
Combining Model-Based Meta-Reasoning and Reinforcement Learning For
Adapting Game-Playing Agents

Patrick Ulam, Joshua Jones, and Ashok Goel
College of Computing, Georgia Institute of Technology

Atlanta, USA 30332

Abstract

Human experience with interactive games will be en-
hanced if the software agents that play the game learn
from their failures. Techniques such as reinforcement
learning provide one way in which these agents may
learn from their failures. Model-based meta-reasoning,
a technique in which an agent uses a self-model for
blame assignment, provides another. This paper eval-
uates a framework in which both these approaches are
combined. We describe an experimental investigation
of a specific task (defending a city) in a computer war
strategy game called FreeCiv. Our results indicate that
in the task examined, model-based meta-reasoning cou-
pled with reinforcement learning enables the agent to
learn the task with performance matching that of an ex-
pert designed agent and with speed exceeding that of a
pure reinforcement learning agent.

Introduction

Intelligent agents acting as non-player characters (NPC) in
interactive games often fail in their tasks. However, NPC’s
in most commercially available interactive games generally
do not learn from these failures. As a result, the human
player may tire of playing the game. The human player’s
experience with an interactive game surely will be enhanced
if these agents learned from their failures and minimize their
recurrence.

Meta-reasoning provides one method for learning from
failures. In model-based meta-reasoning, an agent is en-
dowed with a self-model, i.e., a model of its own knowl-
edge and reasoning. When the agent fails to accomplish a
given task, the agent uses its self-model, possibly in con-
junction with traces of its reasoning on the task, to assign
blame for the failure(s) and modify its knowledge and rea-
soning accordingly. Such techniques have been used in do-
mains ranging from game playing (B. Krulwich and Collins
1992)(Ulam, Goel, and Jones 2004), to route planning (Fox
and Leake 1995) and assembly planning (Murdock and Goel
2003).

However, (Murdock and Goel 2008) showed in some
cases model-based meta-reasoning can only localize the
causes for its failures to specific portions of its task structure,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but not necessarily identify the precise causes or the modi-
fications needed to address them. They used reinforcement
learning (RL) to complete the partial solutions generated by
meta-reasoning: first, the agent used its self-model to lo-
calize the needed modifications to specific portions of its
task structure, and then used Q-learning within those parts
to identify the necessary modifications.

In this work, instead of using reinforcement learning to
identify the modifications necessary in a task model, we
evaluate the hypothesis that model-based meta-reasoning
may also be used to identify the appropriate RL space for
a specific task. The learning space represented by combi-
nations of all possible modifications to an agent’s reason-
ing and knowledge can be too large for RL to work effi-
ciently. One way in which this complexity can be addressed
is through the decomposition of the learning problem into
a series of smaller sub-problems (e.g. (Dietterich 1998)).
This research examines how an agent may localize learning
within such a decomposition through the use of model-based
meta-reasoning. We evaluate this hypothesis in the con-
text of game playing in a highly complex, non-deterministic,
partially-observable environment.

Reinforcement Learning

Reinforcement learning (RL) is a machine learning tech-
nique in which an agent learns through trial and error to
maximize rewards received for taking particular actions in
particular states over an extended period of time (Kaelbling,
Littman, and Moore 1996). Formally, given a set of environ-
mental states S, and a set of agent actionsA, the agent learns
a policy, π, which maps the current state of the world s ∈ S,
to an action a ∈ A, such that the sum of the reinforcement
signals r are maximized over a period of time. One popular
technique for learning such a policy is called Q-Learning.
In Q-Learning, the agent calculates Q-Values, the expected
value of taking a particular action in a particular state. The
Q-Learning update rule can be formulated as Q(s, a) =
Q(s, a)+α(r+γ maxa′ Q∗(s, a′)−Q(s, a)), where r is the
reward received for taking the action, maxa′ Q∗(s, a′) is the
reward that would be received by taking the optimal action
after that, α is a parameter to control the learning rate, and
γ is a parameter to control reward discounting.

Although successful in many domains, the use of RL may
be limited in others due to the so-called curse of dimension-

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

132



ality: the exponential growth of the state space required to
represent additional state variables. In these domains, the
curse of dimensionality prevents the use of RL without sig-
nificant abstraction of the state space. To overcome this lim-
itation, many have investigated the incorporation of back-
ground knowledge into the RL problem (e.g. in the form of a
hierarchical task decomposition). In this context, a task can
be defined as a goal that the agent must achieve (e.g. buy-
ing an apple at the store) A task decomposition, therefore,
can be viewed as the set of sub-goals necessary to achieve
the overall goal. By decomposing the task to be learned into
several smaller tasks, the state space used by the reinforce-
ment learner can be reduced to a more manageable level.

