
Hierarchical Petri Nets for Story Plots Featuring Virtual Humans

Daniel Balas, Cyril Brom, Adam Abonyi, Jakub Gemrot

Charles University in Prague, Faculty of Mathematics and Physics, Department of Software and Computer Science Education
Malostranske nam. 25, Praha 1, 118 00, Czech Republic

addabis@gmail.com, brom@ksvi.mff.cuni.cz, adam.abonyi@gmail.com, jakub.gemrot@gmail.com

Abstract
Petri Nets can be used for a retrospective analysis of a com-
puter game story, for representing plots in serious games as
well as for monitoring the course of the story, as recently
demonstrated by several authors. It was not clear, however,
whether Petri Nets can be used for representing plots and for
their unfolding in games that feature large worlds inhabited
by virtual humans. This paper demonstrates that this is in-
deed possible, presenting several scenarios from the serious
game Karo, an on-going project, which features both virtual
humans driven by reactive planning and a story manager un-
folding story plots represented and controlled by Petri Nets.
However, a specific refinement of Petri Nets, a hierarchical
model capitalising on Timed Coloured Petri Nets and non-
deterministic FSMs, had to be developed for this purpose.
This refinement is described here, including general discus-
sion showing why individual features of this refinement are
needed – directions for game developers considering
whether to use this technique, or not.

Introduction
One useful way of conceiving control architectures of
computer games emphasising a story, or storytelling appli-
cations in general, is the two-layered “individual charac-
ters—story manager” conceptual framework (e.g. Szilas
2007; Fig. 1). This is basically another reincarnation of a
“divide and conquer” mechanism. Capitalising on this dis-
tinction, a designer can easily distinguish in his or her mind
between the issues of a) specifying background behaviour
of virtual characters and objects in general, and b) a high-
level plot that is to clothe this simple behaviour in a narra-
tive, e.g. by altering top-level goals of the characters. Dis-
tinction between a world state and a story state can be
made, the former being represented within a world simula-
tor, the latter by the story manager. Further, some issues
can be easily solved when one adopts the central view of-
fered by a story manager abandoning the notion of strong
autonomy, which pops up naturally when thinking at the
level of individual characters, e.g. the issue of synchronis-
ing during joint-behaviour (see e.g. Mateas 2002).
 This paper concerns itself with the question of how to
represent plots of games featuring middle- or large-size
virtual worlds inhabited by virtual characters, for instance

Copyright © 2008, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

RPGs, i.e. with the “story manager layer”. Recently, there
has been huge interest in planning techniques (to mention
just a couple of works: Reidl and Stern 2006; Cavazza et
al. 2002; note that not all of them employ the two-layered
framework). Basically, planning has opened the field of au-
tomatic story construction; being largely inaccessible by
reactive methods, it helps to avoid the problem with com-
binatorial branching during unfolding of a story, and it also
offers new possibilities in solving “narrative-interactive”
tension. Nevertheless, planning is unlikely to dominate in
the field of gaming AI in the next decade, especially for
games featuring middle- or large-size worlds. Until one
luckily proves P=NP, the limited computational resources
will be the stumbling block. Another, sometimes over-
looked, fact is that often a pre-specified story is needed.
 Reactive techniques have been used for years both for
controlling virtual characters as well as unfolding the story.
Their disadvantages, which motivated the use of planning
at the first place, are well known. However, for large
worlds, we have no other choice. A branch of reactive
techniques widely used at the story manager layer is de-
terministic finite state machines (dFSMs; e.g. Sheldon
2004; Silva et al. 2003). Sometimes, so-called branching
graphs or branching trees are used; though they are not
dFSMs literally, they are very similar conceptually. Gener-
ally, dFSM can be also regarded as a type of rule-based
systems, but because even STRIPS-like planning can be
realised within a rule-based system, it is more useful to
think in terms of dFSMs then in unconstrained rules—
dFSMs better shape the thinking. However, it was argued
that dFSMs cannot cope well with representing plots for
large worlds (Brom et al., accepted). Most notably, there is

Fig. 1. Two-layered control architecture of a “typical” story-
telling application. Simulator of the virtual world features in-
dividual characters and controls their background behaviour.

