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Abstract

We present a domain independent off-line adaptation
technique called Stochastic Plan Optimization for find-
ing and improving plans in real-time strategy games.
Our method is based on ideas from genetic algorithms
but we utilize a different representation for our plans
and an alternate initialization procedure for our search
process. The key to our technique is the use of expert
plans to initialize our search in the most relevant parts
of plan space. Our experiments validate this approach
using our existing case based reasoning system Darmok
in the real-time strategy game Wargus, a clone of War-
craft IL.

Introduction

Case based reasoning (CBR) systems solve new problems
by reusing or adapting solutions that were used to solve
past problems. Because of this, CBR systems are depen-
dent on the quality of their cases in terms of their applica-
bility to novel situations and their performance in different
situations. In applying a CBR approach to the domain of
real-time strategy (RTS) games, it is often true that the cases
available are applicable in a very restricted set of situations
and their performance is not always optimal due to the huge
plan space and the non-deterministic nature of real-time
strategy games. The problem of generating new cases or im-
proving existing ones is quite apparent. Our team has pre-
viously performed research into adapting plans (Sugandh,
Ontaidén, & Ram 2008) to expand their applicability but in
this paper we will present a more general domain indepen-
dent off-line stochastic plan optimization technique which
aims to adapt or completely replace plans in order to find or
develop the best plan for any given situation.

Some of the typical approaches to adapting cases in-
volve domain specific adaptation rules in CHEF (Hammond
1990), domain independent search methods used by PRIAR
(Kambhampati & Hendler 1992), and case merging done in
MPA (Ram & Francis 1996). In contrast to CHEF, our ap-
proach provides a domain independent but expert guided ap-
proach which can adapt to a wider range of situations than
MPA while generally alleviating some of the time cost of
PRIAR by using a heuristic function that guides the search.
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Figure 1: A screenshot of the Wargus game.

The application of stochastic search based optimization to
case based reasoning agents in real-time strategy games has
the capability to discover useful new cases and expand the
utility of existing ones. In our approach, we use this capa-
bility to perform plan optimization by stochastically search-
ing the plan space. We start with a plan to optimize and
use this plan as an initial direction and branching point in
our optimization process which iteratively explores and ex-
ploits the plan space using in-game evaluations of generated
plans as a guide. We empirically validate our process by in-
tegrating it into our existing case based reasoning system,
Darmok (Ontafién et al. 2007), and testing it in novel situa-
tions where the system lacks cases to perform intelligently.

The outline of the rest of the paper is as follows. In the
first section we discuss the importance and challenge of the
domain of RTS games. The second section discusses related
work. Next we provide a review of the existing Darmok
system architecture and how our new plan optimization in-
tegrates with it. The following section covers the Stochastic
Plan Optimization algorithm (SPO). The sixth section gives
an example of a situation where the algorithm can be suc-
cessfully deployed. The seventh section presents an empiri-
cal evaluation. Finally, we present our conclusions.
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Real-Time Strategy Games

Wargus (Figure 1) is a clone of the classic real-time strat-
egy game Warcraft II where each player’s goal is to survive
and destroy the other players. Each player has a number of
troops, buildings, and workers who gather resources (gold,
wood and oil) in order to produce more units. Buildings
are required to produce more advanced troops, and troops
are required to attack the enemy. The calculations inher-
ent in the combat system make the game non-deterministic.
For example, the map shown in Figure 1 leads to complex
strategic reasoning, such as building long range units (such
as catapults or ballistas) to attack the other player before the
wall of trees has been chopped down, or chopping through
early in the game to try to catch the enemy by surprise.

Real-time strategy games have been recognized as do-
main rich in interesting problems for artificial intelligence
researchers (Buro 2003; Aha, Molineaux, & Ponsen 2005).
They offer a variety of challenges given their huge state
space, their non-deterministic nature, the partially observ-
able environments, and the presence of multiple adversaries
with unknown decision models. The huge commercial stake
the game industry has in improving the intelligence embed-
ded in their games and the growing audience of strategy
gamers provides a ripe domain for artificial intelligence re-
search to have a dramatic effect.

Related Work

One of the first case-based planning systems was CHEF
(Hammond 1990). CHEF was able to build new recipes with
multiple goals based on the user’s request for dishes with
particular ingredients and tastes. CHEF contained a memory
of past failures to warn about problems and also a memory
of succeeded plans from which to retrieve plans. One of the
novel capabilities of CHEF, with respect to classical plan-
ning systems, was its ability to learn. The places in which
CHEEF experienced planning failures were the places the sys-
tem needed to learn. CHEF performed plan adaptation by a
set of domain-specific rules called TOPs.

