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Abstract

This paper presents a new method for decomposing environ-
ments of complex geometry into a navigation mesh repre-
sented by bounding geometry and a connectivity graph for
real-time agent usage in virtual worlds. This is accomplished
by the generation of a well-defined and high-coverage set
of convex navigable regions and the connected gateways be-
tween them. The focus of this paper is a new automated al-
gorithm developed for decomposing a 2D representation of
world-space into arbitrary sided high-order polygons. The
DEACCON (Decomposition of Environments for the Cre-
ation of Convex-region Navigation-meshes) algorithm works
by seeding a 2D polygonal representation of world-space
with a series of quads. Each quad is then provided with the
opportunity to grow to its maximum extent before encoun-
tering an obstruction. DEACCON implements an automatic
subdividing system to convert quads into higher-order poly-
gons while still maintaining the convex property. This allows
for the generation of navigation meshes with high degrees of
coverage while still allowing the use of large navigation re-
gions, providing for easier agent navigation in virtual worlds.
Compared to the Space-filling Volumes and Hertel-Mehlhorn
navigation mesh decomposition methods, DEACCON pro-
vides more complete coverage, controllable mesh sizes, and
better overall algorithmic control to desired decomposition
quality with an improvement in agent navigation speed due
to better decompositions.

Introduction
When examining the usage of agents in virtual worlds,
whether games or simulations, one of the first questions that
must be answered is how to represent the areas of the world
that agents can navigate. The open areas, called free or neg-
ative space, are not explicitly defined like the obstructed or
positive space are defined by the world geometry. There
are no nice lists defining the different sets of walkable re-
gions like there are for the geometry obstructing the world.
Obtaining such a listing of negative space requires using a
spatial decomposition algorithm. While several such algo-
rithms do exist there are no freely avaliable general purpose
automated tools to perform the decomposition, as such the
complex implementation problem remains even after an al-
gorithm is selected.
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In this paper, we present an enhanced Space Filling Vol-
umes (Tozour 2004) algorithm to decompose virtual envi-
ronments into convex regions of walkable space. We also
present a tool that implements this approach. Having this
decomposition provides us with several distinct advantages
for agent navigation in virtual worlds. It is possible to build
a navigation map from a decomposition that shows the con-
nectivity between regions as well as the distances between
the regions. Before decomposition, in order to plan a path,
the agent would have to probe through world space looking
for collisions with the geometry at every point on the poten-
tial path. After the walkable space has been decomposed,
the path planning algorithm only has to consider the current
region, the target region and the connectivity between the
regions. Using this information any of the common shortest
distance path planning algorithms could quickly generate a
path from the navigation map.

Decompositions of the world provide compartments in
which information can be stored. By localizing the objects
agents need to reason about into the same regions being used
for navigation, we reduce the set of objects the agents need
to consider when they reason. Agents only need to reason in
depth about the region they are currently located in and pos-
sibly the neighboring regions. Regions that are further away
do not require the same level of indepth reasoning. This also
extends to objects in these regions. In addition, since we re-
quire that all discrete regions be convex, we ensure that ev-
erything inside a region will be visible to any agent located
in that region. This eliminates the problem where agents
have to reason about objects that are located around corners.

Finally, we are able to greatly accelerate collision detec-
tion with the world geometry. Using geometric techniques it
is possible to determine quickly if an object is located within
any of the free space regions. If an object is located outside
the free space, then it is in collision with the world geom-
etry. This process can be enhanced even more by starting
a breadth first search centered on the last known location
of the object. This will take advantage of the fact that ob-
jects generally do not undergo dramatic shifts from frame to
frame and tend to be located close to where they were in the
last frame. By doing this, it is possible to quickly resolve
collision detection for most objects.

