
Lightweight Procedural Animation with Believable Physical Interactions

Ian Horswill
Northwestern University, Departments of EECS and Radio/Television/Film

2133 Sheridan Road, Evanston IL 60208
ian@northwestern.edu

Abstract
I describe a procedural animation system that uses tech-
niques from behavior-based robot control, combined with a
minimalist physical simulation, to produce believable cha-
racter motions in a dynamic world. Although less realistic
than motion capture or full biomechanical simulation, the
system produces compelling, responsive character behavior.
It is also fast, supports believable physical interactions be-
tween characters such as hugging, and makes it easy to au-
thor new behaviors.

Overview1

Versatile procedural animation is a necessary component
for applications such as interactive drama, in which charac-
ters participate in complex interactions that cannot be pre-
planned at authoring time. Although there have been pro-
cedural animation systems such as Improv (Perlin & Gold-
berg, 1996) for some time, and next-generation games are
beginning to adopt commercial systems such as Euphoria
(Natural Motion, 2006), these systems are still designed
with scripted behavior in mind. General, extensible, tool-
kits for building autonomous characters are unavailable.

In this paper, I describe work in progress on Twig, a sys-
tem for efficient procedural character animation that sup-
ports a simple dynamic simulation, including collision
handling, pain detection, etc., and easy authoring of new
behaviors. The system is built on the XNA platform (Mi-
crosoft, 2007) and is very efficient, running easily at 60Hz
on a single core of a low-end machine. All code is open
source.

The system consists of two main components, a simpli-
fied physics simulation, and a set of motion controllers for
characters similar to the behavior-based control systems
used in robotics (Arkin, 1998).

Although animation is ultimately driven by a low-
fidelity dynamic simulation, character control is performed
using a mixture of kinematic and dynamic control modes.
Ballistic motions (reaching, stepping, head saccades) are
performed by directly positioning end effectors (hands,
feet, head) in Cartesian space, relying on constraint satis-
faction in the dynamics system to act as an inverse kine-

1 Copyright © 2008, Association for the Advancement of Artificial Intel-
ligence (www.aaai.org). All rights reserved.

matics system. Posture control is performed by applying
simulated forces and torques to the torso and pelvis.

Interestingly, the use of a dynamic simulation actually
simplifies control, allowing the use of relatively crude con-
trol signals, which are then smoothed by the passive dy-
namics of the character body and body-environment inte-
raction; similar results have been found in both human and
robot motor control (Williamson, 2003).

Twig shows that surprisingly simple techniques can gen-
erate believable2 motions and interactions. Much of the
focus of this paper will be on ways in which Twig is able to
cheat to avoid doing complicated modeling or control,
while still maintaining believability. This work is indebted
to the work of Jakobsen (Jakobsen, 2001) and Perlin (Per-
lin, 1995, 2003; Perlin & Goldberg, 1996), both for their
general approaches of using simple techniques to generate
believable motion, and for specific techniques noted be-
low.

Limitations
Twig is intended as a proof of concept. Its current reper-
toire of character behaviors is limited to navigation, reach-
ing, grabbing, hugging, grappling, sitting/standing, gestur-
ing, and withdrawal from pain. However, it demonstrates
that its approach to simulation and control is effective for
the class of applications for which it’s designed. Further
behaviors can be easily added. Similarly, the system
could easily be extended to drive standard rigged character
meshes even though it currently renders characters as col-
lections of cylinders.

On the other hand, Twig is designed for versatility and
believability (Bates, 1994) rather than physical realism.
While it generates surprisingly compelling character mo-
tion, modifying it to be truly physical realistic require sig-
nificant changes. A more accurate physics engine such as
Havok (Havok, 2008) or ODE (Smith, 2006), or a more bi-
ologically-correct gait simulation (Hase, Miyashita, Ok, &
Arakawa, 2003; Kuriyama, Kurihara, Irino, & Kaneko,
2002) may be more appropriate for works and genres re-
quiring greater realism.