A number of variants of hierarchical RL exist many of
which are rooted in the theory of Semi-Markov decision
processes (Barto and Mahadevan 2003). Hierarchical RL
techniques such as MAXQ value decomposition (Dietterich
1998) rely on domain knowledge in order to determine the
hierarchy of tasks that must be accomplished by the agent,
as does our approach. However, in our approach, the agent
uses model-based meta-reasoning to determine the portion
of the task structure over which the reward should be ap-
plied during task execution. Furthermore, many hierarchical
methods focus on abstractions of temporally extended ac-
tions for the hierarchy (Sutton, Precup, and Singh 1999);
our approach uses the hierarchy to delimit natural partitions
in non-temporally extended tasks.

Anderson, et. al. (Anderson et al. 2006) have applied
meta-reasoning in the context of RL. In their ”metacogni-
tive loop” (MCL) architecture, a metareasoning component
monitors the performance of an RL-based agent. In MCL,
meta-reasoning plays the role of monitoring for and correct-
ing problems in RL. This is in contrast to the work described
here where meta-reasoning is used to focus RL during nor-
mal operation. The two approaches are likely to be comple-
mentary, however.

The FreeCiv Game
The domain for our experimental investigation is a popular
computer war strategy game called FreeCiv. FreeCiv is a
multi-player game in which a player competes either against
several software agents that come with the game or against
other human players. Each player controls a civilization that
becomes increasingly modern as the game progresses. As
the game progresses, each player explores the world, learns
more about it, and encounters other players. Each player can
make alliances with other players, attack the other players,
and defend their own assets from them. FreeCiv provides a
highly complex domain in which the agent must operate. In
the course of a game (that can take many hours to play) each
player makes a large number of decisions for his civilization
ranging from when and where to build cities on the playing
field, to what sort of infrastructure to build within the cities
and between the civilizations’ cities, to how to defend the
civilization.

Due the highly complex nature of the FreeCiv game, our
work so far has addressed only subtasks within the game,
and not the game as a whole. Due to limitations of space, in
this paper we describe only one task in detail, which we call

Defend-City. This task pertains to the defense of one of the
agent’s cities from enemy civilizations.

Agent Model

We built a simple agent (that we describe below) for the
Defend-City task. The agent was then modeled based on
a variant of a knowledge-based shell called REM (Murdock
and Goel 2008) using a version of a knowledge represen-
tation called Task-Method-Knowledge Language (TMKL).
REM agents written in TMKL are divided into tasks, meth-
ods, and knowledge. A task is a unit of computation; a task
specifies what is done by some computation. A method is
another unit of computation; a method specifies how some
computation is done. The knowledge portion of the model
describes the different concepts and relations that tasks and
methods in the model can use and affect as well as logical
axioms and other knowledge necessary for inference over
those concepts and relations.

Table 1 describes the functional model of the Defend-City
task as used by model-based meta-reasoning. The overall
Defend-City task is decomposed into two sub-tasks by the
Evaluate-then-Build method. These subtasks are the eval-
uation of the defense needs for a city and the building of
a particular structure or unit at that city. One of the sub-
tasks, Evaluate-Defense-Needs, can be further decomposed
through the Evaluate-Defense-Needs method into two addi-
tional subtasks: a task to check internal factors in the city
for defensive requirements and a task to check for factors
external to the immediate vicinity of the city for defensive
requirements. These subtasks are then implemented at the
procedural level for execution as described below.

The Defend-City task is executed each turn that the agent
is not building a defensive unit in a particular city in order
to determine if production should be switched to a defensive
unit. It is also executed each turn that a defensive unit has
finished production in a particular city. The internal evalua-
tion task utilizes knowledge concerning the current number
of troops that are positioned in and around a particular city
to determine if the city has an adequate number of defend-
ers based on available information. This is implemented as
a relation in the form of the evaluation of the linear expres-
sion: allies(r) + d ≥ t where allies(r) is the number of
allies within radius r, d is the number of defenders in the
city and t is a threshold value. The external evaluation of a
city’s defenses examines the area within a specified radius
around a city for nearby enemy combat units. It uses the
knowledge of the number of units, their distance from the
city, and the number of units currently allocated to defend
the city in order to provide an evaluation of the need for
additional defense. This is also implemented as a relation
in the form of the linear expression enemies(r) + et ≤ d
where enemies(r) is the number of enemies in radius r of
the city, et is a threshold value, and d is the number of de-
fenders in the city. These tasks produce knowledge states
in the form of defense recommendations that are then used
by the task that builds the appropriate item at the city. The
Build-Defense task uses the knowledge states generated by
the evaluation subtasks, knowledge concerning the current

