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Abstract
Culture and emotions have a profound impact on human be-
havior. Consequently, high-fidelity simulated interactive en-
vironments (e.g., trainers and computer games) that involve
virtual humans must model socio-cultural and emotional ef-
fects on agent behavior. In this paper we discuss two recently
fielded systems that do so independently: Culturally Affected
Behavior (CAB) and EMotion and Adaptation (EMA). We
then propose a simple language that combines the two sys-
tems in a natural way thereby enabling simultaneous simula-
tion of culturally and emotionally affected behavior. The pro-
posed language is based on matrix algebra and can be easily
implemented on single- or multi-core hardware with an off-
the-shelf matrix package (e.g., MATLAB or a C++ library).
We then show how to extend the combined culture and emo-
tion model with an explicit representation of religion and per-
sonality profiles.

1 Introduction
There are several compelling reasons to study emotionally
and culturally affected behavior. First, emotions and culture
have a profound effect on most human behavior and, there-
fore, they should be modeled in any high-fidelity virtual hu-
man simulation. Second, emotions may play a fundamental
role in human reasoning and cognition and, therefore, they
should be given a serious consideration by scientists in Arti-
ficial Intelligence (AI). We are interested in both the former
(i.e., the application-driven aspect) and the latter (i.e., the
strong AI aspect). We will now review approaches to mod-
eling culture and emotion effects.

Culturally Affected Behavior. Recent years have seen
much interest in teaching cultural awareness, which de-
mands flexible representations of culture. The Culturally
Affected Behavior (CAB) model (Solomon et al. 2008) is a
human behavior model in which socio-cultural knowledge is
explicitly and modularly represented. CAB provides a lan-
guage for ethnographers to encode cultural norms and val-
ues, and biases and stereotypes. CAB’s theoretical underpin-
nings lie with the schema theory of D’Andrade (1992) that
postulates that culture is represented by a collection of cog-
nitive schemas – a codified version of some abstract behav-
ior or concept. Shared conceptual meanings are accounted
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Figure 1: CAB in action: Iraqi Sunni and German police captains.

for by a system of constitutive rules that is known, shared
and adhered to by members of a culture (D’Andrade 1984).
CAB also uses the theory of mind (Nichols & Stich 2003)
to model AI agent’s beliefs about the human participant.
CAB’s socio-cultural model is representationally similar to
domain models of the Virtual Human architecture (Traum
et al. 2003) but focuses specifically on actions and states
pertaining to socio-cultural satisfaction and comfort.

The current CAB prototype complements domain models
for an AI-controlled police captain agent with two sample
culture models (Iraqi Sunni and German, Figure 1), inte-
grated with the graphics, animation, and voice capabilities
of a simulation training environment. The human partic-
ipant meets with either the Iraqi police captain (Farid) or
the German police captain (Fritz). The police captain starts
out executing the default task “perform normal police du-
ties plan”. The participant’s goal is to persuade the police
captain to provide police cooperation in solving a problem
with a local market. This is done by taking actions with do-
main and socio-cultural effects and building up the police
captain’s level of socio-cultural satisfaction. Eventually the
utility of the police captain’s task “help participant fix mar-
ket problem” can be made to exceed the utility of the default
task and, as a result, the police captain agrees to cooperate.

Emotionally Affected Behavior. The last decade has seen
an explosion of interest within AI in the topic of emo-
tion. An understanding of human emotion can benefit
a variety of “human centric” application that must accu-
rately recognize and respond to human beliefs, motives and
intentions. For example, some tutoring applications al-
ready incorporate emotion into user models (Conati & Ma-
cLaren 2004) and simulation techniques increasingly strive
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to model emotional-evoking situations such as how crowds
react in disasters (Silverman et al. 2002) or how military
units respond to the stress of battle (Gratch & Marsella
2003). Further, some have argued that emotional influences,
seemingly irrational on the surface, have important social
and cognitive functions lacking from the individualistic and
disembodied view of cognition typical in AI. Thus, under-
standing these cognitive functions may lead to more effec-
tive AI systems (Simon 1967).

