search has made a
pre-defined number of moves or attempts, the best solution
found is returned as the optimal solution.

The solver operates on input about the target’s position
and rotation (facing) values provided by the game. In order
to address requirement 2 (reactive), the height, distance and
orientation constraints are all single-frame constraints.

Due to the random nature of the search method, a mech-
anism must be put in place to avoid the camera randomly
moving by small amounts when idle. To address this issue,
we use a frame coherence constraint.

This constraint determines the distance the camera has
moved in the previous frame, and attempts to maintain a
level of coherency with this value for the distance to move
in the current frame. The frame coherence constraint acts as
a simple acceleration/deceleration control mechanism.

The use of the frame coherence constraint in combina-
tion with the constraint-weighted local search removes the
necessity to pre-define the capabilities of the camera. The
constraint setup and local search solver will always find the
optimal trade-off between the constraints, so it is not neces-
sary to set minimum/maximum limits for any physical cam-
era movement properties.

Search Heuristics
The specialized nature of the problem creates the possibility
of problem-specific search heuristics. These heuristics take
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Figure 2: Occlusion avoidance rays.

advantage of the nature of the problem (ordered domains,
geometric nature) to optimize the constraint solver.

The direction of the search (per variable) can be directed
by the constraints during evaluation. This process is straight-
forward when dealing with a single variable that is affected
by a single constraint (Y variable for height), but becomes
more difficult for combined variable/constraint cases.

For example, if the current potential solution has a Y
value lower than the desired height, the constraint can no-
tify the solver that values lower than the current value will
produce higher-cost solutions, and therefore do not need to
be searched. The solver can then prune the domain of these
values to avoid searching unnecessary parts of the search-
space.

The distance and orientation constraints relate to both the
X and Z variables. There is often a conflict between the di-
rection to prune the search space for each constraint (orien-
tation may want to increase, distance may want to decrease a
variable). To address this issue, the distance and orientation
constraints can work co-operatively or competitively.

The co-operative strategy prunes the domain only when
both constraints agree on the pruning (i.e. both constraints
desire larger X values). During contention (each constraint
desires a different prune), the domain is not pruned and the
solver is free to continue making moves.

The competitive strategy prunes the domain based on the
dominant constraint (the constraint with the highest cost).
This results in the constraint which is causing the highest
cost contribution getting temporary control of the search to
more quickly find a better (lower cost) solution.

Camera Behaviours
The setting of the weighting profiles can create different
types of camera behaviours. These behaviours are achieved
by manipulating the weight profile so that a constraint (or
combination of constraints) is more likely to be satisfied.

The frame coherence constraint is particularly useful for
controlling the ’aggressiveness’ of the camera. A high frame
coherence weight keeps the camera’s movements smooth
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Figure 3: Visibility manipulated cost structure.

and controlled. The weighting keeps the camera stationary
(or at motion) until there is substantial change in the target’s
position. A low frame coherence weight produces the oppo-
site behaviour.

The weight profiles (and constraint values) can be arbi-
trarily switched during run-time. The constraint solver im-
plicitly interpolates between the old and new values. There-
fore, changes to the camera can be scripted into the game,
with the camera smoothly interpolating between the values
without explicitly performing this step.

Visibility Maintenance

Target visibility is evaluated by 4 rays cast from
the target position to the camera’s domain extents
(top/bottom/left/right), shown in Figure 2. A fifth ray is
used as the ’ideal’ position and is used only when all four
rays are occluded and the camera needs to move towards
a ’safe’ position. This is typically closer to the target than
the distance constraint value (approximately half), but can
be anywhere depending on the situation. For efficiency pur-
poses, ray intersection tests are performed on the environ-
ment’s bounding volumes in most cases. Enclosed objects
(tunnels) require either sub-division of the bounding vol-
umes or polygon-level intersection tests.

The occlusion value of a ray is used to artificially mod-
ify the cost of solutions closer to unoccluded positions. An
example of this modification is shown in Figure 3. This fig-
ure is for illustrative purposes only, and does not accurately
represent the search space.

The graph on the left shows a normal cost surface with no
occlusion issues. There are a number of local minima which
represent possible solutions to the problem. Each extent of
the surface is not modified for visibility and the search takes
place normally.

The graph on the right shows an example where three of
the rays (corners) are occluded. The surface is now manipu-
lated so solutions closer to the unoccluded value have lower
costs than those in occluded areas. This gradually draws the
camera away from the occluded positions, which often re-
sults in the constraints being increasingly violated.

Once the occlusion is resolved, the cost surface is returned
to normal and the regular operation is resumed. The solver
automatically interpolates the camera’s position from the oc-
clusion avoidance position towards the desired constraint
values defining the visual properties of the target.
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Figure 4: Screenshot of test environment.

Visibility maintenance is assigned a weight (like all con-
straints), however it is not considered a constraint. The
weighting does not have any explicit meaning until there are
occlusion issues and is simply used to guide how vigorously
the camera moves away from occluded positions (higher
weights produce a steeper slope) towards unoccluded posi-
tions.

