
Explicit Knowledge Programming for Computer Games

Andreas Witzel
ILLC, University of Amsterdam

Plantage Muidergracht 24
1018TV Amsterdam, Netherlands

and CWI, Kruislaan 413,
1098SJ Amsterdam, Netherlands
awitzel@science.uva.nl

Jonathan Zvesper
ILLC, University of Amsterdam

Plantage Muidergracht 24
1018TV Amsterdam, Netherlands

and CWI, Kruislaan 413,
1098SJ Amsterdam, Netherlands

jonathan.zvesper@gmail.com

Ethan Kennerly
Interactive Media

School of Cinematic Arts
University of Southern California

University Park, LUC-310B
Los Angeles, CA 90089-2211

kennerly@finegamedesign.com

Abstract

The main aim of this paper is to raise awareness of higher-
order knowledge (knowledge about someone else’s knowl-
edge) as an issue for computer game AI. We argue that a num-
ber of existing game genres, especially those involving social
interaction, are natural fields of application for an approach
we call explicit knowledge programming. We motivate the
use of this approach, and describe a simple implementation
based upon it. A survey of recent literature and computer
games illustrates its novelty.

Introduction

Higher-order knowledge, i.e. knowledge about (someone
else’s) knowledge, is important in social interaction.1 That
importance is well established in game theory (Branden-
burger 2007). We will point out its relevance to com-
puter games that incorporate simulations of social interac-
tion, by which we mean interaction with artificial agents and
non-player characters (NPCs). The most obvious examples
of social interaction occur in computer role-playing games
(RPGs), interactive fiction (IF) and life simulation games
(such as The SimsTM), but we will also show examples from
other genres.

In this paper we do not make any significant technical
contribution, but we will suggest one general methodology,
which we call explicit knowledge programming, for imple-
menting the ideas that we will describe. It involves an ap-
proach founded in epistemic logic with case-dependent re-
strictions of the logical language to remain tractable.

As a side note, we think that higher-order desires as well
as beliefs are important, and indeed the interplay between
the two: for example, in an interaction between A and B, it
can be significant if A believes that B desires that A believe
such-and-such. Belief-desire-intention (BDI) architectures
(Rao & Georgeff 1995) currently do not accommodate this

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this paper we talk pretty much interchangeably about
higher-order knowledge and higher-order belief. There are philo-
sophical subtleties at stake here, but they are not relevant for our
purposes, for which it is sufficient to stipulate that “knowledge”
refers to true belief. They both have in common the “higher-order”
aspect and that is what is crucial. We use the adjective epistemic to
mean “of (or about) beliefs (or knowledge)”.

kind of interactive (i.e. truly multi-agent) phenomena. Since
beliefs and knowledge are, from a logical point of view, bet-
ter understood than desires, we suggest to start by focusing
on the former, and that is what we do in the rest of this paper.

Motivation

Human beings are, on the whole, social animals: most of
us derive much interest, enjoyment and drama from inter-
acting with other people. One important feature recognized
by psychologists is the so-called theory of mind, that is the
ability to represent and to empathize with the mental states
and attitudes of those around us. A recent and popular the-
ory argues that the absence of any theory of mind is what
causes such obstacles for those people affected with autism
spectrum disorders to interact profitably with those around
them (Baron-Cohen 1995).

The standard empirical test for a theory of mind, which
develops in most people around the age of four, is a test of
the subject’s ability to represent and “correctly” form higher-
order beliefs, that is to model other people as having their
own model of the world in their head, which in turn contains
a model of your model. This recursive notion can seem sur-
prising, even paradoxical, however the fact is that most peo-
ple’s behavior is informed by some understanding of higher-
order beliefs.

Much of the enjoyment of a number of multiplayer games
actually depends upon higher-order beliefs or knowledge.
Cluedo, Diplomacy and Poker are examples of such knowl-
edge games (Ditmarsch 2000); each of them illustrates in a
different way that it can be enjoyable to reason about the be-
liefs of others, particularly about the beliefs that they might
have about your beliefs, or others’ beliefs. If these games
were to be played against artificial opponents, with the aim
that they be enjoyable, a very natural approach would be to
create an opponent who models the player, including the be-
liefs the player has about the opponent, etc.