133



Table 1: TMKL Model of Defend-City Task
TMKL Model of the Defend-City Task

Task Defend-City
by Evaluate-Then-Build

makes City-Defended

Method Evaluate-Then-Build
transitions:

state: s1 Evaluate-Defense-Needs
success s2

state: s2 Build-Defense
success success

additional-result City-Defended, Unit-Built
Wealth-Built

Task Evaluate-Defense-Needs
input External/Internal-Defense-Advice

output Build-Order
by UseDefenseAdviceProcedure

makes DefenseCalculated

Method Evaluate-Defense-Needs
transitions:

state: s1 Evaluate-Internal
success s2

state: s2 Evaluate-External
success success

additional-result Citizens-Happy, Enemies-Accounted
Allies-Accounted

Task Evaluate-Internal
input Defense-State-Info

output Internal-Defense-Advice
by InternalEvalProcedure

makes Allies-Accounted, Citizens-Happy

Task Evaluate-External
input Defense-State-Info

output External-Defense-Advice
by ExternalEvalProcedure

makes Enemies-Accounted

Task Build-Defense
input BuildOrder

by BuildUnitWealthProcedure
makes Unit-Built, Wealth-Built

status of the build queue, and the technology currently avail-
able to the agent to determine what should be built for a
given iteration of the task. The Build Defense task will then
proceed to build a defensive unit, either a warrior or a pha-
lanx based on the technology level achieved by the agent at
that particular point in the game, or wealth to indirectly keep
the citizens of the city happy. The goal of the Defend-City
task is to provide for the defense of a city for a certain num-
ber of years. The task is considered successful if the city
has not been conquered by opponents by the end of this time
span. If the enemy takes control of the city the task is con-
sidered a failure. In addition, if the city enters civil unrest,
a state in which the city revolts because of unhappiness, the
task is considered failed. Civil unrest is usually due the ne-

glect of infrastructure in a particular city that can be partially
alleviated by focusing the city on wealth/luxury production.

Experimental Setup

We compared four variations of the Defend-City agent to
determine the effectiveness of model-based meta-reasoning
in guiding RL. These were a control agent, a pure meta-
reasoning agent, a pure RL agent, and a meta-reasoning-
guided RL agent. The agents are described in detail below.

Each experiment was composed of 100 trials and each
trial was set to run for one hundred turns at the hardest diffi-
culty level in FreeCiv against eight opponents on the small-
est game map available. These opponents were controlled
by the standard AI that comes built into the FreeCiv engine.
The same map was used for each trial across all agents. Tax
rates in each scenario were set to 40% research, 30% in-
come, and 30% luxury. Within this work, the city to be
defended was built at the starting location. Any additional
units available at the outset of the game (typically one or
two) randomly explored in the vicinity of this city. If an op-
ponent was discovered, these units did not actively engage
in offensive behavior. The Defend-City task is considered
successful if the city neither revolted nor was defeated. If
the task was successful no adaptation of the agent occurred.
If the agent’s city is conquered or the city’s citizens revolt,
the Defend-City task is considered failed. Execution of the
task is halted and adaptation appropriate to the type of agent
is initiated. The metrics measured in these trials include the
number of successful trials in which the city was neither de-
feated nor did the city revolt. In addition, the number of at-
tacks successfully defended per game was measured under
the assumption that the more successful the agent in defend-
ing the city, the more attacks it will be able to successfully
defend against. The final metric measured was the number
of trials run between failures of the task. This was included
as a means of determining how quickly the agent was able
to learn the task and is included under the assumption that
an agent with longer periods between task failures indicate
that the task has been learned more effectively.

Control Agent

The control agent was set to follow the initial model of the
Defend-City task and was not provided with any means of
adaptation. The initial Defend-City model used in all agents
executes the Evaluate-External task only looking for en-
emy units one tile away from the city. The initial Evaluate-
Internal task only looks for defending troops in the imme-
diate vicinity of the city and if there are none, will build a
single defensive unit. The control agent will not change this
behavior over the lifetime of the agent.