There are several theoretical perspectives on emotion. We
argue that appraisal theory (Scherer, Schorr, & Johnstone
2001) is a fruitful theory of emotion for those interested in
the design of AI systems as it emphasizes the connection
between emotion and cognition. Emotion is argued to arise
from patterns of individual judgment concerning the person-
environment relationship (i.e., the perceived relationship be-
tween events and an individuals beliefs, desires and inten-
tions). These judgments, formalized as appraisal variables,
characterize aspects of the personal significance of events
(e.g., was this event expected in terms of my prior beliefs?
is this event congruent with my goals; do I have the power to
alter the consequences of this event?). Patterns of appraisal
elicit emotional behavior (e.g., undesirable and uncontrol-
lable events lead to sadness) and trigger stereotypical cog-
nitive responses formalized as qualitatively distinct coping
strategies (e.g., planning, procrastination or resignation).

EMA is a computational model of the cognitive an-
tecedents and consequences of emotion as posited by ap-
praisal theory (Gratch & Marsella 2001; Marsella & Gratch
2003). In translating a psychological theory into a computa-
tional system, EMA draws extensively on common AI meth-
ods of reasoning and representation. To this end, EMA rep-
resents the relationship between events and an agent’s inter-
nal beliefs, desires and intentions by building on AI plan-
ning to represent the relationship between events and their
consequences. Appraisal variables are re-cast in terms of
decision-theoretic inference over this representation (e.g., an
event is desirable if it improves an agent’s expected utility).

EMA has been fielded in several applications (Swartout
et al. 2001; Traum et al. 2005) and validated against hu-
man performance data (Gratch & Marsella 2004). For ex-
ample, Figure 2 illustrates the SASO negotiation training
system (Traum et al. 2003). This prototype system allows a
human trainee to engage in a natural language conversation
with an AI agent. EMA informs the agent’s decision-making
and nonverbal behavior to create a more realistic and engag-
ing dialogue.

Culturally and Emotionally Affected Behavior. While
CAB and EMA systems were successful in modeling cul-
turally and emotionally affected behavior respectively, they
left several venues for future research. First, a high-fidelity
virtual human simulation should be able to model both cul-
ture and emotions at the same time. This is not possible to
do by simply running CAB and EMA in the same simulation
since at any given time a virtual human’s action preferred by
CAB may contradict an action preferred by EMA. Second,
both implementations have domain parameters (e.g., virtual
human’s sensitivity to perceived modesty) embedded in Jess

Figure 2: EMA in action: interacting with a virtual human.

format (CAB) or SOAR (EMA). Such design makes it more
difficult to analyze the system, port it to a new platform and
machine-learn the parameters.

This paper addresses both issues by re-formulating core
parts of CAB and EMA rigorously in matrix representation,
with the following five benefits. First, the matrix representa-
tion enables a natural combination of the two systems. The
joint system can simultaneously model culturally and emo-
tionally affected behavior and henceforth is called CEMA
(Culture-Emotion MAtrix). Second, it can be implemented
and run on single- or multi-core hardware by using a matrix
package (e.g., MATLAB or a C++ library). Third, the ma-
trix representation can be easily extended to support explicit
religion and personality profiles, thereby increasing author-
ing convenience and simulation fidelity. Fourth, it achieves
a clean platform-independent separation between emotion
and culture data and the underlying representation language
(e.g., if-then rules). Fifth, the matrix representation uses
simple inference rules and is well poised for machine learn-
ing of culture and emotion parameters.

The rest of the paper is organized as follows. A matrix
re-write of CAB is found in Section 2. We then show how
to add religion and personality profiles in Section 2.3. A
matrix re-write of EMA follows in Section 3. We then show
how to model cultural and emotional effects simultaneously
in Section 4. Directions for future work follow in Section 5
with conclusions in Section 6.