Domain-independent nonlinear planning has been shown
to be intractable (NP-hard). PRIAR (Kambhampati &
Hendler 1992) was designed to address that issue. PRIAR
works by annotating generated plans with a validation struc-
ture that contains an explanation of the internal causal de-
pendencies so that previous plans can be reused by adapt-
ing them in the future. Related to PRIAR, the SPA system
was presented by Hanks and Weld (Hanks & Weld 1995).
The key highlight of SPA is that it is complete and sys-
tematic (while PRIAR is not systematic, and CHEF is nei-
ther complete or systematic), but uses a simpler plan rep-
resentation than PRIAR. Extending SPA, Ram and Francis
(Ram & Francis 1996) presented MPA (Multi-Plan Adap-
tor), which extended SPA with the ability to merge plans.
These approaches require that the domain is specified in a
particular form whereas our approach does not. For an ex-
tensive overview of case-based plan adaptation techniques
see (Muiioz-Avila & Cox 2007).

There are several reasons for which traditional search-
based planning approaches cannot be directly applied to do-
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mains such as Wargus. The first one is the size of the deci-
sion space. If we follow the analysis performed in (Aha, Mo-
lineaux, & Ponsen 2005), the approximate number of differ-
ent commands that can be issued in the situation depicted in
Figure 1 is about 280,000. Thus, classical adversarial search
using a mini-max kind of algorithm is not feasible. We will
discuss later how our approach addresses this challenge by
using expert cases to guide the search.

Ponsen and Spronck have done the most similar work in
their evolutionary learning approach applied to their Dy-
namic Scripting technique (Spronck et al. 2006). Like our
work, theirs is an off-line evolutionary algorithm which au-
tomatically generates tactics for Wargus. Their work showed
the viability of using evolutionary learning to aid adaptive
Al systems in real-time strategy games. Their approach dif-
fers from ours in two important ways, they used a chromo-
some based tactic representation and randomly initialized
their evolutionary search process.

Our approach also shares many of the characteristics of
a standard genetic algorithm (Koza 1998). We differ most
importantly in how we initialize our population using expert
cases, in the way we decay probabilities involved in the ap-
plication of our operators, and the fact that we do not use a
gene-like representation. In this sense, our approach could
be viewed as an amalgam between a genetic algorithm and
simulated annealing with an expert guided selection of the
initial population.

Darmok

In this section we will briefly describe Darmok, in which we
have implemented our plan optimization techniques and how
our optimization system fits into the Darmok architecture
(see (Ontanidn et al. 2007) for more details about Darmok).

Darmok learns behaviors from expert demonstrations and
uses case-based planning techniques to reuse the behaviors
for new situations. Basically, Darmok’s execution can be
divided in two main stages:

e Behavior acquisition: During this first stage, an expert
plays a game of Wargus and the trace of that game is
stored. Then, the expert annotates the trace explaining
the goals he was pursuing with the actions he took while
playing. Using those annotations, a set of behaviors are
extracted from the trace and stored as a set of cases. Each
case is a triple: situation/goal/behavior, representing that
the expert used a particular behavior to achieve a certain
goal in a particular situation.

e Execution: The execution engine consists of several mod-
ules, which together maintain a current plan to win the
game. The Plan Execution module is in charge of execut-
ing the current plan and update its state (marking which
actions succeeded or failed). The Plan Expansion mod-
ule is in charge of identifying open goals in the current
plan and expanding them. In order to do that, it relies on
the Behavior Retrieval module, which given an open goal
and the current game state will retrieve the most appropri-
ate behavior to fulfill that open goal. Finally, we have the
Plan Adaptation module which is in charge of adapting
the retrieved plans according to the current game state.
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Figure 2: Visualizing the generation of the initial base plans.

Our plan optimization system intercepts the retrieval of
the specific case we are trying to optimize in order to gener-
ate and return plan variants for the system to run. We eval-
uate our variants after the Plan Execution module runs the
plans, at which point it reports back whether the plan suc-
ceeded or failed. In the remainder of this paper we will fo-
cus on the plan optimization technique we have designed to
perform offline plan optimization.

Plan Optimization

In this section we will discuss the design of our plan op-
timization engine. Our design is based on a couple of as-
sumptions which define our search strategy. First, searching
the entire plan space is an intractable problem and so we will
limit the scope of our search. Second, the expert trace may
not be the best but is all the information we have in order to
know where to start the search, so we have built in the ability
to decide how much to trust the expert.

Our stochastic search strategy process realizes these
assumptions in two stages which we continually iterate
through, plan generation and plan evaluation. Figure 4
presents the algorithm. We will explain each part of it in
detail.