This behaviour is modified for the narrative purpose by the
story manager. Each component uses its own representation.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

2

a problem with parallelism; stories can evolve in parallel,
they can be even perceived in parallel (think of a multip-
layer RPG for instance); and another problem consists in
specifying how the story manager can influence the world
and vice versa, i.e., in specifying the “story manager—
world” interface.

Petri Nets are another technique, which, conceptually, is
a sort of rule-based system. It was proposed that they could
cope with these issues (Brom and Abonyi 2006). However,
to our knowledge, they were never employed as a plot re-
presentation technique and a mechanism for evolving a sto-
ry in a large game featuring virtual characters. Hence it
was not clear whether they can be really used as proposed.
Petri Nets were used for specification of behaviour of indi-
vidual characters (e.g. Blackwell and von Konsky 2001).
Natkin and Vega (2003) used them to perform a retrospec-
tive analysis of a computer game story. They were used for
plot monitoring in a simple game (Delmas et al. 2007). In
our previous work, we used them for prototyping purposes
(Brom and Abonyi 2006), and as a technique for
representing plots in the serious game Europe 2045 (Brom
et al. 2007a), a statistical coarse-grained simulation without
virtual characters.
 Recently, for our on-going project, a serious game Karo
featuring a middle size world inhabited by virtual humans,
we have decided to use this technique. So far, we have (1)
created a novel Petri Nets refinement, a hierarchical model
(PN-model in the further text), (2) developed a Petri Nets
engine unfolding stories based on plot specifications given
in the PN-model, (3) designed and implemented an inter-
face between this engine and a simulator of virtual worlds,
through which the story manager influences the world and
vice versa (see again Fig. 1), (4) prototyped several scena-
rios to verify that the method works. In these scenarios,
background behaviour of virtual characters is driven by
hierarchical if-then rules, while their high-level goals (and
the state of the world in general) are altered by the story
manager with the engine underpinned by the PN-model.
 The goal of this paper is to demonstrate this technique
and to discuss the requirements demanding its use. The
matter is that on one hand, the PN-model is quite robust
and can be applied to a greater variety of story plots than
canonical Petri Nets or dFSMs, but on the other hand, the
PN-model loses intuitiveness of these techniques. Actually,
while the PN-model stems from Petri Nets, it also has a
taste of non-deterministic hierarchical finite state machines
(nHFSM) and general reactive rule based systems, being a
hybrid mechanism of its own sort, understanding and im-
plementing of which can be demanding. Thence, the objec-
tive of this paper is not only to show how a decades old
technique, Petri Nets, can be used for story managers, giv-
ing the game designers something that has advantages over
dFSMs and is ready to use for practice (as opposed to a
planning approach), but also to provide some hints when to
use it and when not to.
 The rest of the paper proceeds as follows. First, Petri
Nets are overviewed in general. Next, the requirements
imposed on the PN-model are detailed. Now, the PN-

model is introduced: first, the details of its usage are de-
scribed from the designer’s perspective, and second, its
formal specification (i.e. for the purposes of programmers)
is given. Finally, example scenarios are described.