Pure Model-Based Meta-Reasoning Agent

The second agent was provided capabilities of adaption
based purely on model-based meta-reasoning. Upon failure
of the Defend-City task, the agent used an execution trace
of the last twenty executions of the task, and in conjunction
with the current model, it performed failure-driven model-
based adaptation. The first step is the localization of the

134



Table 2: State variables for RL Based Agents
Pure RL State Variables Additional State Variables Associated Sub-Task

≤ 1 Allies in City Evaluate-Internal

≤ 3 Allies in City Evaluate-Internal

≤ 6 Allies in City Evaluate-Internal

≤ 1 Allies Nearby Evaluate-Internal

≤ 2 Allies Nearby Evaluate-Internal

≤ 4 Allies Nearby Evaluate-Internal

≤ 1 Enemies Nearby Evaluate-External

≤ 3 Enemies Nearby Evaluate-External

≤ 6 Enemies Nearby Evaluate-External

Internal Recommend Evaluate-Defense

External Recommend Evaluate-Defense

Table 3: Failure types used in the Defend-City task

Model Location (task) Types of Failures

Defend-City Unit-Build-Error,
Wealth-Build-Error,
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
Proximity-Miseval,
Threat-Level-Miseval,
None

Build-Defense Unit-Build-Error,
Wealth-Build-Error,
None

Evaluate-Internal Citizen-Unrest-Miseval,
Defense-Present-Miseval,
None

Evaluate-External Proximity-Miseval,
Threat-Level-Miseval,
None

error through the use of feedback in the form of the type of
failure, and the model of the failed task. Using the feed-
back, the model is analyzed to determine in which task the
failure has occurred. For example, if the Defend-City task
fails due to citizen revolt the algorithm would take as in-
put: the Defend-City model, the traces of the last twenty
executions of the task, and feedback indicating that the fail-
ure was a result of a citizen revolt in the city. The failure
localization algorithm would take the model as well as the
feedback as input. As a city revolt is caused by unhappy
citizens, this information can be utilized to help localize
where in the model the failure may have occurred. This al-
gorithm will go through the model, looking for methods or
tasks that result in knowledge states concerning the citizens’
happiness. It will first locate the method Evaluate-Defense-
Need and find that this method should result in the assertion
Citizens-Happy. It will continue searching the sub-tasks of
this method in order to find if any sub-task makes the asser-
tion Citizens-Happy. If not, then the error can be localized
to the Evaluate-Defense-Need task and all sub-tasks below
it. In this case, the Evaluate-Internal task makes the asser-

tion Citizens-Happy and the failure can be localized to that
particular task. An extensive discussion on failure localiza-
tion in meta-reasoning can be found in (Murdock and Goel
2008). Given the location in the model from which the fail-
ure is suspected to arise, the agent then analyzes the exe-
cution traces available to it to determine to the best of its
ability what the type of error occurred in the task execution
through the use of domain knowledge. For this agent, error
localization occurs through the use of a failure library con-
taining common failure conditions found within the Defend-
City task. An example of a failure library used in this task is
shown in Table 3. This failure library is typically the product
of the existing task model in that the elements in the library
map directly to the assertions that should result from exe-
cuting a task within the model. For example, the task model
indicates that the Evaluate-Internal sub-task should result in
the assertion Citizens-Happy. One of the failures within the
library would therefore be the case in which the citizens are
not made happy.

If a failure has been determined to have occurred, it is
then used to index into a library of adaptation strategies that
will modify the task in the manner indicated by the library.
These adaptations consist of small modifications to the sub-
tasks in the defend city tasks, such as changing the Evaluate-
External subtask to look for enemies slightly further away.
These adaptations can be seen as a variation on fixed value
production repair as described by (Murdock and Goel 2008).
If multiple errors are found with this procedure, a single er-
ror is chosen stochastically so as to minimize the chance of
over-adaptation of the agent.

Pure Reinforcement Learning Agent

The third agent used a pure RL strategy for adaptation im-
plemented via Q-Learning (described in detail in section 2).
The state space encoding used by this agent is a set of nine
binary variables as seen in Table 2. This allows a state space
of 512 distinct states. It should be noted, however, that not
all states are reachable in practice. The set of actions avail-
able to the agent were: Build Wealth, Build Military Unit.
The agent received a reward of -1 when the Defend-City
task failed and a reward of 0 otherwise. In all trials alpha
was kept constant at 0.8 and gamma was set to 0.9.

