Proceedings of the Fourth Acrtificial Intelligence and Interactive Digital Entertainment Conference

Cerberus: Applying Supervised and Reinforcement Learning Techniques

to Capture the Flag Games

Ahmed S. Hefny', Ayat A. Hatem®, Mahmoud M. Shalaby3, Amir F. Atiya4

Computer Engineering Department - Faculty of Engineering, Cairo University
! ahefny@eng.cu.edu.eg, * ayat.dawood@nileu.edu.eg
* mmshalaby @aucegypt.edu, * amir@alumni.caltech.edu

Abstract

Applying machine learning techniques to real-time
computer games is an active research field. In this paper we
present Cerberus, a machine learning framework for team-
based Capture The Flag (CTF) games. This framework
utilizes reinforcement learning to select high-level actions
that achieve best team behaviour and utilizes neural
networks to control fighting behaviour of team individuals.
Our proposed framework also combines waypoints and
influence maps for effective path planning.

Keywords
Machine Learning, Reinforcement Learning, Neural

Network, CTF, Capture the Flag, FPS, First Person Shooter,
Al Architecture.

Introduction

Computer games have become a very popular mean of
entertainment. Many advances in computer science were
driven by problems confronted in games. Earlier games
were usually turn-based, such as chess and backgammon.
Currently, real time games are getting more advanced and
more realistic. Not only do these games constitute a huge
industry of billions of dollars, but they have also attracted
the attention of Al researchers because they are a perfect
test-bed for simulating real world problems. Al techniques
of real-time games have advanced significantly in order to
create more challenging games; however, their
advancement lagged somewhat the progress in graphics
technology. Expert systems, fuzzy logic and finite state
machines have been successfully applied in real time
games (van Waveren, 2003). However, these techniques
usually result in a static behaviour that does not adapt to
the opponent’s strategy. If the human is able to exploit a
weakness in the game’s Al the player will lose interest
after playing a few games due to the waning challenge.
Moreover, as games become more sophisticated,
developing a game’s Al becomes a more difficult task and
the chance of introducing weaknesses becomes greater.
Therefore, there is a strong motivation to use machine
learning techniques in real-time computer games, such as

Copyright (©) 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

179

First-Person-Shooter games (FPS). There are two models
of applying machine learning in games:

e Offline Learning:

In the offline learning model, the learning process occurs
only during the game’s development. The Al system can
learn from an expert or by trial and error until it reaches the
desired performance level. In the released game, the Al
system only exploits what it has learned. Here, learning is
used as an alternative to the development of a complicated
Al program.

e Online Learning:

In the online learning model, the agent still learns during
the operation of the released game. This continuously
adapts the game Al to the opponent’s strategy and skill.

In this paper, we present a system that applies both models
in the Capture the Flag game (we call this system
Cerberus). We chose the CTF game because it represents a
sophisticated game that requires intelligent team
management to achieve two contradicting sub-goals
(getting the enemy's flag and defending the team’s flag) as
well as intelligent individual behaviour. We develop a
machine learning framework to satisfy these requirements.
Specifically, we develop a reinforcement learning model as
our online learning model to have Al agents learn high
level actions to achieve the best team behaviour, and we
use neural networks to have an Al agent learn the low level
behaviour from a human trainer in an offline learning
setup. We show that applying machine learning techniques
can result in a competitive CTF team without complicated
Al hard-coding or scripting. We start by a brief overview
of related work. Then, we illustrate the overall Al
architecture of the proposed framework which we follow
by a detailed explanation of each component. Finally, we
present the experimental results and the conclusion.

Related Work

Application of machine learning methods in games has
been investigated by many previous research works such as
(Ahmed, 2002), (Stanley, Bryant & Miikkulaine, 2005),
(Ponsen et. al., 2005) and (Ponsen et. al. 2006). Machine
learning has been successfully employed in commercial
titles as well, either by the game developers or by a

dedicated package (Funje et. al. 2007). FPS games have
received attention as a machine learning test-bed due to
their popularity and applicability as a model for real-life
situations. Benjamin (Benjamin, 2002) studied the
performance of different supervised learning techniques in
modelling player behaviour in Soldier of Fortune™ FPS.
He showed that neural networks (NNs) with a large dataset
generally outperformed other supervised learning
techniques (decision trees, k-nearest neighbour and
Bayesian classification). Zanetti and ElRahlibi (Zanetti &
El-Rhalibi, 2004) applied neural networks to learn basic
actions of a Quake 3 Arena™ bot. They considered 3
behaviours: Map Navigation, Movement in Fight and
Aiming and Shooting. For each behaviour, a neural
network was trained. It is assumed that Movement in Fight
and Map Navigation NNs would be trained for each map.
The work of Zanetti and Rhalibi focused mainly on 1-on-1
death match games, where the player scores only by killing
the enemy. They concluded that NNs need to be combined
with other Al techniques to become effective.