Plan Generation

There are two different phases of plan generation. For the
first iteration only, we generate a pre-defined number of base
plans to seed our system. These base plans are either de-
rived from the original expert generated plan or completely
random base plans, see Figure 2 for a visualization of this
process. The more derived plans used, the more we trust the
expert and our search will be centered closer in plan space
to the original plan. Conversely, more random plans indicate
less trust in the expert and will cause a more diverse plan
space to be explored. The balance between the number of
random and derived plans provides a nice control for users
to decide whether they want to concentrate on improving or
replacing the existing plan. Each of these base plans are se-
quential or parallel plans which are randomly padded with
a random number of randomly generated plans. The range
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Figure 3: Visualizations for the Mix, Prune, and In-Place
Randomize plan generation operators. The randomize oper-
ator is not shown because its output has no parent derived
relation.

of the number of padded random plans is an input which
provides an approximate upper bound on the size of plans
considered in our search. We will see later how the plans are
able to grow further but will tend to shrink in size due to the
nature of our plan generation operators. The base plans in
our initial phase of plan generation let us start our search in
fertile ground where we have a lot of wiggle room to exploit
the expert plan or explore the plan space further.

The second phase of plan generation is run every iteration.
It tries to optimize the plans that survived the previous iter-
ation by using a number of different plan generation opera-
tors. There are four plan generation operators in our system.
Together, these operators attempt to provide a balance be-
tween exploration and exploitation of the previous iterations
plans. The explore/exploit balance can be customized by
setting probabilities for each operator which define roughly
how often they will be applied. Currently, we implement the
following four operators: randomize, mix, prune, in-place
randomize. See Figure 3 for visualizations of the mix, prune
and in-place randomize operators.

e The randomize operator creates a completely new and
random plan. Randomize is the most exploration centered
operator given that it effectively jumpstarts a new search
direction unrelated to the existing directions.

e The mix operator provides slightly less exploration and
at the same time tries to exploit two different randomly
chosen plans which are mixed together to generate a new
plan. Mixing is the only operator which can create larger
plans than the initial base plans by combining steps from
both plans.

e The prune operator does the least exploration by remov-
ing a single step from a plan in the hopes of down-sizing
the plan to its critical steps.

e The in-place randomize operator randomly changes the
subplans of a plan without changing the ordering within
the plan.
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Plan Evaluation

Once the plans have been run in-game we use an evalua-
tion heuristic to generate scores (or fitness function in ge-
netic algorithms terminology). Only plans with a high score
will be used in the next iteration. The evaluation heuristic
is based mainly on the resource value of all of a player’s
units, technologies researched, and a concept of territorial
control based on troop and building locations. A score for
each player is calculated as follows:

>

military units

100*tr—|—z resources—+

>

civilian units

h(unit) * rc(unit) +

>

technology

re(r)

Player controlled territory, the area of the map within a
distance of 3 or less to the players units, is represented by
tr. The rc function returns the sum of the amount of each re-
source (gold, wood, oil) required to construct a unit. The A
function returns a unit’s current health divided by their max
health. The value of military troops is scaled up to empha-
size their strategic value and the value of all units is propor-
tional to their health to account for uncompleted or damaged
buildings and injured troops. The final score for a plan is
the sum of the enemie’s scores subtracted from the players’
score. This scoring system attempts to favor plans which
improve the players success at the expense of the enemies.

Every iteration we keep only the best N plans which are
used to generate the next crop of plans. After all the itera-
tions are completed, we retain all the plans which are some
pre-defined percent better than the original plan.

Example

In this section we will give an example of a situation where
SPO could help. Imagine a scenario in which Darmok has
a fighter and a ballista and the enemy has a fighter and a
tower. The ballista works well against the tower because it
can destroy the tower without getting in range of the tower’s
attack but the enemy fighter stationed near the tower can
destroy the ballista easily when it attacks either the tower
or the fighter. Also, the fighter cannot destroy the tower and
only has a 50% chance of defeating the enemy fighter. The
optimal plan would have our agent use the ballista and the
fighter to attack the enemy fighter and then have the ballista
destroy the tower on its own. This plan is not in our case base
though. Our system must therefore adapt and optimize the
attack tower plan to include two attack plans for our fighter
and ballista to attack the enemy fighter before the ballista
attack tower plan. Figure 5 shows a small part of the trace
of our search process in this example.

Experimental Results

We ran experiments on four maps. Maps 1 and 1b model
the situation described in the above example with one hav-
ing greater complexity with the addition of more units and
buildings. Maps 2 and 2b, one simple and one complex with

h(unit)src(unit)*1.54+
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Function optimize(o, s, d, nR, nE, nS, nl, sP, P, 13):
plans = empty
plans.addAll(generate d base plans derived from o)
plans.addAll(generate nR random base plans)
add [0, nE] subplans to every plan in plans
For every plan in plans: plan.subplans.shuffie()
untriedPlans = plans.copy()
Repeat nl times:
For every plan in plans:
For every operator:
untriedPlans.add(apply(operator, plan, P))
For every plan in untriedPlans:
score = evaluatePlan(plan)
plans.add(plan, score)
keep only the nS highest scoring plans in plans
untriedPlans = empty
P#=D
retain plans with scores sP % better than s to case base