Petri Nets
Petri Nets is a specification technique frequently used in
software engineering. A basic Petri Net variant consists of
containers (or places, represented by a circle:), tokens
(“the pellets”:), actions (or transitions,), and a transi-
tion function (). The containers contain the tokens. If a
sufficient number of tokens is contained in specific con-
tainers, an action is triggered. After firing an action, the to-
kens that helped to fire this action are removed, and some
new tokens are generated (Fig. 2a). Which tokens fire
which action and which action generates tokens to which
containers is specified by the transition function (and de-
picted by arrows). At one instant, several containers can
contain tokens, which allows for concurrent triggering of
actions. Obviously, a conflict between two applications of
the transition function may appear (see Fig. 2b). Such con-
flict can be solved in various ways, e.g. using priorities.
The basic kind of Petri Nets can be extended by introduc-
ing different types of containers, tokens, and transition
functions. For example, tokens can have a state, a modifi-
cation typically called Coloured Petri Nets (“colour” mean-
ing “state”). For more thorough introduction to Petri Nets,
we recommend the reader to consult (Petri Nets World,
2007).
 The advantages of Petri Nets in storytelling have been
discussed in depth in (Brom et al., accepted). For brevity,
only the main benefits will be recapitulated:
a) Petri Nets are formal (i.e. exact), and yet graphical,

which makes them easily intelligible. (This holds for
dFSMs too, but not for rule-based systems in general;
and as already suggested, the intelligibility of the PN-
model is also disputable.)

b) The story plots can be branching (this holds for dFSMs
too).

c) The episodes can happen in parallel. For example, in an
RPG, Petri Nets can represent naturally that one epi-
sode is to be triggered in village A while another in vil-
lage B, independently, but at the same time. (This is the
main advantage of Petri Nets over a dFSM, which can
be just in one state, and each state can represent just
one episode.)

Fig. 2. Petri Nets examples. a) The action generates one token

if there is one token in the upper container and two in the
lower container. b) The two actions are in conflict. Had there
been two tokens in the container, the actions could run in par-

allel.

3

d) Petri Nets fit well for the description of large plots, es-
pecially if hierarchical nesting is exploited (dFSMs can
be also hierarchically nested, but large plots typically
demand parallel episodes – see Point c).

 On the other hand, as already mentioned, Petri Nets fit
naturally for stories with pre-scripted plots, with limited
aspects of emergent narrative, as opposed to purely emer-
gent narrative, or automatic story construction. They also
do not address the problem of combinatorial explosion of
possible story branches explicitly; this must be solved by
the designer in an ad hoc way similarly to the dFSMs.

Karo game
Karo is a simulation featuring virtual humans intended as a
serious game for civics. The motivation is to help students
to understand the dynamics of social relationships. Pres-
ently, the game should be regarded as a research prototype,
not a full-fledged application. For prototyping purposes,
we use a dummy case-study scenario, which has no educa-
tional aspect. For the purpose of this paper, it is important
that the scenario features 7 characters tied up by the story
plot.
 Technically, Karo is built upon Java framework IVE
(Brom et al. 2007b) serving as a world simulator. During
the work presented here, the IVE has been extended with a
story manager with an engine using the PN-model. The
IVE features grid worlds only; however, this is sufficient
for our present purpose. The IVE was intentionally de-
signed for simulations of large virtual environments inha-
bited by tens of virtual humans. Conceptually, the charac-
ters are driven by BDI architecture (Bratman 1987), that is
implemented using fuzzy if-then rules. The IVE also uses
level-of-detail technique for simplifying space and beha-
viour of objects and virtual humans at the places unimpor-
tant at a given instant (Brom et al. 2007b). Nevertheless,
this feature has not been used in Karo.
Narrative in Karo. The narrative in the case-study sce-
nario is partly emergent and parallel, very character-
oriented and goes into the detail. The story contains many
actors; some of them being background characters com-
pletely driven by world simulator and never directly influ-
encing the story (e.g. inhabitants of a village, who seem to
have their own lives). On the other hand, behaviour of
main characters can be influenced by the story manager.
We decided to solve “interactive—narrative” tension by
limiting the degree of interactivity available to a user. The
user is allowed to participate only by changing emotions,
moods, and relationships of the characters, and by modify-
ing the environment slightly, e.g. by moving objects. Nev-
ertheless, these small influences can change the outcome of
the story radically. Our working hypothesis is that this ap-
proach has a strong educational potential because it allows
a student to perceive that small, seemingly similar actions
can have totally different outcome; however, this issue re-
mains to be investigated.
 The scenario is a dummy fantasy set taking place in a
fictional medieval town and in the surrounding rural area.

