
An Intelligent IDE for Behavior Authoring in Real-Time Strategy Games

Suhas Virmani and Yatin Kanetkar and Manish Mehta and Santiago Ontañón and Ashwin Ram
Cognitive Computing Lab (CCL)

College of Computing, Georgia Institute of Technology
Atlanta, Georgia, USA

{svirmani3,yatin.kanetkar}@mail.gatech.edu {mehtama1, santi, ashwin}@cc.gatech.edu

Abstract

Behavior authoring for computer games involves writ-
ing behaviors in a programming language and then it-
eratively refining them by detecting issues with them.
The main bottlenecks are a) the effort required to au-
thor the behaviors and b) the revision cycle as, for most
games, it is practically impossible to write a behavior
for the computer game AI in a single attempt. The main
problem is that the current development environments
(IDE) are typically mere text editors that can only help
the author by pointing out syntactical errors. In this pa-
per we present an intelligent IDE (iIDE) that has the
following capabilities: it allows the author to program
initial versions of the behaviors through demonstration,
presents visualizations of behavior execution for revi-
sion, lets the author define failure conditions on the ex-
isting behavior set, and select appropriate fixes for the
failure conditions to correct the behaviors. We describe
the underlying techniques that support these capabilities
inside our implemented iIDE and the future steps that
need to be carried out to improve the iIDE.We also pro-
vide details on a preliminary user study showing how
the new features inside the iIDE can help authors in be-
havior authoring and debugging in a real time strategy
game.

Introduction

Behavior authoring for computer games consists of first
writing the behaviors in a programming language, iteratively
refining these behaviors, testing the revisions by executing
them, identifying new problems and then refining the be-
haviors again. One of the bottlenecks in creating a game AI
is the great deal of engineering effort on the part of game
developers, as the rich nature of game worlds makes it hard
to plan for all possible scenarios. Another bottleneck in be-
havior authoring is the revision cycle, as it is practically im-
possible to write a behavior for the computer game AI in a
single attempt. Traditional programming environments offer
debuggers that can help with identifying the cause of some
of the issues of an observed behavior failure. However, de-
buggers do not completely solve the problem, and the au-
thoring bottleneck remains there. The main problem is that

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the development environment (IDE) is typically a mere edi-
tor that can only help the author by pointing out syntactical
errors. In order to define next generation authoring envi-
ronments, it is necessary to define intelligent IDEs that have
some understanding of the task the author is attempting, in
order to assist him beyond mere syntactical checking by al-
lowing easy authoring of the behaviors and offering revision
support.

In this paper we will present our ideas to achieve these
objectives through an intelligent IDEs (iIDE), and describe
a prototype iIDE where we have implemented techniques to
achieve these objectives. Our iIDE can assist behavior au-
thoring in a much deeper way than current state-of-the-art
IDEs. The next generation of IDE’s should be able to under-
stand what task the author is trying to perform, and should
be able to assist him better than current generation IDEs. In
particular, in the iIDE reported in this paper, we have in-
corporated several key functionalities into a standard IDE
to try and achieve this objective. These functionalities are
namely: defining behaviors by demonstration, visualization
of the behavior execution, failure detection and definition,
and proposing behavior fixes for behavior failures. The sys-
tem supports these activities by understanding the author’s
goals in defining the behaviors and assists him by automat-
ically recognizing when a behavior is not achieving the de-
sired goals. In particular, the iIDE allows the game devel-
oper to specify initial versions of the required AI behaviors
by demonstrating them instead of having to explicitly code
them. The iIDE observes these demonstrations and auto-
matically learns behaviors from them. Then, at runtime, the
system monitors the performance of these learned behaviors
that are executed. The system allows the author to define
new failure patterns on the executed behavior set, checks
for pre-defined failure patterns and suggests appropriate re-
visions to correct failed behaviors. This approach to allow
definition of possible failures with the behaviors, detecting
them at run-time and proposing and allowing a fix selection
for the failed conditions, enables the author to define poten-
tial failures within the learnt behaviors and revise them in
response to things that went wrong during execution.