2 CAB: Culturally Affected Behavior
There are two agents involved in a CAB scenario: a human
participant and an AI agent (virtual human). The AI agent
is selecting among several courses of action (or plans, as de-
fined formally below). For instance, Figure 3 shows an AI
agent (on the far right) deciding between Plan A and Plan
B. Agent’s decision is affected by his level of socio-cultural
satisfaction which is derived from evaluating agent’s “cul-
ture network” (box on the left). Thus, the task of the human
participant is to make the agent select a specific plan by tak-
ing actions and affecting agent’s beliefs. The game proceeds
in discrete time steps with a single action taken per step. The
domain plan with the highest utility is the one that the agent
will take (Figure 4, line 7). Note that we use toy-scale exam-
ples throughout the paper. Actual plans in CAB and EMA
are much larger and more complex.
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Figure 3: An overview of CAB.

CAB
1 load culture and domain data
2 do forever
3 input participant’s actions CH

4 for each plan P do
5 U(P ) ← ComputePlanUtility(A|P , S0|P , U|P , CH )
6 end for each
7 announce that the agent prefers plan arg max U(P )
8 end do

Figure 4: The main loop of CAB.

Plan B
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Figure 5: An example of a domain plan.

2.1 CAB Matrix Representation
The principal part of CAB can be formulated as follows.

Definition 1 Domain plan / course of action / task network
is a directed weighted acyclic graph with two types of ver-
tices: actions and states.

Definition 2 An action vertex represents an action that ei-
ther the human participant or the AI agent can take.

Definition 3 A state vertex represents an attribute of the
problem-solving state that has some intrinsic utility / con-
cern value to the agent. Each state also has a degree of belief
/ probability associated with it.

Definition 4 Graph edges are weighted with action effects.
Each edge leads from an action vertex to a state vertex. Each
effect is a real number in [0, 1] that affects agent’s degree of
belief of the state vertex at the end of the edge.

Example: the graph in Figure 5 represents a domain plan
(“Plan B”) and has four vertices and three edges. There are
two domain actions that a human participant can take: “give
financial aid” and “give uniforms: khaki shorts”, shown as

rectangles. There are two states: “community is helped” and
“respectful of modesty”, shown as ovals. Agent’s degrees of
belief in these states are 0.7 and 0.2 respectively; agent’s in-
trinsic utilities of those states are 300 and 250. First action
(“give financial aid”) adds 0.5 to the degree of belief in state
“community is helped”, as shown by an arrow. The second
action has two effects: 0.4 and −0.5. The negative effect re-
flects the fact that a representative of Iraqi culture may view
shorts as immodest.

Definition 5 Action effects can be viewed as a matrix A =
[aij ] where aij ∈ R is the effect the action j has on state i
(i.e., the weight of the edge between action vertex j and state
vertex i).1 Degrees of belief for all states form a column
vector S = [si], si ∈ [0, 1]. Initial degrees of belief are
S0 = [si]. Intrinsic utilities of all states form a row-vector
U = [ui], ui ∈ R.

Definition 6 Some domain actions of the human participant
have future effects. Thus, their out-edges have action effects
scaled by intention probability. In the matrix language, all
action effects are multiplied by an intention probability ma-
trix I = [αij ] where αij ∈ [0, 1] are the scaling coefficients
(line 6 in Figure 7).

Plan B

community 
is helped

+0.5 * �

respectful 
of modesty

-0.5

+0.4 * �

give financial aidl id

give uniforms: 
khaki shorts

Figure 6: An example of a domain plan with intentional probabil-
ities denoted by α.

Example: in Figure 6, the action “give financial aid” is a
promise made by the human participant. Thus, its action
effect (0.5) will be scaled by the intention probability α ∈
[0, 1] representing AI agent’s belief as to whether the human
will follow through on his/her promise. On the other hand,

1Henceforth we use bold variables for matrices and plain vari-
ables for scalars.
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the −0.5 effect of action “give uniforms: khaki shorts” on
the state “respectful of modesty” is immediate (i.e., α = 1).

Definition 7 Human participant’s choices are represented
as a column vector CH =

[
cH
i

]
, where cH

i ∈ {0, 1}. For
each i, cH

i = 1 iff the human participant chose to perform
action i.

Definition 8 Agent’s choices CA =
[
cA
i

]
, cA

i ∈ [0, 1] are
computed using the following procedure. Each action i of
the agent is assumed to occur with the probability cA

i =∏
j∈Pi

sj where Pi is a set of states that are preconditions to

action i. When Pi = ∅, cA
i = 1.