It features seven main characters and several background
actors. Importantly, characters can be located in different
parts of the world at the same time. In the beginning, Anne
Greyfox, a maiden, who is the daughter of a local baker,
Bryant, is visited by her friend, Nerys Robertson. After a
short conversation Anne and Nerys decide to go to the
Lonely Tree, a romantic place outside the town. Possibly
they are warned about the place by Bryant, which may in-
fluence their caution later.
 The girls go through the town, finally coming to the
house of Aunt Dawson, a goodhearted old woman. She
asks them if they can take a lunch to her son Timmy, a city
guard. After they agree, Jonas, Nerys’ little brother, comes
here. He is a spoiled child, fattish and rude. He tells the
girls that he is coming with them. Nerys, depending on her
mood, either ignores him or forbids him to follow them.
He, however, heard where the girls were going, so if he is
not allowed to follow them, he decides to go to the Lonely
Tree on his own. He does not know that they are going to
Timmy’s watch post first, which is quite a detour, so he ar-
rives to the Lonely Tree sooner.
 Near the Lonely Tree, local villain and murderer, Rob
The Robber, is hiding. When the girls arrive, they see him
and naturally he decides to kill them. In the end, the girls
are either alive, and Rob the Robber is dead, or other way
round, and also Jonas is either alive or dead, depending on
how the user was influencing the story and on a random
element—someone who is passing by the Lonely Tree can
hear Rob’s voice and go to the town for help.

Requirements, Issues, Solutions
It is important to realise that a game featuring virtual char-
acters and a middle- or large-size world has a different re-
quirements than a game either with a small world (e.g. Fa-
çade) or with a large world but without virtual characters
(e.g. Europe 2045). This section elaborates on this issue,
summarising these requirements, and outlining conceptual
solutions. The PN-model presented in the next section has
been designed to accord with these solutions.
(1) Given the story can be large and can evolve in parallel,
there is a need for structuring the story to help the author to
organise it and the player/s to orient within it.
Conceptual solution: We decompose a story plot hierarchi-
cally. We call a description of a part of a story a plot. Each
plot can be divided into a group of so called subplots. A
plot is a superplot of all of its subplots. For each story,
there is only one plot without a superplot; a root plot,
which represents the whole story. Every other plot has ex-
actly one superplot.

We say that a plot is active in a certain moment if the
story manager currently evolves the story using this plot.
When a plot is active, its superplot is also active. A plot is
finished when it was active in the past. A finished plot can
be reactivated in the future again. Two plots are mutually
exclusive when they cannot be both active at a time. Plot A
is a successor of B when they are mutually exclusive and A

4

becomes finished in the moment B becomes active. We de-
note (B, C) succession options of plot A when plots B, C
are of the same depth and both are successors of A.

The described structure resembles a hierarchical non-
deterministic FSM, an idea elaborated in the next section.
(2) When separating high-level story logic from low-level
if-then rules driving the actors, a natural question pops up,
where the low layer ends and the higher layer begins.
Solution: The question is immensely complex; we have
just adopted an intuitive heuristic, which proved useful:

(2a) Characters. Stories usually focus only on few im-
portant characters. Other characters have only a small role,
either they become important during a small episode (e.g.
Aunt Dawson), or they have no importance for the story,
constituting only a believable background. Capitalising on
this distinction, when having a root plot, we say that a
character can be either important or unimportant in each of
its subplots. Importance is an inherited property, meaning
that if a character is important in a plot, it is important in
all its subplots. We work with three types of characters. (a)
The main character is a character important in the root
plot. (b) A character is temporarily important (t-important)
if it is important in some plots and unimportant in others.
(c) A character is minor if it is not important in any plot.