So it can be on the one hand “natural”, and on the other
hand enjoyable, to reason about higher-order knowledge.
We therefore propose that this line of reasoning be taken
seriously, and that providing some facility for higher-order
reasoning to NPCs would enhance the aim that many games
have: being enjoyable simulations of human interaction.

The kinds of interactive situations that depend on higher-
order knowledge vary greatly, from trivial to subtle. The

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

138

following example is so trivial that it may seem strange: if
I’ve just told you something, then I won’t tell you again since
I know that you know it, that you know that I know that
you know it, etc. (indeed it creates what is called common
knowledge). An example that follows a similar principle is
the following: If Ann knows that Bob knows that the enemy
is attacking Bob’s base, then she will not tell him, unless she
wants him to know that she knows (and may be coming to
support him).

Increasingly, networked computers and game consoles
have lead to a rise in the number and scale of multiplayer
games. However, we do not believe that this will diminish
the need for social AI in games, because in a reasonably
deep virtual world, there are always ”boring” roles, such as
quest-givers, merchants, henchmen, and thugs. These are a
few of the roles we have in mind when advocating the use of
some simple higher-order knowledge reasoning.

We will return to some more interesting examples and po-
tential applications later. For now, we hope it is intuitively
clear that a virtual world could be enhanced by keeping track
of what its virtual inhabitants (could be said to) believe or
know, and to provide a programming interface to access
these beliefs and knowledge. Then a programmer can use
these high-level notions in order to script behaviors of NPCs,
or other relevant parts of the virtual world.

How should this be done? In the next section we propose
one approach to realize these ideas.

Programming with Knowledge
Our approach is based around epistemic logic, a research
field with its origins in philosophy (Hintikka 1962). We pro-
pose to use a formal language for epistemic statements, in-
cluding higher-order ones. The formulas of such a language
might for example be built recursively from atoms, which
are non-epistemic facts, by using propositional connectives,
like ∨ (or) and ¬ (not), and knowledge operators Ka, one for
each agent a being simulated. We will call these epistemic
formulas. So, for example, if p were an atom, then KaKbp
could be an epistemic formula with the intended reading “a
knows that b knows that p”.

The idea, which we call explicit knowledge programming,
is to make these statements available at the programming
level, for example as conditions in if clauses. These state-
ments are evaluated by a knowledge module that processes
those events in the world that affect the knowledge state of
its inhabitants. It may be implemented in the programming
language itself, and thus does not necessarily increase its
expressivity. However, the modular approach increases suc-
cinctness and flexibility, makes it possible to develop and
verify the epistemic processing of the program separately,
and essentially gives the NPC scripter a “black box”, so
that she can use directly the familiar notions of belief or
knowledge in her program. At the same time, the knowl-
edge module is firmly grounded in a theoretical framework
which gives a formal meaning to these notions.

It is important to note that we are not proposing to make
available every formula that can be built from any arbitrary
combination of atoms, connectives and knowledge opera-
tors. Rather, for any given concrete application, a certain

subclass of formulas needs to be identified as relevant. In
this way the implementation can remain tractable. For ex-
ample, in the case of NPCs like those mentioned in the pre-
vious section it is obviously not a question of implementing
a “full” human-like knowledge module. But for example a
merchant might have a restricted set of “interests”, and only
be interested in very specific kinds of knowledge.

In order to make our discussion more concrete, we present
now a simple and preliminary implementation of explicit
knowledge programming. This is discussed in previous
work (Witzel & Zvesper 2008), where the implementation
is also proved to be sound with respect to a formal notion
of knowledge defined on the level of the underlying process
calculus. We will briefly review this work in the following.

We wrote a knowledge module that is instantiated for each
process. In our particular implementation, the events that
were used as inputs to the knowledge module were always
synchronous communications between two of the processes
concerning the values of some bits. (In general though, an
event can be anything which would have epistemic effects.)
The idea is to pass to the knowledge module of a process a
the events that a “observes”.