2.2 CAB Matrix Inference
Each domain plan utility is computed as shown in Figure 7.
Once utility of each domain is computed, the AI agent se-
lects the plan with the highest utility.

ComputePlanUtility(A,S0,U,CH)

1 t ← −1
2 do
3 t ← t + 1
4 compute intention probability I as described in Section 2.2
5 compute agent’s action choice CA as per Definition 8
6 update degrees of belief:

St+1 ← F
`
St + A · `I · CH + CA

´´
7 while St+1 �= St

8 return U · St+1

Figure 7: Plan utility computation in CAB.

In line 6, function F is a clipping function used to keep
degrees of beliefs between 0 and 1; it returns 1 if its argu-
ment is above 1 and 0 if its argument is below 0. When
applied to a matrix it applies itself to each of the matrix ele-
ments individually.

The intention probability matrix I is computed as follows.
First, the utility of a socio-cultural network is computed. A
socio-cultural network is representationally identical to a do-
main plan introduced in Section 2.1 but models solely socio-
cultural aspects of the relationship between the human par-
ticipant and the AI agent. An example is found in Figure 8.
The algorithm presented in Figure 7 is run on it with line 4
set to I = [1] (i.e., no action effect scaling is used in com-
puting utility of a socio-cultural network because all socio-
cultural action effects are immediate).

show photo of 
wife

Culture

agent is familiar 
with participant

+0.5

respectful 
of modesty

-0.5

+0.1

talk about family

f

0.7

0.2

150

250

105

50

155

Figure 8: An example of a socio-cultural network. Its utility is
computed as 155.

Second, the derived utility of the socio-cultural network
is normalized with respect to the possible range of its value.
The resulting number (in [0, 1]) is called socio-cultural sat-
isfaction of the agent. Third, a non-linear mapping function
applied to the satisfaction level to compute intention prob-
ability α (a scalar). The rationale is that the more socio-
culturally satisfied the agent is the more faith it will have in
the participant’s following up on his/her promises. Finally,
matrix I is formed with all entries corresponding to imme-
diate action effects set to 1 and all other entries to α.

2.3 Adding Religion and Personality
The matrix approach to CAB not only separates data from
the programming language cleanly but also allows us to ex-
tend the cultural model with religion and personality in a
straightforward way. Consider, for instance, CAB model of
Farid, an Iraqi Sunni police captain. The model consists of
action effects A, intrinsic utilities of states U and initial de-
grees of belief S0. These three matrices combine effects of
Iraqi Sunni culture, Islam religion and Farid’s personality
(an introvert). What if we would like to change’s Farid’s
personality to an extrovert while retaining the culture and
religion? In CAB, the way to do so would be to re-write
Farid’s entire socio-cultural model (i.e., A, U and S0).

A more modular way would be to decompose Farid’s
model into a culture component, a religion component and a
personality component. With the new matrix representation,
the decomposition can be done as a matrix sum:

A ← AIraqi Sunni + AIslam + AFarid

U ← UIraqi Sunni + UIslam + UFarid

S0 ← F
(
SIraqi Sunni

0 + SIslam
0 + SFarid

0

)
.

Furthermore, Farid’s degree of being religious can be imple-
mented with a scaling coefficient β:

A ← AIraqi Sunni + β · AIslam + AFarid

U ← UIraqi Sunni + β · UIslam + UFarid

S0 ← F
(
SIraqi Sunni

0 + β · SIslam
0 + SFarid

0

)

Thus, with the modular representation, changing Farid’s
personality is a matter of using a different personality matrix
and can be done independently of other components (i.e.,
religion and culture). Furthermore, instead of coding a per-
sonality matrix from scratch, the designers can quickly build
it as a linear combination of personality archetypes (e.g., in-
trovert, extrovert):

A ← AIraqi Sunni + β · AIslam + γ · Aintrovert + δ · Aextrovert

U ← UIraqi Sunni + β · UIslam + γ · Uintrovert + δ · Uextrovert

S0 ← F
“
SIraqi Sunni

0 + β · SIslam
0 + γ · Sintrovert

0 + δ · Sextrovert
0

”
.