2 In Bates’ (1994) sense of “believable” as opposed to “realistic.” A cha-
racter is believable if an audience accepts it as if it were alive. It’s realis-
tic if it matches actual reality. Realism and believability in this sense are
roughly orthogonal.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

48

Geometric and kinematic modeling
Geometrically, Twig characters consist of a collection of
cylindrical volumes. These are represented internally as
kinematic chains of rigid links (the cylinders) connected at
nodes (the joints). Link positions are determined by the
positions of the nodes that form their endpoints. Object
poses are thus determined entirely by the positions of the
nodes that comprise them. In fact, nodes are the only con-
tainers of kinematic or dynamic state in the system. Twig
uses a number of simulation techniques that come original-
ly from the molecular simulation literature (Verlet, 1967),
and its character models are effectively molecular models
in which the nodes correspond to atoms and the links cor-
respond to bonds.

In the schoolyard scene shown in Figure 1, the charac-
ters are modeled as 13 links (2 each for the spine and each
arm and leg, and one each for the head, shoulders, and pel-
vis), connecting 16 nodes. The ball is represented as a sin-
gle node. The merry-go-round, which is functional, is
modeled as 18 nodes and 41 links; 25 of the links are visi-
ble and have collision volumes (the bars), and the rest are
invisible links used only to hold the structure rigid.

Dynamics Simulation
Twig uses a mass-aggregate physics system (Millington,
2007) based on Jakobsen’s work on the Hitman engine (IO
Interactive, 2000; Jakobsen, 2001), in which objects are
modeled as point masses (the nodes) connected by mass-
less rods (the links), and motions are computed using Ver-
let integration (Verlet, 1967). In Verlet integration, the
dynamic state of a particle is represented in terms of its po-
sition in the current and last frame, rather than its position
and velocity. Given a fixed inter-frame interval Δt, we can

describe the position p of a node at time t+Δt in terms of its
position in the previous frames as:

�(� + ∆�) = �(�) + (�(�) + �(�)Δ�)∆�
 ≅ �(�) + �(�) − �(� − ∆�)

∆� ∆� + �(�)Δ�∆�
 = �(�) + 	�(�) − �(� − ∆�)
 + �(�)Δ�2
 = 2�(�) − �(� − ∆�) + �(�)Δ�2

where v(t) is the node’s instantaneous velocity and a(t) its
acceleration at time t. If we want to model viscous damp-
ing, this can be done by modifying the relative weighting
of the position in the two frames:

�(� + ∆�) = (2 − �)�(�) − (1 − �)�(� − ∆�) + �(�)Δ�2
where d is the damping factor.

This scheme has a number of advantages. First, the
complete kinematic and dynamic state of an object is con-
tained in positions of its nodes, together with their stored
positions from the previous frame (links function only as
collision volumes and distance constraints on node posi-
tion). The lack of explicit representations of momentum,
angular momentum, or even orientation, significantly sim-
plifies the dynamics calculations. Second, it makes con-
straint satisfaction much easier, since node positions can be
directly modified to enforce constraints, without having to
compute their effects on orientation, angular momentum,
etc. Finally, it allows the behavior system to control the
characters and their nodes entirely in Cartesian space,
without having to deal with joint angles or nested coordi-
nate frames. The cost of the design is that in the few cases
where momentum, orientation, or joint angles are needed
to make control decisions, these need to be computed from

Figure 1: Screen shot from Twig. A parent watches over two children playing with a ball. The smaller child is carrying a
ragdoll. The merry-go-round in the background is unoccupied, but functional (i.e. it spins when a character pushes it).

49

position data. The AGEIA PhysX engine (Müller, Heidel-
berger, Hennix, & Ratcliff, 2007) also uses a “position-
based” approach to build a much more general dynamics
engine. However, the simpler system discussed here is
sufficient for our purposes.

Friction, drag and damping
The current system does not support accurate models of
friction or drag. Instead, it provides a damping term (see
equation above), whose coefficient is large when a node is
in contact with a supporting surface, and smaller when in
the air. While this is technically inaccurate (damping is li-
near in velocity, whereas drag is quadratic and friction in-
cludes a step function), the inaccuracies generally aren’t
apparent to a viewer.

Nodes can be damped relative to the environment frame
(modeling air friction) and/or relative to another node in
the object (a crude model of the biomechanical damping of
muscles and tendons). Nodes can also be locked in place
to model large static friction forces.

