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Abstract

OpenNERO is an open source game platform designed
for game Al research. The software package combines
features commonly available in modern game engines
(such as 3D graphics, physics simulation, 3D audio ren-
dering, networked play, and a powerful scripting in-
terface) with an easy to use API and tools for defin-
ing machine learning tasks, environments, and agents.
Flexibility and ease of use of the system are demon-
strated by following the process of creating a machine
learning game from scratch. The scalability of the plat-
form is tested through the implementation of the exist-
ing NERO machine learning game using the new tools.

Introduction

The potential for computer games as a tool for Al re-
search continues to blossom (Bowling et al., 2006). Because
games are designed to challenge and entertain human play-
ers, they also provide difficult challenges for artificial in-
telligence. On the other hand, advances in machine learn-
ing open the way to creating entirely new genres of video
games that use machine learning as an integral part of game
play, as demonstrated by Neuro-Evolving Robotic Opera-
tives (NERO). NERO uses real-time neuroevolution of aug-
menting topologies (rt-NEAT) to allow the player to interac-
tively train control policies for simulated autonomous agents
and to test these agents in simulated combat against the
opponents’ creations (Stanley, Bryant, and Miikkulainen,
2005). While NERO is a successful technology demonstra-
tion and enjoys popularity both as a game and a research
platform, its development was time consuming and the pro-
gram is difficult to adapt to new environments, game rules
and learning algorithms.

This demonstration introduces OpenNERO, a new
general-purpose open source platform that aims to simplify
the process of implementing machine learning games and
of conducting Al experiments in them. As opposed to re-
cently proposed “glue” systems that can help bind exist-
ing games with Al algorithms (Molineaux and Aha, 2005;
White, 2006), OpenNERO is a complete software system
that allows flexible and easy creation of new games with
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Figure 1: Architecture overview of the OpenNERO engine.
The central server simulates the environment and the entities
(objects, players or NPCs) in it. The clients are interfaces
for human players to use to view the simulation as well as to
interact with it.

these Al algorithms in mind. While still under development,
the platform has already been successfully used in research
and education.

At the heart of the tool set is the OpenNERO simulation
engine that leverages a number of open-source libraries to
provide a transparent client-server architecture (Figure 1).
OpenNERO combines features commonly available in mod-
ern game engines (such as 3D graphics, physics simulation,
3D audio rendering, networked play, graphical user inter-
face, and a powerful scripting interface) with an easy to use
API and tools for defining machine learning tasks, environ-
ments, and agents. The package also contains an extensi-
ble collection of ready-to-use Al algorithms such as heuris-
tic search, value function reinforcement learning, and neu-
roevolution, as well as tools for empirical evaluation of their
performance under different conditions.

Building a Machine Learning Game

A good way to demonstrate the flexibility and ease of use
of the OpenNERO platform is to create a 3D environment, a



Figure 2: Screen-shot of the maze environment. The maze
is randomly generated using a scripted Kruskal’s algorithm.
Such an environment can be used to demonstrate heuristic
search methods as well as machine learning methods such
as neuroevolution or reinforcement learning, as well as al-
lowing the human players to try the task for themselves.

simple game that involves a reinforcement learning task, and
to solve this task by using an existing reinforcement learning
agent. In order to do so, the user defines a randomly gener-
ated 2D maze with a start state and a goal state, defines the
task (the rules and the reward structure) of the game, and
defines two characters (player-controlled and non-player-
controlled) that will play this game. Each of the three com-
ponents of this creation process - the environment, the task
and the agent - is described in more detail below.

o Environment - OpenNERO provides two tools, Importer
and Builder, that simplify the creation of virtual environ-
ments. The Importer tool allows the user to load 3D mod-
els in a variety of formats and to set OpenNERO spe-
cific properties such as physical attributes, animations,
and sounds. The Builder tool allows the user to place
different objects in the environment either manually or
programmatically and to preview the resulting world. It
also allows the user to adjust global constants that affect
the underlying physics simulation. For the maze environ-
ment, the environment consists of an island terrain and a
script that places the walls of the maze generated using
Kruskal’s algorithm.

e Task - The user can define tasks in the game as a re-
inforcement learning problem by defining the environ-
ment logic that takes in actions to produce sensors and re-
wards that are then consumed by the players or non-player
characters. The sensors can query the simulation using
parametrisation of a number of predefined queries such as
a virtual camera, a virtual microphone, virtual range sen-
sors, object counters and filters. Actions are currently rep-
resented as vectors with variable number of dimensions;
individual components of an action vector have a mini-
mum and a maximum value and can be either discrete or
continuous. The reward is either a single continuous num-
ber or a set of several rewards along multiple objectives
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with their associated “importance” weights. For the maze
game, the agent controls its angular and linear velocity,
receives a constant penalty for performing non-terminal
actions and a large positive reward for reaching the goal.

e Agent - The user defines the start, act and end methods
of an agent in script. Here, the user has all the algorithms
implemented in OpenNERO at his or her disposal. Exam-
ple controllers for the maze environment include manual
control, A* search, Q-learning and neuroevolution.

In OpenNERO, creating environments, tasks and agents
can be done with only a small amount of Python code and
without recompiling any platform-dependent code. The end
result is a simple but full-featured 3D video game that can
be used as a visual aid for comparing different AI algorithms
(Figure 2).

Scaling OpenNERO to NERO

In order to test the scalability of OpenNERO, the ex-
isting real-time neuroevolution game NERO is being re-
implemented using the new tools. NERO is a computa-
tionally intensive game because it requires the simultaneous
calculation of ego-centric sensors and evaluation of control
policies for a population of 50 or more autonomous simu-
lated agents every decision time step (usually on the order
of 0.1 sec). Currently, the NERO implementation matches
the capacity of an average consumer machine at population
sizes under a hundred agents. In the future, the OpenNERO
platform will be further extended to allow decision making
to be distributed over a network of computers, which should
reduce the load on the central simulation server and make it
possible to build more complex games.
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