3 EMA: EMotion and Adaptation
With EMA, a virtual human also decides among several do-
main plans. The simulation set-up is similar to CAB in-
somuch as a human participant takes actions within a dia-
logue with an AI-controlled agent (the virtual human). Par-
ticipant’s actions have domain and emotion effects on the
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agent which prefers a domain plan with the highest util-
ity. Thus, participant’s task is to generate a sequence ac-
tions that, through their domain and emotion effects, will
persuade the agent to prefer a specific plan. EMA’s main
simulation loop is similar to the one for CAB, shown in Fig-
ure 4. There are two primary differences between CAB and
EMA. First, CAB uses the utility calculation procedure in
Figure 7. EMA computes appraisals, then emotion elici-
tors and then combines the emotions together as described
in Section 3.1. Second, CAB uses a single scalar – socio-
cultural satisfaction – to derive intention probability. EMA
computes intention probability from three scalars: solidar-
ity, credibility, and familiarity. These numbers come from
SASO’s natural language processing module (Traum et al.
2003) and not from evaluating a separate task network.

3.1 EMA Matrix Representation and Inference
EMA provides an integrated model of appraisal and coping
to inform individual action selection and expressive behav-
ior. In this section we present a matrix re-write of the core
factors that underlie EMA’a appraisal mechanism. Matrix
support for the role of coping strategies in informing action
selection is a topic of future work.

Domain plans are represented in a way similar to CAB’s
(Section 2.1). The inference mechanism, however, is differ-
ent from CAB and is shown in Figure 9. Namely, the lines
1 through 7 are identical to CAB’s with the exception of
computing intention probability in line 4. However, instead
of computing utility as a dot-product in CAB (i.e., “return
U · St+1”), lines 8 through 12 are used. Lines 8 through 11
go through n emotion types. For each type e = 1, . . . , n,
a column vector Ee is computed. Each component of the
vector is 1 if the corresponding state is appraised to elicit an
emotion of type e and 0 otherwise. Four basic emotion types
are defined in Table 1, other emotion types can be modeled
as well. In line 10, emotion intensities are computed for all
states as the absolute value of the element-wise product (�)
of U and St+1. Since we are only concerned with states
whose appraisals elicit an emotion of type e, we set emo-
tion intensities to 0 for all other states. This is done with
an element-wise product of Ee and |U � St+1|. The result
is a vector of emotion intensities Υe. In line 12, we sum
up emotion intensities for all n emotion types over all states
and compute a column vector:⎡

⎢⎢⎣

∑
Υ1∑
Υ2

...∑
Υn

⎤
⎥⎥⎦ .

By taking a dot-product with emotion weights W (Table 1),
we compute a scalar emotion utility of a domain plan.

With just the four emotion types defined in Table 1, it is
straightforward to prove that for any domain plan, the utility
values computed by CAB (Figure 7) and by EMA (Figure 9)
will necessarily be the same. However, EMA’s way of com-
puting the utility results in several by-products such as the
vector of

∑
Υe. These can be used in various ways (e.g.,

to change character animation, tone of voice, or the natural
language responses).

Table 1: Basic emotion types.

Emotion e For state i, Ee(i) is set to 1 iff: W(e)
Hope St+1(i) < 1 & U(i) > 0 +1
Joy St+1(i) = 1 & U(i) > 0 +1
Fear St+1(i) < 1 & U(i) < 0 −1

Distress St+1(i) = 1 & U(i) < 0 −1

ComputePlanUtility(A,S0,U,W,CH)

1 t ← −1
2 do
3 t ← t + 1
4 compute intention probability I
5 compute agent’s action choice CA as per Definition 8
6 update degrees of belief:

St+1 ← F
`
St + A · `I · CH + CA

´´
7 while St+1 �= St

8 for each emotion type e = 1, . . . , n do
9 compute emotion instances Ee

10 compute emotion intensities Υe ← Ee � |U � St+1|
11 end for each

12 return W ·

2
664

P
Υ1P
Υ2

...P
Υn

3
775

Figure 9: Plan utility computation in EMA.