Kinematic constraints
Kinematic constraints (joint limits, rigid distance con-
straints, etc.) are implemented by projection, i.e. by mov-
ing a node that violates a constraint to a nearby position
that doesn’t violate it. On each update cycle, each object
tests its nodes against its constraints and adjusts the posi-
tions of nodes to locally satisfy the constraint being eva-
luated. This has the potential to violate some other con-
straint that had just been satisfied, but such violations are
generally not detectable by the user, especially if the object
is moving. Moreover, if the object stops moving, it quick-
ly relaxes into a configuration that satisfies the constraints.

To locally enforce the distance constraints imposed by a
link, we measure the actual distance ��(�) − �� (�)� be-
tween its endpoint nodes and compare it to the desired dis-
tance, �. If the nodes are not the desired distance apart, we
move each node half the difference between the desired
and actual distances: 3

�(�) = �(�) − ‖�‖ − �
2‖�‖ �

�� (�) = �� (�) + ‖�‖ − �
2‖�‖ �

where � = �(�) − �� (�) is the offset between the nodes.
Projection is computationally efficient, but not especial-

ly accurate since it does not necessarily conserve energy or
in all cases, even momentum. However, in practice, it ge-
nerates motions that look real enough. Again, the goal is
believability, not numerical accuracy.

3 By moving the nodes in equal and opposite directions, we avoid adding
momentum to the system.

Collision handling
Collisions are handled as a special case of constraint satis-
faction. After each dynamic object is updated, its collision
volumes are tested against the collision volumes of other
objects and their nodes moved so as to separate their colli-
sion volumes.

We will discuss the link/link collision case, since most
collision volumes in Twig are attached to links. Other cas-
es can be handled similarly. Let the endpoints of one link
be nodes i and j, and the endpoints of the other be nodes k
and l, with positions � , �� , etc. Since links are modeled
as cylindrical collision volumes, this can be reduced to
testing the distance between the line segments ��������� and
�� ��������. If the distance between them is less than the sum of
the radii of the two cylinders, then they are interpenetrating
and need to be separated. To be physically accurate, we
should determine the precise points of contact on the two
cylinders, compute the relevant torques and moments of
inertia, and update the positions of the endpoints accor-
dingly. However, in practice, the links are almost always
chained with other links that constrain their allowable mo-
tion. Since these inter-link constraints dominate the dy-
namics of the collision, we can obtain realistic looking col-
lisions by translating the colliding cylinders apart, ignoring
torques, and allowing the inter-link constraints to produce
a realistic-looking motion.

In particular, let � = 	�− ��
×(�� −��)
�	�− ��
×(�� −��)� be the contact

normal along which the cylinders intersect. The distance
between the spines of the cylinders is then � = (� − ��) ∙
�. If the radii of the two cylinders are a and b, then the
penetration depth of the cylinders is � = � + � − ‖�‖. We
then translate both nodes i and j by � 2� � (half the penetra-
tion), and we translate both nodes k and l by − � 2� �.

A collision impulse could also be added to the links to
simulate elastic collision. However, since humans don’t
bounce well, this would be counter-productive for links
representing body parts.

Tactile sensing
When the system detects link/link collisions, it stores in
each link pointers to the link that hit it, and the object to
which that link belongs. The system also computes the ki-
netic energy of the impact. If the kinetic energy is over
threshold, the system registers it as pain. Characters also
maintain an overall pain level, which decays exponentially
over time.

Low-level character control
All character behavior is ultimately implemented by mov-
ing nodes around. One of the advantages of the style of
kinematic and dynamic modeling in Twig is that this con-
trol can be done directly in Cartesian coordinates, without

50

having to deal with joint angles or performing explicit in-
verse kinematics and dynamics.

Node control
Nodes are controlled principally by setting their velocity or
acceleration or in some cases by directing them to perform
a ballistic motion to a set-point. In the latter case, the node
automatically moves along a straight line to arrive at the
target in a specified amount of time without further need
for control. This mode is used principally for limb mo-
tions.

Nodes can also be locked in position or told to lock
themselves when they come into contact with the ground
plane.

Posture Control
Posture is controlled by applying forces directly the nodes
of the torso and pelvis, rather than by balancing the body
as an inverted pendulum using simulated muscular forces.
This makes control simple and stable at the cost of some-
times violating the laws of physics (for example, the cur-
rent version of the system applies postural forces even
when the legs aren’t touching the ground). Again, this is
adequate for the tasks we’re considering, but a more com-
plicated scheme would be necessary for applications in
which it was necessary to accurately model balance, trip-
ping, falling, etc.