The area of spatial decomposition for agent navigation has
not been explored fully despite being utilized extensively
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by the interactive entertainment industry. At least one top
tier studio was not, until recently, using any decomposition
methods and was evaluating across individual spatial coor-
dinates for pathing (Sturtevant 2007). While it might seem
that work done in triangulation of complex geometry for the
purpose of rendering would apply, in actuality the needs of
agents are radically different from those of the rendering
pipeline. Our algorithm takes the simple Space Filling Vol-
ume work and adds two novel improvements to it. First, it
allows areas that did not fully decompose additional chances
to do so via seeding from existing decomposed regions. Sec-
ondly, it allows our growing regions to dynamically adapt
to complex sections of the geometry by subdividing the re-
gions into higher order polygons dynamically. These two
additions allow for a much more complete and accurate de-
composition of the environment. Finally, our approach pro-
vides the user with considerable ability to tune the manner
in which the decomposition occurs in order to optimize it
for the agent architecture they intend to use and then select
the best decomposition from the potential permatations pro-
duced by our tools. In order to perform decompositions we
must first perform a simplification on the world. We need to
represent the 3D environment as slices in 2D. This process
works much the same way that architectural blueprints can
represent a complex 3D building by dividing it into floors.
We do this by finding ground cutting planes that can be cre-
ated from world geometry. Just as there are special custom
generated regions added to blueprints to show the transi-
tions between floors our approach will also require special
markups to show transition areas between different levels
of the decomposition. This abstraction works because, just
as architects are concerned with the floor plan of each level
when they create a blueprint, we are only really interested in
the walkable space.

Related Work
While the research into the decomposition of virtual worlds
is limited there has been some prior work done and a few
techniques have been developed to simplify the task.

Space Filling Volumes (Tozour 2004) is a simple tech-
nique for generating a navigation map and forms the basis
of our own algorithm. It works by placing square seeds
throughout the environment and growing them outwards in
all directions. In the case of a collision with the world geom-
etry all growth in that direction stops. As a post processing
enhancement generated regions can be combined if the re-
sulting shape would still be convex. This helps to simplify
the resulting navigation map. This technique works well for
worlds where all of the geometry is axis aligned, but fails on
worlds with arbitary or complex geometry.

Navigation Mesh construction via the Hertel-Mehlhorn
(Hertel and Mehlhorn 1983) algorithm will also generate a
grouping of walkable areas. This process works by connect-
ing all of the vertices of the world geometry around the walk-
able areas into a series of triangles. Triangles have the prop-
erty of always being convex. The algorithm then calls for the
removal of an edge from a pair of adjacent triangles such that
the resulting shape remains convex. The removal of lines is

then repeated until the algorithm is unable to find any accept-
able lines to remove. Unfortunately, this algorithm causes
certain problems for information compartmentilization. The
corners of the world geometry are almost always filled with
slivers of thin triangles (even after combining). Since these
triangles are thin they are generally smaller than the objects
you are trying to place into them. This means that objects
will span across multiple regions and prevents agents from
fully taking advantage of information compartmentalization
with decompositions created from this algorithm.

By-hand decomposition of virtual worlds is still used by
many areas of industry. Such hand decompositions are gen-
erally done following a heuristic to determine precisely how
the decomposition should occur such as Hertel-Mehlhorn.
These hand decompositions do provide excellent representa-
tions of world space and have both high coverage and good
navigation potential. However, this method’s biggest draw-
back is the extreme time requirement (several days per envi-
ronment) to properly construct a hand decomposition and as
such a better method is needed.

Finally, other methods of generating navigation meshes
do exist such as Probablistic Roadmaps, Voroni Graphs,
Waypoints, and others (Russel and Norvig 2003). These fo-
cus entirely on generating the paths for agents to travel and
provide little to no information compartmentalization nor do
they assist in collision detection.

Methodology
Our approach is based off of a simple physical event. The
regions we place in the world resemble marshmallows that
have been placed in the microwave. They expand dramati-
cally to fill available negative space and then follow the con-
tours of any positive space they encounter. This form of ex-
pansion allows us to establish very high degrees of coverage
even in complex worlds.

The DEACCON (Decomposition of Environments for
the Creation of Convex-region Navigation-meshes) algo-
rithm is designed to provide the negative space breakdown
to the other applications in the Common Games Under-
standing and Learning (CGUL) toolkit (playground.uncc.
edu/GameIntelligenceGroup/Projects/CGUL). One of the
other applications in this toolkit, SARGE, is responsible for
generating the connectivity information between the positive
and negative space regions. These two applications (DEAC-
CON and SARGE) work together to produce Static Spatial
Perception Service (SSPS)(Youngblood et al. 2006) data
from the raw geometry input. Our work is designed to in-
tegrate strongly with SSPS. SSPS provides agents with in-
formation that is specially designed to represent 2D or 3D
environments. It is a mapping of the positive (obstructions)
and negative (walkable) space regions that exist in the world.
It also provides connectivity and visibility information about
these spaces, and an opportunity to store ancillary informa-
tion for each region that might prove useful to agent-based
AI in reasoning about place.