The rest of the paper is organized as follows. We start by
first enumerating the key goals of our research and the iIDE,
and the approach we have taken to achieve those goals.We
then introduce a particular real time strategy game, WAR-

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

209



GUS (which we used in the user evaluation) together with
the behavior execution environment, Darmok, used in our
experiments. Next, we explain the key functionalities of the
iIDE with emphasis on the AI techniques required by the
iIDE to achieve its goals. Finally, we present a preliminary
user evaluation of the iIDE that tests the iIDE in relation to
its goals and suggests some future improvements and direc-
tion for the iIDE.

Goals of the iIDE

The iIDE aims at providing the user with full control over
the behavior authoring and revision process, while assisting
as much as possible. We have set the folowing goals for
the iIDE and have used the following approaches in order to
achieve them.

• Easy Authoring of Initial Behavior set Behavior author-
ing is ultimately a programming task, and as such is non-
trivial when the set of behaviors that need to be authored
is complex. Although several approaches have attempted
to ease the task by defining graphical tools and other easy
to use languages, their success in easing the task has been
limited. The iIDE should allow the author to easily define
these behaviors and reduce the authoring time.
Approach: The iIDE uses a programming by demonstra-
tion approach where instead of editing behaviors, the au-
thor can simply demonstrate them and the system will
automatically generate code that when executed, exhibits
the demonstrated behavior. These techniques were previ-
ously developed by us in the context of real-time strategy
games (Ontanon et al. 2007b), (Ashwin Ram & Mehta
2007). This is similar to GoCap (Alexander ), which uses
Machine Learning to learn behavior rules.

• Behavior Execution Visualization and Debugging: the
iIDE should allow the author to visually see the result of
executing behaviors, modify the internals of the behaviors
based on their execution performance and propagate the
modified change to the behavior library. The iIDE should
further allow the user to iteratively perform revisions on
the behaviors.
Approach: The iIDE presents the results of the execut-
ing behaviors in a graphical format, where the author can
view their progress and change them. The author can also
pause and fast-forward the game to whichever point he
chooses while running the behaviors, make a change in
the behaviors if required and start it up again with the new
behaviors to see the performance of the revised behaviors.
The capability of the iIDE to fast forward and start from a
particular point, further allows the author to easily repli-
cate a possible bug late in the game execution and debug
it.

• Failure Detection and Definition and Proposing Fixes:
The iIDE system should allow the author to define new
failure conditions based on monitoring the performance
of the existing behavior set, allow detection of author de-
fined failure conditions and provide appropriate sugges-
tions for fixing the failed conditions.

Behavior
Execution

Engine
(Darmok)

WARGUS

Failure
Patterns

Execution
Trace

Author

Annotation
Interface

Timeline
Interface

Failure
Pattern

Interface

Behavior
Set

Goals

Learning
from

Demonstration

Behavior
Modification

Proposer

Manual Edit
Interface

iIDE

Figure 1: Overview of how the iIDE interacts with the author
and the game.

Approach: The iIDE authoring tool allows the author to
visualize relevant chronological events from a game exe-
cution trace. The data allows the author define new failure
patterns by defining combinations of these basic events
and pre-existing failure conditions. Each failure pattern
is associated with a possible fix. A fix is basically a pro-
posed modification for a behavior that fixes the error de-
tected by the failure pattern. When a failure pattern is
detected, the iIDE suggests a list of possible fixes, from
which the author can select an appropriate one to correct
the failed behavior. These techniques were also previ-
ously developed by us in the context of believable char-
acters (Zang et al. 2007).
In order to achieve these goals, the iIDE has to interact

with the author, the game (WARGUS) and with the behavior
execution engine (Darmok). Figure 1 shows an overview of
how all those components fit together to allow the author to
edit a proper behavior set for the game. The iIDE controls
Darmok by sending the behaviors that the author is creating.
Darmok then, runs the behaviors in the game, and generates
a trace of what happened during execution. This trace is sent
back to the iIDE so that proper information can be shown to
the author. The remainder of this paper presents first WAR-
GUS, then Darmok and finally we focus on how the iIDE
works.