Posture control consists of a set of simple control loops:
• Standing consists of two control loops

o A force is applied along the Y (up) axis to the
center of the pelvis to hold it at standing height.

o Forces are applied along the X and Z axes to ho-
rizontally align the center node of the pelvis with
the midpoint of the feet.

• Sitting up works essentially like standing, except
that the center node of the shoulders is controlled so
as to place the character’s center of mass directly
over the midpoint of the two feet. The shoulders are
also tilted slightly in the direction of motion when
the character is running.

• Orientations are controlled by twisting the pelvis and
shoulders. Since the dynamics engine doesn’t expli-
citly support torques, the torque is produced by ap-
plying opposite forces to opposite sides of the cha-
racter.
o The pelvis rotates to align with the direction of

walking
o The shoulders rotate to align with the gaze direc-

tion, subject to the constraint that they not rotate
more than 90 degrees relative to the pelvis.

Note that these control loops are simple proportional
controllers rather than proportional-derivative controllers
(i.e. they have no damping term). They rely on the damp-
ing of the nodes themselves to prevent oscillation.

Limb control
The head controller points the “front” of the face toward
the current gaze target, or the direction of motion, if there
is no gaze target. In the current version of the system, this
is an instantaneous motion. This will undoubtedly need to
be changed to a smooth motion in the future, but since the
current models have no faces, this kind of exaggerated mo-
tion is actually useful for cuing the viewer that the charac-
ter’s gaze is shifting.

The arm controller currently supports five actions: swing
(used when walking), reach, grapple, hug, and grab.
Swinging is implemented by applying impulses to an arm
when the opposite foot begins a step. At the level of the
limb controller, reaching, grappling and hugging are all
implemented by moving the hands directly in front of the
shoulders at near-maximum extension. The rest of the
reach, hug, and grapple actions are then controlled by
higher-level controllers. Grabbing is implemented by
creating an invisible, zero-length link from the hand of the
designated arm to a designated node on the target object,
thus attaching the object to the end of the arm, while allow-
ing it to swing freely as if attached by a ball joint.

Legs are controlled principally by the gait controller (see
below).

The system also supports simulated respiration by mov-
ing the shoulders up and down in a sinusoid, similar to
(Perlin, 1995). Respiration increases with increased walk-
ing speed. In the current system, respiration is largely in-
visible to the viewer because the shoulders are modeled as
a single cylinder, however they could be split to make it
more apparent.
Hugging. Hugging is implemented by reaching and ap-
proaching the target, then joining the hands when the target
object makes contact with the character’s torso.
“Grappling” Grappling is a kluge that is implemented by
waiting until the character closes to within less than an arm
length of the target and then engaging reaching, causing
the arms to bash into the other character, looking like shov-
ing, punching, or wrestling to the viewer. It also tends to
cause pain in the other character, triggering its pain with-
drawal reflex, thus making it step back. While insufficient
for a fighting game, it’s sufficiently realistic for depictions
of children fighting.

Gait Control
The gait generator drives the character to walk with a di-
rection and speed chosen by one of the higher-level beha-
viors. Gait generation is largely kinematic and is closest to
the work of Perlin (Perlin, 2003). The gait generator sets
the ground-plane velocity of the pelvis to the walk vector,
then monitors the extension of the legs. When a leg is suf-
ficiently far behind the pelvis, the gait generator moves the
foot node on a ballistic trajectory to a point in front of the
pelvis, but in the direction of the walk vector. The con-
straint handling system moves the knee appropriately and
insures that it doesn’t bend backward or sideways.

51

High-level Control
The low level controllers are driven by a set of competing
higher-level behaviors, currently sit-down, stand-up, freeze
(holds the character immobile), pain withdrawal (a fast,
open-loop retreat from a source of pain), and approach
(steers the character to a designated object). These beha-
viors each compute an activation level (a measure of the
utility of firing the behavior) and a motor vector (values for
the control signals to send to the lower levels). On each
update cycle, the highest-activation behavior is chosen and
its outputs are routed to the gait generator and arm control-
ler.

Freeze and pain withdrawal are simple behaviors. Ap-
proach requires a target from a higher-level behavior.
Thus the control system is a hierarchical behavior selection
system similar to Blumberg’s work on ethologically in-
spired control (Blumberg, 1996).