The queries to which the knowledge module can re-
spond are epistemic formulas. We used a formal language
with atoms px0 ,¬px0 , px1 ,¬px1 , . . . for each of the bits
x0, x1, . . ., and a knowledge operator Ka, Kb, . . . for each
of the processes a, b,2 Then, as an example, the for-
mula KcKb¬px2 means that process c knows that process b
knows that x2 has the value 0. If the knowledge module
of process a were passed this formula it could respond by
saying “yes”, “no” or “don’t know”. If the module were to
respond “yes”, then this should be interpreted as (the agent
which is modeled by process) a knowing that c knows that b
knows that x2 is 0.

Even with a simple implementation, it was desirable to
prove that it was in some sense “correct”. Thus we used
a formalism from the literature on epistemic logic, namely
Kripke models. The argument for correctness of the imple-
mentation then proceeds in two steps, which can roughly be
stated as follows:

• Argue that a particular model represents faithfully the in-
tuitive situation which we intended to capture.

• Prove that knowledge formulas are evaluated in the same
way by process a after the sequence of events σ as they
are by agent a in the model after the same sequence of
events.

One criticism that one can make of using a Kripke model
formalism as an intermediate step is that it is a formalism
that itself can appear unintuitive. However, we know of no
more philosophically grounded and mathematically robust
formalism with which to work in the context of reasoning
about higher-order knowledge. (In order to deal with vari-
ous phenomena like so-called explicit belief, or inconsistent
beliefs, many other models have been proposed, but these
are all essentially refinements or variations of Kripke mod-

2Note that here we are not using the richer language that could
be built using also the connectives ¬ and ∨ mentioned above.

139

els – see (Meyer & van der Hoek 1995, Sections 2.4 to 2.13)
for a selective survey.)

The Kripke model for our particular implementation re-
sembled an interpreted system from (Fagin et al. 1995). It
was not our aim to implement an entire interpreted system,
which in this case is an infinite structure. Even if it is finitely
representable, we might only be interested in certain parts of
it.

In general, an implementation can be simplified by con-
sidering only a subclass of the formulas of the full logical
language. As it happened, for the particular implementa-
tion we had in mind (a distributed implementation of an
algorithm for eliminating dominated strategies in strategic
games), it was only necessary to consider formulas from the
very simple epistemic language that we have described.

In the case of simulating human agents that we are inter-
ested in here, the limits to human cognitive faculties should
be taken into account. So for example, it presumably would
not make sense to allow as queries to the knowledge module
epistemic formulas involving complex iterations, like: “Ann
believes that Bob believes that Carl doesn’t believe that Ann
believes that Derek believes that it’s raining”. The specifica-
tion of a knowledge module would include a description of
the epistemic formulas that it can evaluate.

Relation to Existing Work

We will briefly review the current state of the art with respect
to epistemic modeling in computer games, both in existing
games and in (academic) research.

Existing Games

The state of the art in commercial computer games is not
easy to judge, since computer game companies are not very
keen on publishing the details of their AI implementations.
So if one doesn’t want to rely on enthusiastic slogans from
marketing departments, then the best sources of information
about computer game AI are private web pages like (Wood-
cock 2007) where observations and analyses from playing,
interview quotations, and possibly the website creator’s own
knowledge and experience as a game AI programmer are
carefully collected and presented. For an extensive list of
online resources, see (Reynolds 2007).

From these resources it becomes evident that epistemic
reasoning is definitely not in the focus of existing com-
puter game AI, and we did not find any mention of higher-
order reasoning. For example, the highly acclaimed Ra-
diant AI engine is used in the RPG The Elder Scrolls:
OblivionTM (Bethesda Softworks 2006) to make the game
more lifelike. The following quotation is taken from an in-
terview (Wikipedia 2006) during the testing phase of the
game AI:

One [non-player] character was given [by the testers]
a rake and the goal ”rake leaves”; another was given
a broom and the goal ”sweep paths,” and this worked
smoothly. Then they swapped the items, so that the
raker was given a broom and the sweeper was given
the rake. In the end, one of them killed the other so he
could get the proper item.