(Bakkes & Spronck, 2005) used symbiotic learning to
manage a team of four agents playing CTF in Quake 3
Arena™. They employed a joint action learning model.
The learning algorithm checks the state of the flags and
selects a joint role-assignment for the four agents. Each
agent is assigned the role of attacker, defender or roamer.
(Smith, Lee-Urban, & Munoz-Avila, 2007) proposed a
reinforcement learning algorithm, RETALIATE, which
they used to manage a team of three agents playing
domination game in Unreal Tournament™. Like any
action-value based reinforcement learning algorithm,
RETALIATE calculates a reward for each executed action
and uses it to learn a Q-function (s, a), usually
represented by a O-table, that indicates how good an action
a is at state s'. RETALIATE also employs a joint action
learning model; it evaluates the state of the whole team and
selects a joint action for the three agents. This joint action
is an assignment of each domination point to a certain
agent.

We wuse reinforcement learning for adaptive team
management. Unlike (Bakkes & Spronck, 2005) and
(Smith, Lee-Urban, & Munoz-Avila, 2007), we employ an
individual learning model, in which each agent
independently learns an individual policy. Individual
learning has the advantage that the state/action space, and
hence the size of the Q-table, does not depend on the
number of agents. This allows for adding more detailed
actions without a massive increase in the Q-table size and
consequently the learning problem.

' Formally, O(s, a) is defined as the expected life-long

reward when the agent executes action a at state s and
follows an optimum policy afterwards.

180

Problem Definition

In a CTF match, the players are divided into two teams.
Each team has a flag at the team’s base. A team scores if
the players of that team get the enemy's flag to their base
while keeping their flag from being taken by the enemy.
Therefore CTF is a sophisticated game because it involves
two often contradicting sub-goals: taking enemy’s flag and
defending the team’s flag (and restoring it if taken).
Players can kill each others using weapons. When a
character dies, it re-spawns after a specified period of time.

Al Organization

In Cerberus, each agent is controlled by a multi-layer
pluggable Al consisting of three layers, as shown in the
following figure:

High-level Decision Get enemy flag

Goto (x,VY)
path P

Path Planning through

Low-level Actions Move forward

Figure 1 — Al Decision Layers

The top layer, controlled by reinforcement learning,
provides high level decisions. The middle layer deals with
path planning, and the lower layer handles low-level
actions, mainly movement and shooting.

In our prototype we assume a fully observable environment
and a planar play field (map) containing obstacles. We also
assume that each player has a single limited range weapon
of infinite ammo. These assumptions do not affect the
reinforcement learning module because, as will be shown,
it is not concerned with the fine-grained details of the game
state. Also, the concepts applied in lower modules can still
be applied in more complicated environments.

Reinforcement Learning Module

Our framework uses reinforcement learning to select a
high-level action for each team member. As mentioned
before, we use individual learning model in which each
agent learns an individual policy that maps its individual
state to an individual action in the hope that the agents
together develop a cooperative behaviour that corroborates
team performance.

The state of each agent is represented by a tuple of 5 binary
values, namely:

- Is the agent's flag at base?

- Is the agent's flag dropped?

- Is the opponent's flag at base?

- Is the opponent's flag dropped?

- Is the agent carrying the enemy flag?

Thus the Q-table includes 32 states. Only 12 of them are
valid states and have to be learnt. This makes the learning
process easier. The agent can perform 8 high level actions,
each with certain preconditions and termination conditions.
These actions are GET ENEMY FLAG, WAIT AT ENEMY
BASE, KILL FLAG CARRIER, DEFEND THE BASE,
RESTORE OUR FLAG, GET ENEMY FLAG FROM
GROUND, SUPPORT FLAG CARRIER and RETURN TO
BASE.