WARGUS

WARGUS is a real-time strategy game where each player’s
goal is to remain alive after defeating the other players
(WARGUS is an open source implementation of WAR-
CRAFT II). Each player has to maintain a colony of peas-
ants, buildings and attack units, which he needs to pro-
tect from the enemy. He needs to continuously collect re-
sources, which include wood, gold and oil, to build or train
units.Buildings are required to upgrade attack units in order
to fight the enemy more effectively. Players can also build
defensive buildings such as walls and towers to protect his

210



colony. Therefore, it is easy to see that WARGUS will re-
quire complex reasoning to formulate an effective strategy.

Traditionally, games such as WARGUS used handcrafted
behaviors for the built-in AI. Creating such behaviors re-
quires a lot of effort, and even after that the result is that the
built-in AI is static and has flaws which can be exploited,
making it relatively easy to defeat.

Darmok

The Darmok system (Ontañón et al. 2007a) is a case-based
planning system designed to play the game of WARGUS.
Darmok learns plans (behavios) by observing a human play-
ing the game, and then reuses such plans combining and
adapting them to play new games using case-based planning
methods. Darmok’s architecture can be broken down into
two parts: behavior acquisition and execution. The behav-
ior acquisition process is performed in the following way.
Each time someone plays a game, a trace is generated (con-
taining a list of actions performed by the player) then a hu-
man annotates that trace stating which goals he was pursuing
with each action. This annotated trace is processed by a plan
learning module that extracts behaviors in the form of cases
from the trace.

Thus, the case base of Darmok is composed of behav-
iors, and each behavior has an associated situation(episode)
in which this behavior succeeded in the past. Behaviors are
learnt from traces, and episodes can be learnt either from
traces or from experience. During execution the system
maintains a current plan that is executing. Each plan is com-
posed of a collection of behaviors retrieved from the case
base, combined together through plan expansion, plan adap-
tation and behavior retrieval modules. Each time the plan
expansion wants to expand a goal, it asks the behavior re-
trieval module for a behavior.The behavior retrieval module
selects the best behavior for the goal at hand in the current
game state. This behavior then goes through the plan adap-
tation module folowing which it is inserted into the current
plan for execution.

In this paper we will use Darmok as our behavior execu-
tion engine. The iIDE has been fully integrated with Darmok
and allows the author to perform some Darmok specific op-
erations, such as annotating traces in order to extract behav-
iors automatically. The iIDE can be used to create behaviors
by hand, or to automatically modify the behavior set that
Darmok has learnt by analyzing human traces. As we will
show in the empirical evaluation section, even if Darmok is a
learning system that can learn behavior on its own, we have
shown that using an iIDE together with Darmok greatly im-
proves the quality of the behaviors since the author is given
full control over the behavior set that Darmok executes.

An Intelligent Integrated Development

Enviroment for Darmok

In this section we will present how the iIDE works inter-
nally. We will describe the architecture of the iIDE and ex-
plain how it performs the various tasks which we mentioned
earlier. When WARGUS is played by Darmok, Darmok
records an execution trace (as shown in Figure 1). This

trace contains all the information needed by the iIDE to per-
form its functions. A trace consists of a series of entries,
where each entry is composed of the followong elements:
a) A time stamp, b)The game state corresponding to that
time, which is an xml description of the full game state, c)
a screenshot of the game at that time (to be shown to the
user as a graphical representation of the game state), d) a
snapshot of the goal tree of Darmok at the time stamp. This
contains a list of which behaviors were selected to execute
each goal that Darmok was trying to pursue, and their execu-
tion status (ie. executing, succeeded or failed), and e)basic
event information which consists of a recording of basic
events that occured during the game. This event information
consists of whether a particular behavior has started, and if
so, whether it succeeded or failed. This information is useful
for detecting failures during execution.