Let A1 be a plot, where character C is unimportant, and
let A2 be a subplot of A1, where C is important. When A2
is activated, we say that character C is promoted; when A2
ceases to be active, C is demoted. While all characters need
to be represented by the world manager, only the main
characters and the promoted t-important characters need to
be represented by the story manager. Conceptually, the
promotion of a character is a process of finding a suitable
unimportant character, which will become important for
the duration of a given subplot; by analogy, a character be-
comes a “value” of a “character variable”, an issue elabo-
rated further in Point (3). Dividing the characters into de-
scribed groups is a major step of the story design.

(2b) Behaviour. We distinguish between daily, routine
behaviour, and behaviour being unfolded for the purpose of
the story: typically an unusual behaviour with a dramatic
impact. While the former is fully controlled by the world
simulator, the latter is controlled by the story manager. It
follows that only the important characters can perform the
latter. For instance “Anne is doing the housework” would
be the part of the world specification, whereas the decision

“would Bryant warn the girls?” is important to the story, so
it has to be a part of the plot specification. Note, however,
that even unimportant characters can influence the story
since they can interact with important characters on the
world manager level, which is an aspect of emergent narra-
tive.
(3) There is a question how the story manager—world
simulator interface should look like. E.g. how the story
manager can cause “Rob Robber emerges from the shad-
ows after all important characters arrive at the scene”?
Solution. Basically, we allowed the story manager to moni-
tor the state of the world, and based on this state, to trigger
an action that changes this state. Importantly, this necessi-
tated a) creation of a language for describing states of the
world that would work with variable quantification (“all”
in the example above is actually the universal quantifier),
b) representing objects and characters for the purpose of
the story manager, i.e. for questioning features of these
characters (“position of all characters is the scene X”), and
changing them (the top-level goal of R. Robber is changed
to from “hiding” to “murder”). We specified a sort of deic-
tic variables that points from the story manager layer to the
virtual world layer, as detailed in the next section.

Petri Nets in Karo
This section describes the PN-model we have developed to
address the requirements of story plots of Karo. One way
of thinking about the PN-model is that it is (roughly) a hi-
erarchy of interconnected non-deterministic FSMs, in
which each state represents a subplot and encapsulates one
Petri Net, in which actions can, apart from other things,
start evaluation of other non-deterministic FSMs (Fig. 3).
Additionally, tokens in these Petri Nets can carry added in-
formation, and the transition function of the Petri Nets is
generalised.

The PN-model can be employed in two ways; first, as a
design tool for a game designer, second, as a formal under-
pinning of the story manager. These two perspectives will
be detailed in turn. Additionally, on several implemented
subplots from Karo, it will be demonstrated how several
particular features that are hard to address by canonical
Petri Nets and dFSMs can be realised by the PN-model,
namely a) parallelism, b) demoting/promoting of a charac-
ter, c) queries of the story manager on the story world us-
ing variable quantification.

PN-model from the perspective of a designer
We have adopted the following design process: A) a de-
signer writes a narrative (as is the case of the scenario of
Karo described above), B) based on the narrative, s/he cre-
ates a plot specification in a semi-graphical language we
developed that capitalises on the PN-model (this language
is not detailed here for brevity), C) this specification is
converted manually by a programmer into the code (an au-
thoring tool is a future work). In parallel, D) the designer
describes the background behaviour of characters, which is

Fig. 3. (Left) Two layers of a PN-plot schematically depicted.

Notice the “between subnets” parallelism. (Right) The root net is
detailed; notice the “within-plot” parallelism.