Weusean ¢ -greedy policy (Sutton & Barto, 1998) for
action selection. Hence, the algorithm can be
outlined as follows:

ALGORITHM Select Action(State s, Events E)
If(Current Action met termination condition)
{ a= Current Action

p = State in which action a started

R * CalculateReward(a, p, s, E)

&« (r+ ymaxy,Qls.a) — Q(p.a))

@lp.a) « Qlp.a) + a6

Set A *= GetPossibleActions(s)

Generate random number x such that 0<x<1
If(x < £)

{ new_a *~ Select random action from Set A}
Else
{new a*
Return new_a

}
Else { Return NO DECISION }

There are two kinds of rewards, global and local. A global
reward is received by all team members when the enemy
flag is captured as this is the ultimate goal of the game.
Similarly, a global punishment is received by all team
members when the team’s own flag is captured. Local
rewards are individual intermediate rewards (or
punishments) that are received by each team member at the
end of its action. The local reward is determined according
to the state and events upon action termination, as shown
in table 1.

Action Agent's Reward
Condition

GET Agent took enemy's flag 240

ENEMY Enemy flag is taken &|160

FLAG #attackers < #team / 2

WAIT AT | Agent took enemy flag 80

ENEMY A teammate took enemy flag 120

BASE ELSE -32

181

KILL FLAG | Agent took enemy flag 80
CARRIER A teammate took enemy flag 40
ELSE -80
DEFEND Agent's flag at base &|160
#defenders < #team / 2
ELSE 10
Agent is flag carrier -80
RESTORE | Agent Restored Flag 160
FLAG A teammate restored flag 120
ELSE 40
GET FLAG | Agent took enemy's flag 80
FROM ELSE 160
GROUND
SUPPORT | Enemy's flag captured 80
FLAG — -
CARRIER Above condition not satisfied | 8
RETURN Agent captured the enemy's | 320
TO BASE flag
Agent is flag carrier 80
ELSE -120

Table 1: Rewarding conditions for each action. The
reward values are the values used in the experiments.
“ELSE” means that none of the other two conditions

is satisfied.

Path Planning Module

In this section we describe path planning in Cerberus. The
map exterior and obstacles are represented by polygons.
We use the waypoint system approach (van Waveren,
2003) for map analysis and path planning. A waypoint
system is a graph G=(W,E) with each node in W
representing a waypoint at a place where the agent can
exist and each link (wy, w,) in E indicates a possible path
for the agent to use (when going from w; to w,). We use
undirected links because, in our prototype, the agent can
move in both directions of any link. Figure 2 illustrates a
sample waypoint system.

-.

Figure 2 — A waypoint system generated by the map
analysis module

Path planning module is responsible for offline map
analysis as well as online path planning.

Map Analysis

The map analysis module accepts the polygonal
representation of the map and automatically generates the
waypoint system. We have developed an algorithm that
guarantees a lower bound on waypoint density regardless
of the number of polygons in the map. To achieve this, the
algorithm divides the map into rectangular cells and
guarantees that each reachable cell contains at least one
waypoint. This allows for fine-grained path planning for
both closed-door and open-door maps. The steps of our
algorithm are detailed in (Hefny et. al. 2007).

Online Path Planning

The agent uses A* algorithm (Russel & Norvig, 2003) to
plan a path through waypoints. To account for game
dynamics, the path is replanned on regular intervals. The
game dynamics are represented by influence maps. An
influence can be applied to a waypoint. This influence is a
cost that propagates to neighbouring waypoints and can be
considered in path planning. In our implementation, we use
character influence, which is an influence that is applied to
the nearest waypoint to each character. The cost introduced
by this influence can be used to plan paths that avoid
enemies, avoid allies (to perform a cooperative attack
through different paths) or tend to allies (for protection).

A* is CPU intensive and must be controlled. Therefore we
do not allow agents to directly invoke A*. Instead, we have
implemented a central module that accepts A* requests
from agents, executes them in a controlled manner that
avoids CPU consumption bursts and then returns the
resulting paths to the agents. We assume that the interval
between issuing an A* request and receiving the result is
negligible that the agent can follow the old path during this
interval. The same concept is applied in the calculation of
influence maps.

Neural Networks Module

We use neural networks to control the agent behaviour
during fight. These neural networks are trained using
recorded samples from a human player. We follow
(Zanetti & El-Rhalibi, 2004) in constructing a separate
feedforward network for aiming and shooting and another
one for movement. We do not employ a neural network for
map navigation.

Each network contains one hidden layer. The number of
nodes in the hidden layer is chosen as double the number
of nodes in the input layer.

The neural networks are enabled or disabled according to
an activation condition. Because we assume limited range

182

weapons, we have used the distance to the nearest enemy
as an activation condition. We use a hysteresis effect
(double thresholding) to enable or disable the networks to
avoid oscillatory behaviour (i.e. repeated enabling and
disabling of the networks) when the distance to the enemy
is close to weapon's range.