Figure 4: The SPO algorithm, where o is the original plan, s
is the original plan’s score, d is the number of derived plans,
nR is the number of random plans, #E is the max number of
plans to expand, nS is the number of plans to save each iter-
ation, n/ is the number of iterations, sP is the cutoff percent

for saving the final plans, P is the vector of probabilities for
applying the operators, and D is the vector of decay rates for
the probabilities in P.

more units and buildings, involve peasants foolhardily cut-
ting down the forest protecting them from the enemy. The
goal plan for maps 2 and 2b is any plan which prevents the
peasants from cutting down the forest.

On each map we used three different algorithms, the SPO
algorithm and two other algorithms used for comparison.
The second algorithm is a variant of SPO we will call Ran-
dom Base Plans. It works in exactly the same way as SPO
but is only initialized with random base plans and not with
derived base plans. The third algorithm we call Random
Only because it only generates random plans. To most effec-
tively compare the algorithms, we ran SPO for 10 iterations
and then proceeded to run the other two for as long as it took
them, with a max run-time limit, to achieve the same or bet-
ter performance than SPO. The parameters for SPO were set
as follows: d = 3, nR = 3, nEf 2,nS=6,nl=10, sP =1,
P= {1.0,1.0,1.0,1.0,1.0}, D = {.96, .98, .99, .98, .99}.

Figure 6 shows the results of running the algorithms on
each map plotted in terms of their run-time and final score.
To perform the experiments in a sensible time the run-time
for each algorithm on maps 1 and 1b was limited to 2 hours
and 4 hours on maps 2 and 2b. Maps 2 and 2b required more
time for each plan to better evaluate the consequences of the
plans. These experiments were run on a Pentium D 3.2GHz
with 3GB of RAM.

On map 1 we can see that SPO provides a good balance
of time for performance. Random Base Plans performs sim-
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Figure 5: A partial trace of the search process in our exam-
ple. The three iterations are labeled on the left. Each box
represents a plan and the arrows represent child-parent re-
lationships. The arrows are labeled with the operation used
on the parent to generate the child. The numbers below the
boxes are the plan scores and the numbers in red circles rep-
resent the iteration in which the plan was pruned from the
search process.

ilarly but ends up trading a good chunk of time for perfor-
mance on several runs and hits the max run-time a couple
times. As could be expected random is all over the graph
with undependable performance scores.

On map 1b, the more complex version of map 1, SPO
takes a clear lead over the other two algorithms. Random
Base Plans does reasonably well overall but is not able to
match the scores of SPO and runs out of time a couple times.
Random shows that it handles the complexity the worst and
more often than not runs out of time. A further breakdown of
the algorithms can be seen in Figure 7 which shows a break-
down of the best score overall from each individual run of
each algorithm for every iteration. Here we can clearly see
how random incrementally jumps in score at random inter-
vals. It also shows that Random Base Plans is able to im-
prove using the same adaptation techniques as SPO but lacks
the derived base plans which enable SPO to attain the higher
scores.

Maps 2 and 2b are interesting in that the plan provided to
SPO is not an expert plan. In fact the plan is one of the worst
plans possible in the situation. In this light it is easier to see
why Random Base Plans which disregards the original plan
performs better on 2 and 2b. SPO still does better on average
than random but seems to take a while to forget the so-called
expert plan.

Conclusion

Our experiments show that SPO is able to successfully de-
velop new plans and adapt existing ones. It stands out as the
most dependable algorithm among the three tested and pro-
vides the most balanced time and score tradeoff in situations
which have a valid expert plan to build on. The performance
of the algorithm depends upon the quality of the provided
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expert plan. A good expert plan can speed up the search and
guide it to the most fertile plan space whereas a bad plan can
slow it down a good bit. Even in situations with a bad plan,
the parameters to SPO can be specified to so as to not rely
on the bad plan and instead perform more like the Random
Base Plans algorithm performs.

There are a number of future research directions that are
apparent in this work. Effectively, SPO concentrates on win-
ning battles and not wars. SPO was designed to optimize
individual plans used by the Darmok system, and thus, fur-
ther experiments will evaluate the performance of the whole
Darmok system when SPO is used as a subroutine to opti-
mize plans when Darmok detects that a plan is suboptimal.
The addition of domain knowledge to the calculations of the
algorithm may be able to speed up the search process at the
price of losing its applicability to any domain. It would also
be interesting to experiment with the effects of multiple orig-
inal expert plans instead of only one. Additional expert plans
could offer better guidance for the initial plans which seed
the search process.
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Figure 6: Final time and score results achieved by each run of each algorithm on the four maps.
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