135



Number of Failures

0

20

40

60

80

100

Control Model-

Based

Pure RL Model+RL

Type of Adaptation

F
a
il

u
re

s

Figure 1: Number of Failures

Meta-Reasoning-Guided RL Agent

The final agent utilized model-based meta-reasoning in con-
junction with RL. The Defend-City task model was aug-
mented with RL by partitioning the state space utilized by
the pure RL agent into three distinct state spaces that are then
associated with the appropriate sub-tasks of the Defend-City
task. This essentially makes several smaller RL problems.
Table 2 shows the states that are associated with each sub-
task. The Evaluate-External task is associated with three
binary state variables. Its resulting actions consist of ei-
ther a recommendation that defensive units be built or a rec-
ommendation that defensive units should not be built. In
a similar manner, Evaluate-Internal is associated with six
binary state variables as shown Table 2. The actions are
also a binary value representing the relation used in the pure
meta-reasoning agent. There are two additional state vari-
ables in this agent that are associated with the Evaluate-
Defenses sub-task. The state space for this particular portion
of the model are the outputs of the Evaluate-External and
Evaluate-Internal tasks and is hence two binary variables.
The actions for this RL task is also a binary value indicat-
ing a yes or no decision on whether defensive units should
be built. It should be noted that while the actions of the in-
dividual sub-tasks are different from the pure RL agent, the
overall execution of the Defend-City task results in two pos-
sible actions for all agents, namely an order to build wealth
or to build a defensive unit. Upon a failure in the task execu-
tion, the agent initiates meta-reasoning in a manner identical
to the pure meta-reasoning agent. Utilizing a trace of the last
twenty executions of the Defend-City task as well as its in-
ternal model of the Defend-City task, the agent localizes the
failure to a particular portion of the model as described in
section 5.2. If an error in the task execution is detected, in-
stead of utilizing adaptation libraries to modify the model of
the task as in the pure meta-reasoning agent, the agent ap-
plies a reward of -1 to the sub-task’s reinforcement learner as
indicated via meta-reasoning. The reward is used to update
the Q-values of the sub-task via Q-Learning at which point
the adaptation for that trial is over. If no error is found, then a
reward of 0 is given to the appropriate reinforcement learner.
In all trials alpha was kept constant at 0.8 and gamma was
set to 0.9.

Proportion of Attacks Defended

0

0.2

0.4

0.6

0.8

1

Control Model Based Pure RL Model+RL

Figure 2: Proportion of Attacks Defended

Average Trials beween Failures 

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21

Failures

T
ri

a
ls

 B
e
tw

e
e
n

 F
a
il

u
re

s

Control

RL

Model

Model+RL

Figure 3: Average Number of Trials Between Failures

Results and Discussion

Figure 1 depicts the number of trials in which a failure oc-
curred out of the one hundred trials run for each agent. The
more successful adaptation methods should have a lower
failure rate. As can be seen from the results, the meta-
reasoning-guided RL agent proved most effective at learning
the Defend-City task, with a failure rate of around half that
of the control agent. The pure meta-reasoning agent with
the hand designed adaptation library proved to be success-
ful also with a failure rate slightly higher then that of the
meta-reasoning-guided RL agent. The pure RL agent’s per-
formance did not match either of the other two agents in this
metric. The pure RL agent’s failure rate did improve over
that of the control, however, indicating that some learning
did take place, but not at the rate of either the pure meta-
reasoning agent or the meta-reasoning-guided RL agent.

The second metric measured was the proportion of attacks
successfully defended by the agent in its city. This serves
as another means of determining how effectively the agent
has been able to perform the Defend-City task. The more
attacks that the agent was able to defend, the more success-
fully the agent had learned to perform the task. The results
from this metric can be seen in Figure 2. As the default
parametrization of all agents results in one defensive unit be-
ing built, this metric will not be below 50% for any agent (a
city with one denfensive unit will always be able to defend
against at least one attack). Both the pure meta-reasoning
and meta-reasoning-guided RL agent were able to defend
against around an equal number of attacks per trial (approx.
6 defenses per trial) indicating that both methods learned
the task to an approximately equal degree of effectiveness.
The pure RL based agent exceeded the performance of the

136



control (approx. 2.5 vs. 1.5 defenses per trial) but was sig-
nificantly less effective then the meta-reasoning methods,
once again lending support to the conclusion that the pure
RL based agent is hampered by its slow convergence times.
This result, coupled with the number of failures, provide sig-
nificant evidence that the meta-reasoning methods learned to
perform the task with a significant degree of precision. They
not only reduced the number of failures when compared to
the control and pure RL based agent, but were also able to
defend the city from more than twice as many attacks per
trial.