Obviously, the characters didn’t mutually know their inter-
ests, or they couldn’t make use of that knowledge. Without
seeing the implementation, it is difficult to make suggestions
as to how exactly one might build in a knowledge module,
and, as mentioned in the beginning, a whole architecture in-
corporating beliefs and desires is formally involved; how-
ever, the Radiant AI engine does seem to have some kind
of goal-oriented behavior rules,3 and it is very possible that
epistemic statements would find a natural place in them.

To us it seems natural that one would use a logic-based
approach in order to effectuate epistemic reasoning. Yet ref-
erences in these directions are scarce. In (Mäkelä 2001), it is
suggested to use logic for NPC scripting; however, higher-
order epistemic reasoning is not considered, and that article
is purely programmatic and apparently the ideas have not
been pursued further by the authors.

The clearest statement promoting the use of epistemic rea-
soning comes from the famous IF writer Emily Short (Short
2007):

Abstract Knowledge. One of the artificial abilities we
might like to give our NPCs, aside from the ability to
wander around a map intelligently and carry out com-
plex goals, is the ability to understand what they are
told: to keep track of what items of knowledge they
have so far, use them to change their plans and goals,
and even draw logical inferences from what they’ve
learned.

It is not clear whether this refers to higher-order knowledge,
or whether “abstract” just is meant to imply that the imple-
mentation should be generic and encapsulated in something
like a knowledge module; in any case, the currently existing
IF implementation of such ideas (Eve 2007) is restricted to
pure facts and does not include any reference to the possi-
bility of higher-order knowledge.

An interesting example of a game devoted to small-scale
social interaction is Façade, a dialog-based graphical ver-
sion of interactive fiction with a detailed plot that revolves
around an evening in a small group of friends. Façade is
grounded in academic research, and its authors use intricate
techniques to interactively generate the plot, including a be-
havior language (Mateas & Stern 2004). That language al-
lows to specify the behavior of the NPCs in a very flexible
and general way, but does not include facilities for explicitly
dealing with knowledge states. We do not suggest that this
particular game would necessarily be improved if our ap-
proach of explicit knowledge programming were adopted,
but we do think that it would make a natural addition to this
language, and one that should make the programmer’s job
more straightforward.

Research

Again, where knowledge is considered, the concern seems
to be exclusively domain knowledge, or knowledge about
facts in the game world, as in (Ponsen et al. 2007;

3Note, however, that the retail version of the game may be less
sophisticated; as one referee pointed out, “the version of Radiant
AI that ended up in the game certainly does not have the capabili-
ties that Bethesda aimed for.”

140

Spronck et al. 2006). A more general approach of using
agent programming languages to script NPCs (e.g. (Leite &
Soares 2006)) inherits the epistemic reasoning facilities of
such languages – which tend to focus on facts. The clos-
est in spirit to higher-order modeling are attempts to detect
the general attitude of the human player (for example, ag-
gressive or cautious) and to adjust the game AI accordingly.
But we could find no references to explicit higher-order epis-
temic modeling.

The ScriptEase system (Cutumisu et al. 2007) is an aca-
demic approach to NPC scripting, which was motivated by
the insight that the scripting process needs to be simplified.
It provides a graphical interface for generating behaviors of
characters in a commercial RPG. However, knowledge state-
ments to steer the behavior are not considered.

A very interesting approach, described in (da Silva & Vas-
concelos 2006), uses deontic logic to specify NPC behavior
in a rule-based fashion. While epistemic issues are not con-
sidered there, a fusion of these two aspects could provide a
highly suitable system for scripting believable social agents.

Some literature on higher-order reasoning in multi-agent
systems that does not focus on computer games is also very
relevant. In (Dragoni, Giorgini, & Serafini 2002), the spe-
cific problem of agent communication is studied, in which
agents weigh costs against expected benefit of communica-
tion. The authors point out the importance of using higher-
order reasoning, in the form of beliefs about beliefs, when
agents make such assessments. Their particular interest is
in formal representation of belief “abduction”. We do not
consider abductive reasoning here, but we recognize that it
is also important in our settings.