5

E) converted by the programmer into reactive if-then rules.
This section briefly outlines a methodology we have de-
veloped to and found useful for Point B. Basically:

 (i) The whole narrative becomes the root plot. The de-
signer decomposes it into subplots. These can be further
decomposed to smaller subplots, until atomic plots are
reached. An atomic plot is such a plot that can be described
by, more or less, a single sentence from the original narra-
tive that does not make a sense to decompose further (if
one finds that a sentence should be decomposed, one
should do it in the verbal narrative at the first place), e.g.
“The girls go through the town, finally coming to the house
of Aunt Dawson.”

(ii) Plots at each level of the hierarchy are organised by
AND, OR, and XOR connectives, that is, succession op-
tions are created.

Finally, the designer will end up with the narrative par-
celled out into single sentences connected in a much like
nFSM way (or activity diagram, if one prefers the UML
terminology), each original sentence becoming an atomic
subplot. Fig 4a shows the subplots of the root plot of the
Karo story. Compare it with Fig 4b detailing the country-
side subplot. While 4a is a simple non-branching FSM, 4b
shows both branching and parallelism. Note the inherent
combinatorial explosion problem: though hierarchical de-
composition helps to manage the story design, one still has
to specify each individual story branch on his/her own.

PN-model from the perspective of a programmer
Point C above states that a programmer has to convert the
designer’s specification into the formal plot description for
the story manager, i.e. describe the plot using the PN-
model formalism (using XML in our case). While the gross
hierarchical structure can be converted straightforwardly,
each verbal description embedded within a subplot of the
designer’s specification has to be replaced by a Petri Net.
The description of the PN-model follows.
PN-Plot. Let Nets, Containers, Tokens and Triggers denote
the set of all nets, containers, tokens, and triggers, respec-
tively, used in a given plot. A net is a quintuple
��� �� ����� 	
 � �
��, where:
� � � �������
�� is a set of containers of this net.
� � � �����
�� is a set of triggers of this net.
� � � �����
��
�����
�� ������� is a state of the net.
� ��! � " #����
��
 is an initial marking of the net.
� 	 � �
�� is a set of subnets. A net is a supernet of all

� � 	. One net has zero supernets, a root net, all other
nets have exactly one supernet.

� If a net is closed or shrunk, all of its subnets are of the
same state. If a net is expanded, its supernet is also ex-
panded. Initial state of each net is closed, except for the
root net, which is always expanded. The typical change
of the state of a net is: closed � expanded � shrunk,
but if needed, the net can be expanded several times.

The definition formalizes the notion of plots as dis-
cussed in the previous section, Point (1), and also under-
pins the graphical language for designers. The root plot is
represented by the root net. Closed nets represent plots that
have not been active yet, expanded nets correspond to ac-
tive plots, and shrunk nets to finished plots (Fig. 3, left).
 At one level of the hierarchy, after a net becomes
shrunk, a choice which net to expand next can be made, a
method for representing branching stories. This is the clas-
sical dFSM approach. We extend it; at one level of the hie-
rarchy, more nets can be expanded, an idea borrowed from
non-deterministic FSMs and a method for representing pa-
rallel stories (events specified by those two nets can be
happening simultaneously; see again Fig. 4b). Later, we
will see that there is yet another method allowing for the
parallelism.
Tokens. A token is a quadruple ��� �� �� �
 � ���
��,
where:
� � is a unique identifier of the token
� � is a colour of the token
� � is an age
� � is an object parameter.

A token is the main information unit in the Petri Nets.
Generally, the colour is used as a categorisation of infor-
mation stored in the token, a reminiscence of the concept
of colour in the Coloured Petri Nets (actually, we have de-
veloped a typing mechanism common in higher program-
ming languages, which uses colour as a type). A token’s
age enables Petri Nets to perceive time, a notion coming
from Timed Petri Nets. The object parameter is stemming
from Requirements (2a) and (3), it presents a method for

Fig. 4a. High-level structure of the Karo story is depicted. 4b.
The countryside plot is detailed. All of the subplots depicted are
atomic. The description of each subplot is shortened for brevity
(i.e. no whole sentences). The plot branches just after it starts. If
(1) holds, the story will evolve in parallel (G and (S or (M+S)).