DEACCON, as shown in Algorithm 1 can be broken
down into several simple steps. We have several assump-
tions and invariants we must maintain in order for our algo-
rithm to be effective. First, we assume that all of the positive
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space regions provided as input are convex. Our own gen-
erated regions must end every phase of growth in a convex
state. Finally, once a free area has been claimed by a region,
then that region must maintain its ownership of that area.

Our algorithm begins in a state that we refer to as the ini-
tial seeding state by planting a grid based pattern of single
unit regions across the environment to be decomposed. If
the proposed location of a region is contained within a pos-
itive space area it is discarded. Our regions are initially
spawned as squares with 4 sides given in a counterclock-
wise order from the northwestern point. These squares are
generated to be axis aligned. After being seeded into the
world each region is iteratively provided the chance to grow.
There are two possible cases for successful growth. The sim-
ple case occurs when all positive space (impassable) regions
are convex and axis aligned. The more advanced growth
case allows for non-axis aligned convex regions to be present
among the positive space regions. Worlds which violate our
assumption that all of the positive space input regions be
convex are not handled by our algorithm at this time and
will not be evaluated. However, by replacing non-convex
geometry with overlapping sections of convex shapes it is
possible to convert any world into something our algorithm
can process.

First, we shall examine the base case for growth in our
algorithm. Each region is selected and provided the oppor-
tunity to grow once each frame. Growth occurs in the di-
rection of the normal to each edge in the region. We at-
tempt to move the entire edge in a single unit in this direc-
tion. We then take our proposed new shape and run three
collision detection tests. We want to ensure that no points
from our growing shape have intruded into another positive
space or another region and that no points from either of the
aforementioned obstructions would be contained within our
newly expanded shape. Finally, the region performs a self
check to ensure it is still convex in its new growth. Given
that all those tests return acceptable results, we will allow
the shape to finalize itself into that new configuration. If any
of those conditions are unacceptable then it means that we
had a collision. Because of the axis aligned properties in this
state we know that we were parallel to, as well as adjacent
to, the shape we have collided with in our prior condition,
which is the desired ending condition for region growth. In
this case we return to our previous shape and set a flag to
never attempt to grow this region in that direction again. We
then allow every other edge in the shape to grow in the same
manner. Once each edge in a shape has been provided the
chance to grow a single unit, we proceed to the next shape.
This method of growth is sufficient to deal with all cases for
axis aligned positive space regions.

The advanced case algorithm, as shown in Algorithm 1,
is more complicated, but it is also able to deal with a greater
variety of potential positive space regions. It begins by in-
corporating everything contained in the base case algorithm
and then expanding on it. Again we cycle through each re-
gion and provide each edge in that region a chance to grow.
This time, however, since we cannot assume that we will
automatically be parallel to what we have collided with we
need to take an additional step and ensure that we follow the

contour of the region we have collided with. We have three
basic collision cases to consider.

Figure 1: An illustration of the various cases present in
DEACCON. All growing negative space regions are shown
in white. Primary direction of growth is shown with an ar-
row. (a) shows the basic growth case. (b) shows the com-
plex case where growth is stopped by encountering an edge.
(c) shows the complex case where the negative space region
enters contour following mode. (d) shows an example of
seeding to generate new negative space regions.

The first is the basic parallel line case as shown in Figure
1(a). We can test this by comparing the equations of the
edge we are advancing and the edge with which we have
collided. If we enter this case, we proceed in exactly the
same manner as in the case presented above since we have,
in effect, shown that locally we are in the above base case.
The next case occurs when a point from the object we are
colliding with would lie within the newly proposed bounds
of our shape. In this case we must stop further growth in
this direction in order to preserve the convex property. In the
case of this collision we are unfortunately forced to accept a
poor proximity to the edges of the positive region as shown
in Figure 1(b). We deal with this later by seeding.