We also note that higher-order reasoning is discussed in
(Yin et al. 2000) in the context of a Petri Net method for
designing “intelligent team training systems”. The authors
suggest that using Petri Nets can help to overcome tractabil-
ity issues in epistemic reasoning. However, they note that
communication, an important ingredient in the kind of so-
cial interaction we wish to simulate, “is more complicated
than Petri Nets can represent”. We do not consider the Petri
Net formalism further, but if progress is made in this area it
could be of relevance.

Several rich platforms for multi-agent programming,
including BDI architectures, have been proposed (see
e.g. (Bordini et al. 2006) for a recent overview). While these
often do provide for explicit knowledge operators, they are
never higher-order. So these platforms allow for the use of
conditions of the form “If the agent knows such-and-such
then . . . ”, but not “If agent A knows that agent B knows
that . . . ”.

Potential Applications

We will try to illustrate how our approach could enhance
potential or actual computer games.

Knowledge games, as mentioned above, are an obvious
application area for explicit knowledge programming, if
they are to be implemented in a computer game version with
intelligent computer-controlled opponents. To what extent
a knowledge module here should implement the complete

theoretical epistemic model, depends on performance con-
siderations as well as a good balance to make the opponents
challenging yet not super-human. We will not focus on such
games here.

As mentioned before, RPGs and life simulation games
naturally try to simulate realistic social interaction. There-
fore, any real-life social interaction situation involving
knowledge can be viewed as potential application, if one
wants to script the required behavior rules into a virtual
world.

For example, in real life the following behaviors might be
observed in situations where Ann would get an advantage
from lying to Bob:
• if she knows that he doesn’t know the truth

then she might indeed lie;
• if she knows that he does know the truth

then she usually won’t lie;
• if she doesn’t know whether he knows the truth

then her decision may depend on other circumstances.

Catching the Thief

To be a bit more concrete and give an example set in an actu-
ally existing computer game, we consider Thief: The Dark
ProjectTM (Eidos Interactive 1998). This game involves an
interesting special case of “social interaction”: the player is
a thief, and as such, the best tactic most of the time involves
remaining undetected and avoiding confrontation.

While there are more obvious and ubiquitous applications
for higher-order reasoning generally in RPGs and life simu-
lation games, even in this unusual social interaction setting it
is thus crucial to keep track of who has seen or heard whom
and who knows it, both for the player and for plausible and
challenging NPCs. This has obviously been taken care of
in the commercial game, but we can nicely illustrate our ap-
proach in this setting.

Imagine an NPC G that embodies a guard, hostile to the
thief T . Among his behavior rules could be something sim-
ilar to the pseudo-code in Listing 1. How the knowledge or
beliefs used there can come about may vary: by causing or
hearing noise, seeing the other one from behind, or facing
each other. When scripting these behaviors, the programmer
need not worry about this – it is the job of the knowledge
module to take care of maintaining and updating the knowl-
edge states, taking into account whichever events occur in
the virtual world.

Once it is established exactly what kinds of knowledge
formulas need to be used, and what kinds of events can take
place in the virtual world, one can go about designing and
implementing the knowledge module for the specific appli-
cation in question. It depends on the class of formulas and
on the events how straightforward this implementation will
be; but it may well, as in our exemplary implementation of
explicit knowledge programming, turn out to be very effi-
cient.

Adding Credence to Assassin’s Creed

Assassin’s CreedTM (Ubisoft 2007) presents another crisp
case for higher-order beliefs. In each city, Altair (the player

141

Listing 1: Pseudo-code for Thief: The Dark Project
if guard.believes(thief in castle):

if guard.believes(not thief.believes(guard in castle)):
guard.ambush(thief)

elif guard.believes(not thief.believes(guard.believes(thief in castle))):
if not guard.believes(alarmed):

guard.alarm(inconspicuously)
else:

guard.attack(thief)
else:

if not guard.believes(alarmed):
guard.alarm(quickly)

else:
guard.attack(thief)

character) frequently has the optional objective to Save a
Citizen. To do this, Altair kills the guards that are accost-
ing the citizen. Vengeful guards nearby comment on the
dead allies, which notifies Altair that they know a murder
has occurred. Because Altair is present, the guards infalli-
bly assume that Altair is the killer.