The iIDE uses this trace to represent the behavior tree,
graphically, over a time-line. A user can zoom in to any
portion of the goal tree to focus on a particular goal or zoom
out to get a better understanding of the behavior as a whole.
In the rest of this section we will first present an overview
of the iIDE architecture, and then explain how we addressed
each goal.

iIDE Architecture

As Figure 1 shows, the iIDE is composed of 4 main inter-
faces which the author interacts with: the Annotation Inter-
face, the Time-line Interface, the Failure Pattern Interface,
and the Manual Edit Interface.

The Annotation Interface allows the author to access the
learning from demonstration capabilities of the iIDE. For
doing so, the author runs the game and plays it. Then the in-
terface loads an execution trace and will allow the author to
annotate the actions in the trace with a set of goals (ie. asso-
ciates particular actions to particular goals). Goals are things
like “I wanted to destroy an enemy tower” or “I was building
a base”, etc. The annotated trace is passed on to the learning
from demonstration module which generates behaviors to be
stored in the current behavior set.

The Time-line Interface reads the execution trace gener-
ated after executing behaviors and displays it in a tree format
as explained in Figure 2).

The Failure Pattern Interface shows the author where pre
defined failure patterns occurred during the run of the game,
it allows the author to create new failure patterns, and pro-
vides access to fixes proposed by the behavior modification
section of the iIDE.

Finally the Manual Edit Interface is a classic text editor
interface (the standard view in traditional IDEs) that allows
the author to manually edit the behavior set.

Let us present each one of the functionalities of the iIDE
in detail.

Behavior Learning from Human Demonstration

Automatic behavior learning can be performed via the anal-
ysis of human demonstrations. The techniques presented
in this section differ from the classical numerical machine
learning approach that require lots of training examples to
learn an appropriate behavior. The key idea that makes it

211



Figure 2: A screenshot of the behavior execution visualiza-
tion. Showing the time-line in the bottom, the game state on
the right, and the behavior execution tree on the left.

possible to learn behaviors from a single demonstration is
annotation.

The annotation process involves a human expert provid-
ing the iIDE with information regarding the goal being pur-
sued, for each action performed during the demonstration.
An annotated demonstration contains much more informa-
tion than a simple un-annotated one and provides the data
that is required to automatically learn behaviors. During
annotation the author simply labels each action in the trace
with the goal or goals that he was pursuing at the time. More
advanced approaches could be developed that might involve
AI plan recognition techniques inferring the annotations au-
tomatically from observed actions, but these are still at the
research stage.

In order to learn behaviors, an annotated trace is analyzed
to determine the temporal relations between the individual
goals that appear in the trace, such as “the goal g2 was at-
tempted before the goal g3” or “the goal g3 was attempted
in parallel with the goal g4”. The analysis needed to detect
the temporal ordering is based on a simplified version of the
temporal reasoning framework presented by Allen (Allen
1983), where 13 basic different temporal relations among
events were identified. For our purposes, the temporal rea-
soning helps to figure out if two goals are being pursued
in sequence, in parallel, or if one is a subgoal of the other.
We assume that if the temporal relation between a particular
goal g and another goal g’ is such that g happens during g’,
then g is a subgoal of g’. In our implementation of the iIDE
we incorporated the behavior learning by demonstration ca-
pabilities of Darmok, see (Ontañón et al. 2007a) for a more
detailed explanation of how this process works.

Behavior Execution Visualization and Debugging

The iIDE tries to make the process of behavior authoring
as simple as possible by allowing the author to easily under-
stand the behaviors by displaying them in a hierarchical goal
tree (see Figure 2). The user can see the effect of a particu-

lar plan or change thereof in the game using the hierarchical
goal tree representation. The user can see points where the
plan starts and succeeds/fails. This display is dynamic in
nature and presents the currently executing plan along with
whether any of the previous plans had failed. The user is
provided with a timeline representation to depict the extent
of time that has passed to give him an idea of how far into
the game he wants to move forward. The slider can be con-
trolled at will (located in the bottom of the screen, as Figure
2 shows). Further, screenshots at regular intervals give the
user the approximate state at that corresponding instant of
time (right hand side of Figure 2). This helps the user easily
recognize the game state. The users can modify the internals
of the behaviors based on their execution performance and
propagate the modified change to the behavior library.