The final collision case is the most interesting and oc-
curs when one of the endpoints of the region edge would lie
within a positive space region. We are able to split the vertex
of our region into two points and follow along the contour
of the obstacle, expanding the region and the order of the
polygon in the process. We accomplish this by inserting a
new edge into our polygon of length zero and connecting
it to the two endpoints that suffered a collision. We then
alter the direction of growth of each of the points that col-
lided such that it is following the equation of the line with
which it collided. We cap growth at the extent of the edge
we are following such that we do not create additional non-
axis aligned exposed edges to deal with later, which would
be the case if we allowed modified edge growth to proceed
past the edge it is following. Once we have overwritten the
direction of growth for the contact points and limited their
extent, we can return to following the base case and the re-
gion will grow to follow the obstructions as shown in Figure
1(c).
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By following this method we are able to fit a region to non
axis-aligned shapes such that the result will be axis aligned
and allow the other regions to generate a better fit. Once
every region reports that it is unable to continue growth we
can proceed to the next step of the algorithm.

The above growth methods alone do not ensure a com-
plete coverage of potential free space, but we employ a sec-
ond algorithm as shown in Algorithm 2 to improve our re-
sults. We call the second algorithm Seeding and it works
by locating areas adjacent to our regions that have not been
covered yet as shown in Figure 1(d). We determine where
to seed on an edge by looking at the areas of it that are in
contact with obstructions. Once we locate every obstruction
in contact with a given edge we can find each section of free
space adjacent to that edge. A seed region is then placed
into the midpoint of each free space area. This will result in
a high degree of region coverage for the world. Once every
edge has had a chance to seed we will re-enter the growth
phases if there were any seeds generated. This allows our
new regions the chance to fill any empty space and improve
our decomposition. This is especially effective in collision
cases where we were forced to stop growth due to collisions
such as that in Figure 1(b). We continue to perform this cy-
cle of grow and seed until we have filled in all reachable
negative space.

Finally, we perform a cleanup and combining algorithm
on our set of regions. We first go through and check for
any regions which can be merged into one single convex re-
gion. After merging all allowable regions we can then go
through and remove any degenerate zero length edges or co-
linear points to provide as clean an output as possible.

Experimentation
The DEACCON algorithm was tested and evaluated using
five maps from a popular Quake 3 modification, Urban Ter-
ror (www.urbanterror.net). These maps were randomly cho-
sen to cover a wide variety of level types, ranging from one
map that is the interior of a building to another map that
shows wide open spaces with general building geometry.

In the interest of space, we will be discussing our meth-
ods in reference to the level called Lakes seen in Figure 2
(A/B - Second from Left). We performed a series of de-
compositions on this level using three different decomposi-
tion methods. The first decomposition was performed with
the Hertel-Mehlhorn (HM) algorithm (Hertel and Mehlhorn
1983). Figure 2 (C) shows the final HM decomposition.
This approach to world decomposition in interactive do-
mains is still very prevalent as many complex environments
are decomposed by-hand or through only semi-automated
methods. This method produced 42 regions after combining
on the 2D ground plane.

Next, the fully automated technique of Space-Filling Vol-
umes (SFV) as discussed previously was utilized to decom-
pose the same world. The best uniform seeding to allow
complete coverage was used, however it did experience con-
nectivity and coverage issues. These issues are inherent to
the SFV algorithm and not caused by our implementation.
The decomposition is shown in Figure 2 (D). This method

Algorithm 1 DEACCON ALGORITHM

void startDEACCON(List NegativeSpaceRegions)
StillGrowing = true
// Perform Initial Seeding to populate world with
// regions based on user settings
if NegativeSpaceRegions.isEmpty() then

seedWorld()
end if
while StillGrowing do

StillGrowing = false
for all NegativeSpaceRegions in World do

for all Edges in NegativeSpaceRegion do
// Get a new Edge one unit foward in the direction
// of the old edge’s Normal
newEdge = currentEdge.Advance()
if newEdge.isNotColliding() then

StillGrowing = true
currentEdge = newEdge

else
// We are adjacent to a positive space region
// Check to see if we are in advanced case
if usingContourFollowing then

if newEdge.isSplitableCollision() then
// Adapt to follow Edge
// Determine which Vertex collided
// Add in extra point and edge
newEdge.splitPoint()
// Overide direction of growth to the
// equation of the edge of the object
// it collided with
newEdge.setGrowthDirection()

else
// Not possible to grow in this direction
currentEdge.canGrow = false

end if
end if

end if
end for

end for
end while
// List of points that will have seeds placed in them
List seedPoints = new List()
for all Regions in World do

// Run Find Adjacent Open Space algorithm
seedPoints.append(Region.findOpenSpace())

end for
if seedPoints.isNotEmpty() then

// Re-start growth algorithm
World.startDEACCON(seedPoints)

end if
// Run combining and cleanup algorithms
World.combineConvexShapes()
World.removeColinearPoints()
World.removeDeginerateEdges()
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Figure 2: Images of the basic worlds (A) with each column representing a separate and unique world, the geometry we decom-
posed (B), the Hertel-Mehlhorn decomposition (C), Space Filling Volumes (D), DEACCON decompositions (E), and finally
the last 3 rows show the connected navigation graph generated by each decomposition algorithm (F is Hertel-Mehlhorn, G is
Space Filling Volumes, and H is DEACCON).