To demonstrate higher-order beliefs, suppose that a guard
partitions the crowd into bystanders and suspects, by observ-
ing who is armed. The guard observes the speech and body
language of each bystander (technically a voice over callout
and animation state) to infer the belief of the bystander. As
soon as the guard observes a bystander who is responding
to a murderer, that guard claims the bystander’s target is the
killer. The guard then observes the body language (tech-
nically the high or low status) of Altair (or another prime
suspect) to infer if the suspect believes that the guard is onto
him.

Listing 2 shows pseudocode of this higher-order analy-
sis, written for clarity. Admittedly, such a proposal would
require further design, yet the example illustrates gullible

guards, which a crafty assassin may delight in deceiving.

Summary

We have described a modular approach to adding (higher-
order) knowledge operators to scripting languages for NPCs
in various kinds of games. We have argued and given exam-
ples to show that this systematic approach would help script
plausible or entertaining simulations that involve social in-
teraction, where that last term has a broad interpretation. We
have surveyed existing work, in industry and in academic re-
search, and found that higher-order knowledge has not so far
been discussed or implemented in the context of computer
games.

In games, the goal of epistemics may not necessarily
be verisimilitude, because the ultimate objective is enter-
tainment. For analogy, car racing games such as Burnout
ParadiseTM (Electronic Arts Inc. 2008) obviously employ
rigid body dynamics for traction and collision in a way that
veers from verisimilitude and toward excitement. Game
physics engines have evolved from algorithms originally de-

Listing 2: Pseudo-code for Assassin’s Creed
if guard.believes(murder_happened):

suspects = guard.filter_by_belief(armed, crowd)
bystanders = guard.filter_by_belief(not armed, crowd)
for bystander in bystanders:

if guard.believes(bystander.believes(murder_happened)):
for suspect in suspects:

if guard.believes(bystander.believes(suspect is killer)):
guard.add_belief(suspect is killer)
break

if guard.believes(suspect is killer):
if guard.believes(suspect.believes(\

guard.believes(suspect is killer))):
guard.shout(suspect is killer)
guard.attack(suspect)

else:
guard.whisper(suspect is killer)
guard.ambush(suspect)

142

veloped for simulating physical bodies into frameworks for
animating virtual toys. We hope an epistemics engine com-
prised of algorithms originally developed to simulate beliefs
about the beliefs of other agents may evolve into a toolkit
for cleverly (mis)informing the minds of virtual playmates.

Acknowledgments

Andreas Witzel and Jonathan Zvesper are supported by a
GLoRiClass fellowship funded by the European Commis-
sion (Early Stage Research Training Mono-Host Fellowship
MEST-CT-2005-020841).