The time line representation inside the iIDE further al-
lows the user to iteratively perform revisions on the behav-
iors. The user can pause and forward the game to whichever
point he chooses, make a change in the behaviors if required
and start it up again with the new behaviors loaded. The
ability to forward the game to any point also allows the user
to easily replicate a possible bug late in the game execution
and debug it. For example, if a bug occurs at some point late
in the game (say cycle 15000), it would be very difficult to
replicate it by restarting the game from the beginning. The
fast forwarding feature of the iIDE allows the user to for-
ward the game easily to the point (in this case to a point near
cycle 15000) where the bug occured and replicate it.

Failure Detection and Behavior Modification

In order to support the goals of detecting existing failure pat-
terns, definition of new ones and suggesting possible fixes
within the iIDE, a reasoning layer carries out appropriate
processing in the background. The reasoning layer inside
the iIDE consists of two components. The first component
identifies basic events and failures in behavior execution,
and detects whether the existing behaviors have achieved
their specified goals. These goals are specified in terms
of author defined desired effects of completing a behavior
and constraint conditions that should be satisfied during the
game execution (for example, a peasant not being idle be-
yond a certain amount of time). When a goal that should
have been satisfied by the execution of a set of behaviors
has not been achieved, the system uses the execution trace
to perform blame assignment, which aims to identify one or
more behaviors that should be changed. The second com-
ponent inside the reasoning layer involves suggesting fixing
operators (called modops) so as to allow the user to select a
possible repair for the offending behaviors identified during
blame assignment. The applicability of a modop depends
on the type of failure that was encountered and modops are
therefore categorized according to failure patterns. These
modops are in the form of inserting a new appropriate be-
havior at the correct position in the failed behavior, or re-
moving some steps. Once these modops have been applied
to produce modified behaviors, the modified behaviors are
added to the behavior library.

The iIDE exposes the capabilities of the reasoning layer
to the user by allowing the user to create new failure pat-

212



terns (by combinations of basic events and existing failure
patterns) and assign corresponding fixes for them (by sug-
gesting a set of plans). In order to understand the whole
process better, let us look at each of the steps in more detail.

Recording the trace of executing behaviors The
Darmok system during its run records an execution trace (as
shown in Figure 1). Once a game is finished, an abstracted
version of the execution trace is used by the iIDE to present
basic events to the user who can then use this data to find
interesting patterns of failures in the system. The abstracted
version of trace, consists of, a) Unit Data: information re-
garding units such as hit points, status (whether a unit is
idle, for example), location, etc., b) Idle Data: which units
were idle and the cycle intervals for which they were idle.
c) Kill Data: the cycles at which particular units were at-
tacked and killed d) Resource Data: for each entry in the
trace, the corresponding resources that were available, such
as the amount of food, gold, wood and oil e) Attack Data:
the units that were involved in an attack. For example, the
enemy units that were attacking and the AI units that were
under attack and f) Basic Behavior Failure Data: the reason
for behavior failures, such as whether it was due to insuf-
ficient resources or not having a particular unit available to
carry out a behavior.