A significant advantage of this method is that it is rare that
explicit collision detection and response is required between
the camera and the environment. The weighting of the visi-
bility information causes the camera to naturally avoid con-
tact with scene geometry, therefore reducing the risk of the
camera getting ’stuck’ to the environment.

The integrated nature of the visibility maintenance meth-
ods enables the ability to operate in arbitrary environments
and domains. No modification is required to the constraint
solver itself in order to add more sophisticated behaviours or
occlusion avoidance strategies.

Evaluation and Results
To evaluate the performance of our camera system, we im-
plemented it within a 3D game engine. The engine sup-
ports dynamic environments, and changing/multiple target
objects. The experiments were run on an AMD Athlon
2800+ processor with 512Mb of RAM running Windows
XP service pack 2. Our test environment (Figure 4) con-
sisted of approximately 225,000 triangles and 350 bounding
volumes.

The camera system was tested using a combination
of scripted and interactive control of the target object.
The scripted data allowed for fine-tuning of the constraint
weights. The interactive control was used to prove the real-
time performance and smooth movement without prediction.

Our experiments have shown that our camera system sat-
isfies the real-time requirement adequately. The camera sys-
tem averaged 0.00094 seconds per frame to perform all vis-
ibility (ray-casting) and constraint solving.

The major results for this type of work lie in the smooth-
ness of movement and competency of the camera. This in-

formation is not quantifiable, and must be evaluated on an-
imation information generated by the camera system. This
evaluation is best done by experienced artists familiar with
game design. Demonstrations of the competence of this im-
plementation can be demonstrated during oral presentation.

The setup of our constraint solver for experimental pur-
poses was as follows: moves=3000, domain size=10.0, us-
ing a uniform weighting profile of 1.0 for all constraints (11
parameters in total). These values represent a conservative
approach to the camera system, and can be further fine-tuned
to optimize the computational load of the camera implemen-
tation for specific game implementations.

Experimental studies have shown that the co-operative
strategy outperforms the competitive strategy in most cases
in terms of visual quality. This method is used in our imple-
mentation.

Performance Enhancements
The performance of the implementation is heavily depen-
dent on the math libraries used. Our implementation uses
modified versions of the math libraries described in (Van
Verth & Bishop 2004). More efficient methods (or approxi-
mations) exist, but fast math functions are outside the scope
of our research.

Further performance gains can be obtained by running the
visibility evaluations (ray-casting) less often. Rather than
evaluating for each frame, the visibility evaluations can be
done every n frames, where n produces suitable results in
the domain. Analysis of the constraint solver in the environ-
ment (how many moves to best solution) provides an indica-
tion of how many moves are required by the camera system
to generate suitable visual results.

Dynamically choosing domain values that are close ap-
proximations of where the camera is likely to find an ideal
position is also useful. This restricts the size of the domain
producing fewer potential positions to search, thereby reduc-
ing the overall search time.

Comparisons to existing work is difficult due to differ-
ences in representations, constraint solving methods and test
environments. Our simplified representation performs all of
the visualization requirements of existing works (e.g. (Bares
et al. 2000) and (Halper, Helbing, & Strothotte 2001)), and
initial tests demonstrate the time benefits of our approach.
However, a thorough empirical study is need to compare the
results in an unbiased manner.

Conclusions & Future Work
This research has evolved from an initial desire to provide
a simple autonomous camera to the development of a com-
plex and flexible camera which can help define mood based
on weighting profiles. The use of constraint-weighted lo-
cal search has allowed us to exploit the expressive power of
constraints while maintaining real-time speeds. This led to
the development of a sophisticated and competent camera
system with minimal computational overhead.

The camera system described in this paper provides a
modular approach, which can be used in arbitrary systems
without modification. Control of the camera is obtained
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through values for the constraints, which eliminates the need
to modify the constraint representation or constraint solver.

The modelling methodology and minimal constraint set,
along with the weighted average targeting system success-
fully addressed all four requirements defined in the intro-
duction. The use of soft constraints provided all of the bene-
fits of constraint damping (including some new ones), while
eliminating the possibility of oscillation.

We have shown an integrated and effective modelling of
the camera control problem which provides significant ad-
vantages over existing representations. This reduced the
problem of camera development to selecting an efficient and
effective constraint solver. The representation allows for
extensions to the camera’s capabilities through new con-
straints, without the need to modify the representation or
constraint solver.

There are a number of directions this research can take
in future. Continued research into more efficient heuristics
for the local search algorithm shall be investigated. The ex-
tension of the viewing properties of the camera through the
introduction of new constraints can be investigated.

The work in this paper used hand-tuned constraint
weights to generate the camera movements. The use of a ge-
netic algorithm to generate constraint weights which cause
the interactive camera to match a scripted camera movement
is certainly worthwhile to be investigated.

The application of this camera system into a more sophis-
ticated autonomous cinematography system will be investi-
gated. By delegating the camera control to the constraint
solver, an autonomous agent can be left to the more specific
task of shot selection and mood determination. Both of these
are easily achieved at the low-level by our camera system.
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