Tables 2 and 3 show the features used by each network and
the output provided by each one. As shown, we introduce
temporal features that relate the current time step to the
previous one such as MyLocationDifference and
EnemyRelativeMotion. MyLocationDifference is a
feedback input that is intended to help the network learn a
sequence of actions while EnemyRelativeMotion is
intended to let the network take enemy motion into
consideration.

It should also be noted that the movement network outputs
are calculated assuming that the agent is looking at the
enemy regardless of the actual direction of the agent. We
believe that during fight, the human player is concerned,
for example, with moving to or away from the enemy
rather than moving forward or backward. During game
play, the low-level actions module converts the network
output to the correct stepping and strafing actions,
depending on the actual direction of the agent.

RelativeEnemyPosition: The distance between the enemy
and the agent, divided by the weapon range, for
normalization.

DirectionToEnemy 1: The absolute
required for the agent to face the enemy.
DirectionToEnemy 2: A binary feature that decides if the
enemy is standing to the right or left of the agent.

rotation angle

Output: Shoot, turn left and turn right

Table 2: Shooting Neural Network Features

DistanceToEnemy: Same as in Table 1.
DirectionToPlayer: Enemy’s rotation angle to face the
agent.

MyLocationDifference: Difference between the agent's
last location and current location.

EnemyRelativeMotion: Difference between the enemy's
last location and current location with respect to the
location and direction of the agent.

Output: Move forward/backward, Move left/right

Table 3: Fight Movement Neural Network Features

The neural networks are trained offline by recording a
human teacher performing the desired behaviours and then
sampling the state / action pairs. Only the samples that
satisfy the neural network activation condition are used for
training.

When the agent is engaged in a fight while navigating to a
goal, we do not let the movement network control it
completely. Instead, the agent moves in the direction
determined by the linear combination:

V=" +al,

Where ¥ is the nath following motion under no fighting
condition and ¥mis the motion determined by the neural
network. This balances between moving towards the goal
and dodging enemy attacks. In our implementation, we set
%0 0.3.

Experimental Results

Reinforcement Learning

In this section we provide an empirical evaluation of the
RL module. We ran a test of 60 games of S5-minute
duration each. In each game, a team of three adaptive
agents played against a static team of two offensive agents
and one defensive agent. An offensive agent always tries to
get the enemy's flag or supports the flag carrier, whichever
applicable. The defensive agent always defends the team's
flag and tries to restore it whenever it is taken. Thus, the
static team represents a moderate policy which is a typical
Al policy in CTF games. We set the learning rate (alpha) to
0.1 and the discount factor (gamma) to 0.9995. Epsilon
value was initialized to 1.00 and was decreased to 0.80,
0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.08, 0.06, after 2, 2, 2, 2,
2,4,4,4,4, 4 games respectively.

We set the global reward to 1600 and the global
punishment to -400. Local rewards are set according to
table 1.

The experiment was run on 3 phases:

Phase 1: Running a static team vs. another static team to
test the bias of the map.

Phase 2: Running an adaptive team vs. a static team. The
adaptive team starts with a defensive strategy, which is a
very poor strategy in a fast-paced game like CTF.

Phase 3: Making use of the policy developed by the
adaptive team against a static team. In this experiment the
adaptive team executes only the actions with the highest Q-
value.

\Opponent

Base

Q
\

Adaptive Team Base

Figure 3 — Test Map

183

As shown from the experiment results, the map is biased to
the black team (Figure 4). The total score differences in the
3 phases making the black curve as our reference were -88,
-19, and +30 respectively. This shows clearly that the
adaptive team could modify its poor strategy to overcome
the static team despite the map bias.

S|

b [) VLU ¥y oA B

Figure 4 - Static Teams vs. each other

A
N1\

ORNW BRI
[
I L’

1 4 7 101316192225 2831 3437404346 49

Figure 5 - Adaptive team (grey) vs. Static (black)

ORMNWBIOIN

Figure 6 - Final Strategy (grey) vs. Static (black)

We played against the adaptive team to observe the
strategy it developed. We found that the team tends to be
aggressive, focusing on taking the enemy flag. Even if the
team's flag is taken, focusing on taking the enemy's flag is
preferred to focusing on Kkilling the flag carrier. It is also
frequent that one of the agents takes the action of waiting
at enemy's base when its team takes the enemy's flag. By
waiting at the enemy's base, the agent can retake the
enemy's flag once it is returned to the base to achieve an
easy capture.