Failure Patterns and Fixes This abstracted version of the
trace can be used to detect different failures that occurred
at run time and suggest appropriate fixes for them. These
failures are defined using a combination of basic elements of
the abstracted trace. Some examples of such failure patterns
that have been already defined in the system are:

a) Peasant Idle failure: detects if peasants have been idle
beyond a certain number of cycles. If a peasant has been
idle for a sufficiently long time, then he is not being uti-
lized properly by the existing behavior set in the behavior
library. A possible fix for this failure is to utilize the peas-
ant to gather more resources or use the peasant to create
a building that could be needed later on.

b) Building Idle failure: detects whether a particular build-
ing type has been free for certain number of cycles even
though there were sufficient resources available to make
use of it. A possible fix for this failure is to utilize the free
building. For example, “barracks” can be used for devel-
oping “footmen” if sufficient resources are available.

c) Peasant attacked military units idle failure: detects
whether the player’s military units were idle while a
peasant or a building was under attack. One of the fixes
for this failure type can be in the form of inserting a ba-
sic action that issues an attack command to the attacking
units to attack.

d) Basic Operator failures detect when behaviors are failing
due to the “preconditions”, “alive conditions” or “suc-
cess conditions” not being met at run time. For exam-
ple, the preconditions for a behavior for building a farm
or barracks could fail due to the lack of availability of
resources or a peasant being unavailable to carry out
the plan. These types of failures differ from the above

two because they are direct failures caused by conditions
specified as part of the behavior itself. The failures men-
tioned in a), b) and c) are based on detecting patterns of
events from the execution trace. Basic Operator failures
are fixed by adding a basic action that fixes the failed con-
dition. For example, if the condition failed due to limited
availability of resources, a basic action is added to gather
the corresponding resource. Similarly if no peasant was
available to build a farm, then another basic action to
train the peasant is added before the failed behavior.

In the current system, we have defined 4 failure patterns
and 9 fixes. The user can easily extend the modification sys-
tem by writing other patterns of failure (using the failure
pattern interface inside the iIDE) based on the basic event
data from the trace that are used to define existing failure
patterns. The user can further select the appropriate system
suggested fixes to the corresponding behaviors. These fixes
need to be carried out in order to correct the failed situation.
Once the user has selected a fix, it is applied to the behavior
and the modified behavior is loaded into the behavior library.

Preliminary Evaluation

In order to get some initial insights on the usefulness of the
iIDE, we performed a preliminary user study where 3 users
used the iIDE to author behaviors for the WARGUS game.
These users has been programming behaviors for wargus for
about a year. In order to evaluate and cover the core func-
tionalities of the iIDE, we made the users execute a series of
use cases, as listed below:

Use Case 1: Demonstration of Behaviors. In this use case,
the users think of a strategy that they want to
encode in form of behaviors and play a game
of WARGUS using that strategy. Then they
use the iIDE to annotate the resulting trace and
save the resulting behaviors to disk.

Use Case 2: Run the Behaviors. In this use case, the users
took the behaviors generated in use case 1, ran
them, and they browsed the execution trace in
the graphical visualization view of the iIDE.

Use Case 3: Replicate Problems. The users load a behavior
set that has problems (unfortunately, they lose
the game because of the problematic behav-
ior). They can execute the behaviors, identify
the problem during the run time of the game,
and then use the timeline to fast forward to the
point to view the problem again.

Use Case 4: Edit Behaviors By Hand. The users open a
set of behaviors and edit them by hand as they
would do using any standard IDE.

Use Case 5: Edit through Failure Patterns. The user uses
the iIDE to match an execution trace with the
set of failure patterns that iIDE has in its data
base. The iIDE identifies problems in the cur-
rent behavior set and proposes fixes.

During the user interaction, a researcher logged his ob-
servations of user actions and any unusual reactions. The

213



users were asked a series of open ended questions regard-
ing their experiences after each use case and were asked for
their feedback on the system as a whole at the end of all
the use cases. Their feedback provided us with useful inputs
regarding future improvements to the iIDE and its different
functionalities. We present the results from our analysis and
interviews categorized according to iIDE’s different capabil-
ities.