References

Baron-Cohen, S. 1995. Mindblindness. The MIT Press.
Bethesda Softworks. 2006. The Elder Scrolls: Oblivion.
http://www.elderscrolls.com/games/
oblivion_overview.htm .
Bordini, R. H.; Braubach, L.; Dastani, M.; Seghrouchni, A.
E. F.; Gomez-Sanz, J. J.; Leite, J.; O’Hare, G.; Pokahr, A.;
and Ricci, A. 2006. A survey of programming languages
and platforms for multi-agent systems. Informatica 30:33–
44.
Brandenburger, A. 2007. The power of paradox: some
recent developments in interactive epistemology. Interna-
tional Journal of Game Theory 35(4):465–492.
Cutumisu, M.; Onuczko, C.; McNaughton, M.; Roy, T.;
Schaeffer, J.; Schumacher, A.; Siegel, J.; Szafron, D.;
Waugh, K.; Carbonaro, M.; Duff, H.; and Gillis, S. 2007.
Scriptease: A generative/adaptive programming paradigm
for game scripting. Science of Computer Programming
67:32–58.
da Silva, F. S. C., and Vasconcelos, W. W. 2006. Rule
schemata for game artificial intelligence. In Advances in
Artificial Intelligence - IBERAMIA-SBIA 2006. Ribeirão
Preto, Brazil: Springer.
Ditmarsch, H. P. v. 2000. Knowledge games. Ph.D. Dis-
sertation, Groningen University. ILLC Dissertation Series
2000-06.
Dragoni, A. F.; Giorgini, P.; and Serafini, L. 2002. Mental
states recognition from communication. Journal of Logic
and Computation 12:119–136.
Eidos Interactive. 1998. Thief: The Dark Project.
http://www.eidosinteractive.com/games/
info.html?gmid=34 .
Electronic Arts Inc. 2008. Burnout Paradise.
http://burnout.ea.com .
Eve, E. 2007. Epistemology, Version 4. Extension for
Inform 7: A Design System for Interactive Fiction Based
on Natural Language.
http://www.inform-fiction.org/
I7Downloads/Extensions/Eric\%20Eve/
Epistemology .
Fagin, R.; Halpern, J. Y.; Vardi, M. Y.; and Moses, Y. 1995.
Reasoning about knowledge. MIT Press.
Hintikka, J. 1962. Knowledge and Belief: An Introduction
to the Logic of the Two Notions. Cornell.

Leite, J., and Soares, L. 2006. Evolving characters in role
playing games. In 18th European Meeting on Cybernetics
and Systems Research (EMCSR 2006), volume 2, 515–520.
Mäkelä, S. 2001. NPC Scripting and Reasoning about the
NPC behaviour. WorldForge: The Original Open Source
MMO Project.
http://www.worldforge.org/project/
newsletters/November2001/NPC_Scripting .
Mateas, M., and Stern, A. 2004. A Behavior Language:
Joint action and behavioral idioms. Springer.
Meyer, J.-J. C., and van der Hoek, W. 1995. Epistemic
Logic for AI and Computer Science. Cambridge University
Press.
Ponsen, M.; Spronck, P.; Muñoz-Avila, H.; and Aha, D. W.
2007. Knowledge acquisition for adaptive game AI. Sci-
ence of Computer Programming 67:59–75.
Rao, A. S., and Georgeff, M. P. 1995. BDI Agents: From
Theory to Practice. In First International Conference on
Multi-Agent Systems (ICMAS-95), 312–319.
Reynolds, C. 2007. Game Research and Technology.
Reynolds Engineering & Design.
http://www.red3d.com/cwr/games/ .
Short, E. 2007. Conversation. Emily Short’s Interactive
Fiction.
http://emshort.wordpress.com/
writing-if/my-articles/conversation .
Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and
Postma, E. 2006. Adaptive game AI with dynamic script-
ing. Machine Learning 63:217–248.
Ubisoft. 2007. Assassin’s Creed.
http://assassinscreed.us.ubi.com .
Wikipedia. 2006. The Elder Scrolls IV: Oblivion.
http://en.wikipedia.org/w/index.
php?title=The_Elder_Scrolls_IV:
_Oblivion&oldid=96078473#Radiant_A.I.
(The relevant section was removed in later revisions, since
according to the ‘discussion’ page it concerned “Radian
[sic] AI’s behavior prior to the game release. Listing all
these examples is beyond the scope of this article.”).
Witzel, A., and Zvesper, J. 2008. Epistemic logic and ex-
plicit knowledge in distributed programming (short paper).
In Padgham, L.; Parkes, D.; Müller, J. P.; and Parsons,
S., eds., Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2008).
Woodcock, S. M. 2007. The Game AI Page.
http://www.gameai.com .
Yin, J.; Miller, M. S.; Ioerger, T. R.; Yen, J.; and Volz,
R. A. 2000. A knowledge-based approach for designing
intelligent team training systems. In Agents, 427–434.

143

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