Object approach
The approach behavior takes as input a target object, a dis-
tance � from the object to stop at, and a direction � from
which to approach it. Approach also takes as input settings
for the hug, reach, and grapple controls, which it forwards
to the arm control behaviors. It generates a walk vector, w
(a velocity vector for the gait controller), based on an ar-
tificial potential field4/motor schema (Arkin, 1998) which
is the sum of an attraction component, a, in the direction of
the target object, and a repulsion component, r, pushing
away from any intervening obstacles:

� = � + �, where:
� = �target − �character + ��
� = � � �character − �� + (�character − ��) × �!

max(�#$, ‖�character − �� ‖2)�≠target

Again, �& here denotes the position of object x, whereas �
and �#$ are constants tuned to taste, and �! is a unit vec-
tor pointing upward. The cross product term produces a
curl component to the field that pushes the character
around obstacles, making it less likely that they will en-
counter local minima in the field. To avoid asking the
walk system to move too fast, the a component is also satu-
rated to prevent its magnitude from going over a threshold.
To reduce computation time, objects over a threshold dis-
tance are ignored when computing r.

Example application
Twig can be run as a server, in which it accepts discrete
behavior commands from another system, such as a drama
manager. In this case, Twig provides a straightforward
asynchronous RPC interface. However, Twig characters

4 Note that despite the name, the artificial potential fields used in naviga-
tion are generally not the gradients of any well-defined potential function.

can also be made fully autonomous by adding further be-
haviors to the hierarchy. One such example is the scene
shown in figure 1. Here, a child makes excursions from its
parent to explore the environment, and in particular, to
play with a ball, but periodically returns to the caregiver to
be soothed. This is known as the “safe home base” phe-
nomenon in Attachment Theory (Bowlby, 1969).

The demonstration involves three high-level behaviors:
playing with the ball, fighting, and running to hug the par-
ent (attachment). The characters have attention and short-
term memory systems that appraise each object in view or
in the STM for its salience (interest level), valence
(good/bad), and monitoring priority (how much to pay at-
tention to it). The maximal salience object becomes the
focus of attention for that update cycle. The behaviors can
then react to the focus of attention and change their activa-
tion level accordingly.

In parallel, the gaze control system shifts visual attention
between the current focus of attention, the target of the ap-
proach system (if different), and other objects that have
high monitoring priority (the parent and any potential
threats).

The result is that the children run after the ball because
it’s highly valenced. As the small child gets farther from
the parent, however, it becomes anxious and the monitor-
ing priority of the parent increases, causing the child to pe-
riodically stop and look back to the parent. Eventually, the
child’s anxiety becomes sufficient for it to abandon the ball
and return to hug the parent, which reduces the child’s an-
xiety. Eventually, the child’s attention returns to the ball,
the child returns to play, and the cycle repeats.

Implementation and performance
Twig is written in C# and runs under XNA 2.0 (Microsoft,
2007). The Verlet integrator runs at a fixed update rate of
60Hz, but the renderer can skip frames if it gets behind.
Fortunately, this isn’t an issue in practice. A debug build
of the scene in figure 1 takes approximately 5ms per frame
on a single core of a 1.6MHz notebook machine.5 Physics
and behavior generally take 1-1.5ms range when the cha-
racters are interacting and less than 0.5ms when the charac-
ters are widely spaced, allowing broad-phase collision de-
tection to prune all tests. Actual rendering is slower, gen-
erally around 3.8ms, because the current system isn’t opti-
mized to batch drawing operations. This could be im-
proved considerably using hardware instancing.

Failure modes
The simplified physics and control in Twig do cause occa-
sional problems. For example, the walking system applies
an external force directly to a character’s torso, which then
pulls the (largely passive) legs along, rather than by simu-
lating muscular forces within the legs and torso. This can

5 Timings were done on a ThinkPad X61t, with a 1.6GHz Santa Rosa
chipset, 3GB of RAM, and the Mobile Intel 965 Express graphics chipset.

52

potentially allow a character to violate conservation by
pushing the merry-go-round while standing on it.