Neural Networks

Because we are concerned with the general behaviour
rather than the coincidence of NN output with sample
outputs, we provide subjective comments on our
observation of the performance of the NNs. The shooting
NN was trained to turn towards the enemy and start
shooting as long as the enemy is in its angular range. It
could produce the required behaviour.

The movement NN, as shown in figure 7, could imitate
regular behaviours such as circle strafing (i.e. moving
around the enemy) to a very high degree of accuracy.
Irregular and oscillatory behaviours such as linear strafing
(i.e. strafing left and right) were not imitated at the same
degree of accuracy, but the resulting agent is still adequate.

* _ NN Agent
® — Enemy
S — Starting Pos.

= h“j
q\i -f"i L ﬂ
- S

Figure 7 — NN agent motion trajectories for circle
strafing (left) and linear strafing (right)

Conclusions and Future Work

In this work we have demonstrated a framework that
applies machine learning techniques in capture the flag
game as an example of a team-based real time game. We
have used neural networks as a supervised learning module
that learns offline and reinforcement learning as a module
that learns online.

We have shown that neural networks can learn to imitate
human behaviour and provide an adequate computer
character control. Because we used simple maps, the
trained NNs performed well in new maps. A future
enhancement possibility is to develop a method that
encodes geographical context in a general manner to
enable NNs to behave well in complicated maps without
the need of training for each map.

We have shown that individual reinforcement learning can
be used to develop team behaviour that adapts to the
enemy's team strategy. Specifically, individual learning
allows for cooperative individual actions rather than a high
level team formation, making it possible for an RL agent to
play with a static or even a human player in the same team.

Another problem that needs investigation for the
applicability of learning is the enemy arbitration problem
(i.e. selecting which enemy to fight when there are
multiple enemies and supporting allies in range).

We are also interested in scaling up this system to more
complicated CTF environments including complicated,
fully 3D playfields, multiple weapons, pickup items ... etc.

References

Ahmed A., "Reinforcement Learning for Multi-agent
Teamwork", M.S. Thesis, Cairo University, Egypt, 2002.

Alpaydin, E. "Introduction to Machine Learning", Prentice
Hall of India, 2005.

Benjamin, G. "An Empirical Study of Machine Learning
Algorithms Applied to Modelling Player Behaviour in a

184

First Person Shooter Video Game",
Wisconsin — Madison, USA, 2002.

University of

Bakkes, S. and Spronck, P. "Symbiotic Learning in
Commercial Computer Games", 7th International
Conference on Computer Games, 2005.

Funge, J., Musick, R., Dobson, D., Duffy, N., McNally,
M., Tu, X., Wright, 1., Yen. W. and Cabral, B. "Real Time
Context Learning by Software Agents". US Patent
7296007.

Hefny, A., Hatem, A., Shalaby, M., Khalifa, Y. and Atiya,

A. "Cerberus: The First Person Shooter Game with
Machine Learning", Technical Report, Cairo University,
Faculty of Engineering, Computer Engineering
Department.

Ponsen, M., Mufioz-Avila, H., Spronck P., and Aha, D.
"Automatically = Generating Game Tactics with
Evolutionary Learning", Al Magazine, Vol. 27, No. 3,
pp-75-84, 2005.

Ponsen, M., Spronck, P., and Tuyls, K. "Hierarchical
Reinforcement Learning with Deictic Representation in a
Computer Game", Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligence, 2006.

Russel, S. and Norvig, P., "Artificial Intelligence, A
Modern Approach”, Prentice Hall, 2003.

Smith, M., Lee-Urban, S. and Munoz-Avila H.
"RETALIATE: Learning Winning Policies in First-Person
Shooter Games", Proceedings of the 17th Innovative
Applications of Artificial Intelligence, 2007.

Stanley, K., Bryant, B. and Miikkulaine, R. "Evolving
Neural Network Agents in the NERO Video Game",
Proceedings of the IEEE 2005 Symposium on
Computational Intelligence and Games, 2005.

Sutton, S. and Barto, G. "Reinforcement Learning:
An Introduction", MIT Press, Cambridge, MA, 1998.

van Waveren, J. "The Quake III Arena Bot", University of
Technology Delft, Faculty ITS, Holland, 2003.

Zanetti, S. and El Rhalibi, A. "Machine Learning
Techniques for FPS in Q3", Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in
Computer Entertainment Technology, 2004.

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