177



Algorithm 2 Locate points to add as seeds in open space
List findOpenSpace()
// Locate possible seeding locations
for all Edges of Region do

// Determine all objects that intersect this edge
// Determine midpoints of all free areas between
// intersections. Compose a list of these points
return Edge.getOpenAdjacent()

end for

produced 28 regions on the 2D ground plane after a sim-
plification algorithm was run that combined regions where
possible.

Finally, DEACCON was used to decompose the same
environment. Figure 2 (E) shows the final decomposition.
This method produced 73 regions after combining on the 2D
ground plane.

After the negative space was decomposed, an analysis
program was run that builds the navigation map between the
centers of each region and the midpoints of common gate-
ways (shared edges between regions). The navigation map
for DEACCON and the other decomposition methods for
the Lake map are presented in Figure 2 (F-H).

Table 1: Comparative Agent Performance on Decom-
positions Across Multiple Levels. * indicates statistical
signficance with P-value of less than .05

Algorithm Avg Distance Avg Turns Coverage
DEACCON 442.7* 4.12* 100%

SFV 505.3 3.97* 90%
HM 497.4 5.2 100%

These 15 decompositions were used for agent navigation.
A simple agent using A* search (Hart, Nilsson, and Raphael
1968) was used to plan a path from the start location to
the goal location using the centroids of the connecting gate-
ways between regions and the centroids of the regions for
navigation. This form of navigation map construction pro-
vides a base line for agent path planning. The actual path
will be constructed from this navigation map using smooth-
ing algorithms to provide a more natural looking path. An
equivalance table was constructed to determine which map
regions correspond to each other between different decom-
position methods. Regions are considered to be equivalent to
each other if their centers and extents are roughly the same.
Eight paths between randomly selected regions were then
created and the distances to travel those paths were calcu-
lated using the A* agent. This provides us with a total of
40 unique paths over each of the 3 decompositions. These
results are then compared across all maps using a repeated
measures F-Test design over the three different types of de-
composition which are shown in Table 1.

The results show that there is a statistically significant
reduction (pValue < .05) in overall path distances using
DEACCON. This is due to the less angular shapes that are
produced over the more triangular decompositions of HM

and the non-uniformity in size allowing for larger area cov-
erage over SFV and HM. The larger areas also serve better
in the localization of the agent and provide for better con-
tainment of objects (with fewer objects lying across region
boundaries) to allow for segmentation and reasoning over re-
gions or groups of regions more easily. The number of turns
an agent has to make to complete each path was also tracked
and evaluated. The paths generated by DEACCON con-
tained statistically significantly (pValue < .05) fewer turns
than HM. These turns can cause delay in agent navigation
and require additional path planning and consideration in
order to compute a natural looking path even with smooth-
ing algorithms. While DEACCON did not have fewer turns
than SFV, in general SFV is a poor choice with which to
build navigation maps. In this example SFV was given a
larger than normal advantage in that all chosen paths were
fully accessable to it. Normally, there will be large areas of
the map that cannot be reached using SFV. Overall, speed
performance for world traversal by an agent was improved
over HM and SFV due to the shorter paths and fewer turns.

Conclusion
In conclusion the DEACCON algorithm provides both a
fast and effective alternative to other methods of 2D ge-
ometric decomposition and navigation mesh construction.
Agents have been shown to be able to effectively utilize
the navigation paths generated using DEACCON and to ac-
complish tasks faster on average than with the other meth-
ods presented in this paper. In comparison to the only
other algorithm to generate a complete coverage decom-
position, Hertel-Mehlhorn, DEACCON was considerably
quicker to construct intially and would be able to rapidly ac-
cept changes to the world geometry. DEACCON also pro-
vides the user with considerable control over the manner in
which the decomposition occurs and how that final decom-
position looks, which the other algorithms lack.
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