Figure 3 depicts the average number of trials between
failures for the first twenty-five failures of each agent aver-
aged over a five trial window for smoothing purposes. This
metric provides a means of measuring the speed of conver-
gence of each of the adaptation methods. It is assumed that
as the agent learns the Defend-City task within the the ex-
periment, the frequency of failures will decrease. As such,
the rate in which the failures decrease can be used measure
how quickly the agent learns the task. As can be seen, the
meta-reasoning-guided RL agent shows the fastest conver-
gence speed followed by the non-augmented meta-reasoning
agent. The pure RL agent did not appear to improve un-
til around the twelfth failure. After this point the control
and the pure RL agent inter-trial failure rate begin to deviate
slowly. Though not depicted in the figure, the performance
of the pure RL based agent never exceeded a inter-trial fail-
ure rate of three even after all trials were run. This lends
evidence to the hypothesis that pure RL cannot learn an ap-
propriate solution to this problem in the allotted number of
trials though the performance of this agent did outperform
the control. The meta-reasoning-guided RL agent outper-
formed the pure meta-reasoning agent in this metric. Fi-
nally, the difference in all performance metrics for the pure
RL agent and the meta-reasoning guided RL agent serve to
illustrate the importance of the problem decomposition and
localization in the agent’s ability to learn the task.

Beyond the experiments described in this paper, we have
also applied meta-reasoning-guided RL to another problem
in FreeCiv. While the results for this new domain are still
preliminary, this work bears mention as it helps establish
the generality of the approach. In this alternative setting, an
agent learns to make decisions about when to use it units
to actively attack enemy units within FreeCiv. These pre-
liminary results found that the agent, when equipped with a
model of its reasoning and a decomposed RL state space ap-
propriate for this domain, was able to significantly improve
its performance (measured as the percentage of engaged en-
emies defeated) against the control, an agent which engages
enemy units stochastically.

Conclusions
This work describes how model-based meta-reasoning may
guide RL. In the experiments described, this has been shown
to have two benefits. The first is a reduction in learning
time as compared to an agent that learns the task via pure
RL. The model-guided RL agent learned the task described,
and did so faster then the pure RL based agent. In fact,
the pure RL based agent did not converge to a solution that

equaled that of either the pure meta-reasoning agent or the
meta-reasoning-guided RL agent within the allotted num-
ber of trials. Secondly, the meta-reasoning-guided RL agent
shows benefits over the pure meta-reasoning agent, match-
ing the performance of that agent in the metrics measured in
addition to learning the task in fewer trials. In addition, the
augmented agent eliminates the need for an explicit adapta-
tion library such as is used in the pure-model based agent
and thus results in a significant reduction in the knowledge
engineering required by the designer. This work has only
looked at an agent that can play a small subset of FreeCiv.
Future work will focus largely on scaling up this method to
include other aspects of the game and hence larger models
and larger state spaces.

Acknowledgments

This work was supported in part by an NSF (SoD) grant
(#0613744) on Teleological Reasoning in Adaptive Soft-
ware Design.

References

Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D.
2006. The metacognitive loop I: Enhancing reinforcement
learning with metacognitive monitoring and control for im-
proved perturbation tolerance. J. Exp. Theor. Artif. Intell.
18(3):387–411.

B. Krulwich, L. B., and Collins, G. 1992. Learning several
lessons from one experience. In Proceedings of the 14th
Annual Conference of the Cognitive Science Society, 242–
247.

Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(4):341–379.

Dietterich, T. G. 1998. The MAXQ method for hierarchi-
cal reinforcement learning. In Proceedings of the Fifteenth
International Conference on Machine Learning, 118–126.

Fox, S., and Leake, D. B. 1995. Using introspective rea-
soning to refine indexing. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.

Murdock, W., and Goel, A. K. 2003. Localizing plan-
ning with functional process models. In Proceedings of the
Thirteenth International Conference on Automated Plan-
ning and Scheduling.

Murdock, J. W., and Goel, A. K. 2008. Meta-case-based
reasoning: self-improvement through self-understanding.
J. Exp. Theor. Artif. Intell. 20(1):1–36.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intelli-
gence 112:181–211.

Ulam, P.; Goel, A.; and Jones, J. 2004. Reflection in action:
Model-based self-adaptation in game playing agents. In
AAAI Challanges in Game AI Workshop.

137


	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org