The system’s kinematic simplifications are also some-
times noticeable. Characters are controlled by applying
forces in Cartesian coordinates to joints, rather than
through manipulation of explicit joint angles. While this
makes control much simpler, it also means that a separate
set of constraints are necessary to insure that joints don’t
move into kinematically impossible configurations, such as
bending backward. While this is straightforward to do for
the knees, it’s harder to do for the elbows because of the
wider range of motion at the shoulder than the hip. In the
current system, the elbows sometimes seem to wiggle un-
realistically because, even though they are moving through
configurations that are physically possible, they aren’t cap-
turing the true dynamics of a human arm.

A final class of issues stems from conflicts within the
behavior system itself. For example, if the child runs too
fast when trying to hug the parent, it can impact the parent
with enough force to cause pain. That triggers a pain with-
drawal reflex during the docking phase of hugging. Al-
though this behavior is realistic in the sense that real hu-
man children do it from time to time, it has the potential to
turn a sentimental scene into slapstick.

Conclusion
Twig is a simple, extensible procedural animation system
intended for interactive narrative applications. Although
still under development, it provides a proof-of-concept
demonstration that the combination of a simplified physics
simulation, together with a set of simple control loops, can
provide satisfying and believable character movement and
interaction. In particular, it shows that while dynamics can
help improve the believability of procedural animation, a
surprisingly simple dynamics simulation is sufficient, at
least for styles and genres that do not require physical real-
ism.

Acknowledgements
I would like to thank Michael Mateas, Andrew Ortony,
Magy Seif El-Nasr, and Andrew Stern, for suggestions,
and encouragement. I would also like to thank the review-
ers for feedback, and particularly for catching a typo in
eq1.

References
Arkin, R. (1998). Behavior-Based Robotics. Cambridge:

MIT Press.
Bates, J. (1994). The Role of Emotion in Believable

Agents. Communications of the ACM, 37(7), 122-
125.

Blumberg, B. (1996). Old Tricks, New Dogs: Ethology and
Interactive Creatures. Massachusetts Institute of
Technology, Cambridge.

Bowlby, J. (1969). Attachment and Loss. New York,: Basic
Books.

Hase, K., Miyashita, K., Ok, S., & Arakawa, Y. (2003,
May 2003). Human gait simulation with a
neuromusculoskeletal model and evolutionary
computation. The Journal of Visualization and
Computer Animation, 14(2), 73-92.

Havok. (2008). The Havok 5.5 Physics Engine: Havok Inc.
IO Interactive. (2000). Hitman: Codename 47: Eidos

Interactive.
Jakobsen, T. (2001). Advanced Character Physics. San

Jose: CMP Inc.
Kuriyama, S., Kurihara, Y., Irino, Y., & Kaneko, T.

(2002). Physiological gait controls with a neural
pattern generator. The Journal of Visualization
and Computer Animation, 13(2), 107-119.

Microsoft. (2007). XNA Game Studio 2.0: Microsoft
Corporation.

Millington, I. (2007). Game physics engine development.
The Morgan Kaufmann series in interactive 3D
technology. Amsterdam ; Boston: Morgan
Kaufmann Publishers.

Müller, M., Heidelberger, B., Hennix, M., & Ratcliff, J.
(2007). Position based dynamics. J. Vis. Comun.
Image Represent., 18(2), 109-118.

Natural Motion. (2006). Euphoria:core motion synthesis
library: Natural Motion, Inc.

Perlin, K. (1995). Real time responsive animation with
personality. IEEE Transactions on Visualization
and Computer Graphics, 1(1), 5-15.

Perlin, K. (2003). Unpublished work on bipedal walking.
Perlin, K., & Goldberg, A. (1996). Improv: A System for

Scripting Interactive Actors in Virtual Worlds.
Computer Graphics, 30, 205-216.
citeseer.ist.psu.edu/perlin96improv.html

Smith, R. (2006). Open Dynamics Engine v.0.5 User
Guide.

Verlet, L. (1967, July 1967). Computer 'Experiments' on
Classical Fluids. I. Thermodynamical Properties
of Lennard-Jones Molecules. Physical Review,
159(1), 98-103.

Williamson, M. M. (2003). Oscillators and Crank Turning:
Exploiting Natural Dynamics with a Humanoid
Robot Arm. Philosophical Transactions of the
Royal Society: Mathematical, Physical and
Engineering Sciences, 361(1811), 2207-2223.

53

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