Annotation Tool and Possible Improvements Users felt
that authoring behaviors by demonstration was much more
convenient than writing out behaviors through coding in a
programming language. Apart from these opinions of the
user, we would also like to remark on the the low time re-
quired to generate behaviors with our system to play in a par-
ticular map (versus the time required to write a handcrafted
behavior to play the same map) using the annotation capa-
bility. Specifically, to record a trace an expert has to play a
complete game (that takes between 10 and 15 minutes in the
maps we used) and then annotate it (to annotate our traces,
the expert required about 10 minutes per trace). Therefore,
in 20 to 25 minutes it is possible to generate a behaviors to
play a set of WARGUS maps similar to the one where the
trace was recorded. In contrast, one of our students required
several weeks to hand code a strategy to play WARGUS at
the same level of play.

During the annotation process, users felt that it was diffi-
cult to remember the actions they had performed, so at times,
it was difficult to annotate actions and find the correlation of
the action with the goals. The users suggested that it would
be helpful to have annotation ability while playing the game
or the ability to set markers for the actions while playing in
order to help him correlate later. Another possibility would
be to have a screenshot (as used in behavior visualization)
to provide a cue to the user regarding the state of the game
before the action. The users felt that the fixed nature of the
goals for annotation was a hindrance and it would be useful
to have a way of defining new goals.

Behavior Visualization and Debugging Users felt that
using a time-line to fast forward to a particular point, visual-
izing the behavior tree at that point, making changes to it and
then re-running the game was very effective in debugging a
particular behavior. It was very helpful in saving time as the
user was not required to play the game all over again in order
to re-annotate, change behaviors or replicate a bug. Screen-
shots of the game provided cues to the user to discover the
right point to fast forward. Users felt the need for dynamic
node removal and addition capability in the hierarchical rep-
resentation (currently unsupported). They further suggested
that it would be useful to integrate the annotation process
with graphical visualization of behaviors and the time-line
as it would allow them to simply add nodes and edges to the
goal tree, based on the actions performed instead of manu-
ally annotating the goals.

Failure Pattern and Fix Detection Users had a little dif-
ficulty in using this feature as it was still at an early stage of
development. A visualization of failure patterns helped the
user discover new failure locations inside the game which

they might not have been able to recognize if they weren’t
given the graph display. Users felt that the requirement that
a failure pattern should occur inside the game in order to
be able to define it, was a setback. As, they could think of
simple failure patterns which they would like to add without
having to even run the game. The preliminary user eval-
uation has helped us think of some changes that could be
incorporated into the iIDE. We aim to improve the iIDE
with these features and carry out a more comprehensive user
study in the future.

Conclusions and Future Work

The main bottlenecks in behavior authoring for a computer
game are the effort required to write an initial version of be-
haviors and the revision cycle, as it is practically impossible
to write a behavior for the computer game AI in a single at-
tempt. In this paper, we have presented techniques for an
intelligent IDE that addresses these issues and has the fol-
lowing capabilities: it allows the author to get initial ver-
sions of the behaviors through demonstration, presents visu-
alization of behavior execution for revision, lets the author
define new failure conditions on the existing behavior set,
and select appropriate fixes for the failure conditions to cor-
rect the behaviors. A preliminary user evaluation has helped
us gather some improvements that could be carried for the
iIDE.

As future work, we plan to incorporate the improvements
suggested by our participants into our iIDE. We also plan on
conducting a comprehensive user study in the future com-
paring our iIDE with a standard IDE. Finally, we would like
to plug our iIDE to other games, in order to investigate how
the techniques included in it could be made domain inde-
pendent.

References

Alexander, T. Gocap: Game observation capture. chapter
11.3.
Allen, J. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Ashwin Ram, S. O., and Mehta, M. 2007. Artificial intelli-
gence for adaptive computer games. In FLAIRS Conference
on Artificial Intelligence.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007a.
Case-based planning and execution for real-time strategy
games. In Proceedings of ICCBR-2007, 164–178.
Ontanon, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007b.
Case-based planning and execution for real-time strategy
games. In International Conference on Case-Based Rea-
soning ICCBR-2007.
Zang, P.; Mehta, M.; Mateas, M.; and Ram, A. 2007. To-
wards runtime behavior adaptation for embodied charac-
ters. In International Joint Conference on Artificial Intelli-
gence.

214


	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org