4 Combining CAB and EMA
The matrix re-write of CAB and EMA allows us to combine
the two systems in a straightforward way. Namely, CAB’s
evaluation of a socio-cultural network is used to compute the
intention probability I; EMA’s way of computing emotion
utilities is used to evaluate each domain plan (taking I into
account) and choose the best one. Algorithmically, we use
the code in Figure 9 but replace line 4 with the socio-cultural
satisfaction computation (i.e., line 4 in Figure 7).

We implemented the joint system in a compact way in
MATLAB. To illustrate, Figure 10 shows the actual MAT-
LAB code for computing the emotion of hope. Notice that
the code does not contain any domain-specific parameters
(e.g., the emotional weight of hope). All such data are sim-
ply loaded as matrices from disk. This allows the user to eas-
ily swap in another culture or another emotional model (i.e.,
different emotion weights). Furthermore, most operations
(e.g., any of the four lines in the figure) are automatically
parallelized by MATLAB (or any other high-performance
matrix library) and scale up well with additional CPU cores.
On the contrary, the original implementations used if-then
rules (either in Jess/SOAR) which are much less trivial to
run in parallel. Computational efficiency can become a key
in a large-scale simulation of many emotionally and cultur-
ally affected agents.

5 Future Work
The combination of CAB and EMA opens exciting avenues
for future research including the following three.

Emotions from Socio-Cultural States. The combination of
CAB and EMA in Section 4 computes emotions and emo-
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ComputeHope
1 hopeMask = (degrees < 1.0) .* (utilities > 0);
2 intensity = abs(degrees .* utilities);
3 hopeInstances = hopeMask .* intensity;
4 hope = sum(hopeInstances);

Figure 10: Actual MATLAB code for computing hope.

tion utility only from the domain states. For instance, if
the agent appraised an intrinsically undesirable state as a
possibility then the elicited emotion is that of fear. A nat-
ural extension would be to compute emotions from socio-
cultural states as well. For instance, an agent can be fearful
of being perceived as unobservant of Islam. Note that the
emotion weights for domain-state-elicited emotions can dif-
fer from those for socio-cultural-state-elicited emotions. For
instance, fear of death may be stronger than fear of being
perceived as a gambler.

Machine Learning. Numerous parameters are hard-coded
into EMA and CAB. They were produced and tuned by hand
in a time-consuming process. It would be beneficial to have
an automated and validated way of generating such param-
eters in order to (i) reduce system production cost and (ii)
increase simulation fidelity. Future research will investigate
the extent to which machine learning methods can be used to
derive the parameters from historic data consisting of events
recorded from real-life culturally and emotionally affected
negotiations. Then parameters can be fit to minimize dis-
crepancies between agent’s actions and historic data. Sec-
ond, given an expert willing to label each action taken by a
CEMA agent as realistic or unrealistic, positive and negative
rewards can be easily defined. Then Reinforcement Learn-
ing may be used to learn the parameters.

Learning Heuristic Search is an effective mechanism for
controlling adaptive and autonomous agents in an a priori
unknown environment. Such agents start with an initial (in-
accurate) heuristic and, through experience, refine it to re-
flect to the environment. Most experiments in search have
been conducted in gridworld pathfinding and combinatorial
puzzles (Bulitko & Lee 2006). Future work will investigate
the extent to which learning real-time heuristic search is ap-
plicable to the space of agent’s culturally and emotionally
affected states.

6 Conclusions
We argued that a high-fidelity virtual human simulation must
simultaneously model emotionally and culturally affected
behavior. We reviewed two existing systems: CAB and
EMA which are capable of modeling culture and emotion
effects independently. The main contribution of our work is
a formal re-write of core parts of both systems in a language
of matrix algebra. The new system (Culture-Emotion MA-
trix or CEMA) naturally unifies CAB and EMA and is capa-
ble of simulating culture and emotion effects on agent’s be-
havior simultaneously. CEMA affords a clean separation of
culture and emotion data from the underlying programming
language and can be implemented easily with any matrix
package. The matrix language also makes it straightforward

to add personality and religion layers to the simulation and
is a natural representation for machine learning methods.
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