6

making an unimportant character temporarily important,
i.e. for selection of a character into a certain role, which is
important in a given subplot. The object parameter binds a
character with a token: it is a deictic variable pointing to
the character (or generally to any story-important object).
This is an extremely important mechanism enabling the
story manager to perceive temporarily some objects from
the virtual environment, and change their properties if
needed.

Each token must be located in exactly one container.
Containers. A container is a tuple ��� �
, where i is a
unique identifier of a container, and � a set of tokens the
container contains. The initial state of all containers of a
given net is described by the function �� of this net.
Story state. The story state is given by a combination of
states of all nets, binding of tokens with physical objects
and assigning tokens to containers.
Atomic triggers. An atomic trigger is a method for stating
“if the world and story is in valid state, we can do some ac-
tion”, a mechanism derived from the transition function
plus actions of canonical Petri Nets. Let 	 denote the set of
all possible story states, and $ the set of all possible world
states. Then, an atomic trigger is a pair ��� �
:
� � % $ & 	 " �'() is a boolean trigger condition.
� � % $ & 	 " $ & 	 is a trigger action.

We say that a trigger is applicable iff its condition is
met, and that a trigger fires when the action is being exe-
cuted. The applicability of a trigger does not necessarily
mean that the action is executed.

Note that a trigger changes both the current story state
and the world state. Hence, triggers are able of working in
both important directions: the world state can influence the
story state and vice versa. Moreover, the story state can in-
fluence itself, which is a natural property, and the world
state can influence itself. The latter, however, should not
be described by the triggers, but representations held by the
world manager.

Note also, that it is possible to define an atomic trigger
with true condition, hence always firing, or with an action
that is identity, i.e. has no effect. These triggers act as con-
ditions and unconditional actions together with other trig-
gers inside so-called composite triggers, as described later.

How exactly is specified a condition and an action of a
trigger depends on the trigger’s type. There are five basic
types of atomic triggers that work only with the PN-model
and thus only with the story state with an obvious meaning:
MOVE_TOKEN trigger, DELETE_TOKEN trigger,
CREATE_TOKEN trigger, EXPAND_NET trigger, and
SHRINK_NET trigger. After a net is expanded, tokens are
generated using Mo. Firing of the SHRINK_NET trigger
deletes all tokens from the shrunk nets, stopping a sub-plot
in effect.

Additionally, we use about 10 atomic triggers handling
various elements of the virtual world; i.e. they present the
window through which the story manager monitors the
world. While some of them are implementation dependent,
others basically change object parameter of a token or

change properties of an object bound to a token in this pa-
rameter.

Importantly, the triggers present the second mechanism
for representing parallelism (see Fig. 2b; 3/Right). Now,
we are confronted with the “with-in” plot parallelism, as
opposed to the first method described above, which is con-
cerned with parallelism among plots.
Composite triggers. Currently, we have six composite
triggers. Three are roughly similar to logical connectives
and the other three are roughly similar to quantifiers. Con-
nective triggers simply take a given set of triggers (either
atomic or composite) and compose their conditions and ac-
tions based on a logical operation.
� CONJUNCTIVE trigger *���+,� - � +.
 has a condition

��/� �
 0 �12�/� �
 3 -3 �14
�/� �
 and an action

��/� �
 0 5�12 6 - 6 �147�/� �
. The sign denotes an
action composition function, which is discussed below.

� DISJUNCTIVE trigger 8��+,� - � +.
 has a condition
��/� �
 0 �12�/� �
 9 -9 �14

�/� �
 and an action
��/� �
 0 ��, 6 - 6 �:
�/� �
, where �,� - � �: are ac-
tions of those +,� - � +. that are applicable.

� NEGATION trigger ����+,� - � +.
 has a condition
��/� �
 0 ;�12

�/� �
 3 -3 ;�14
�/� �
 and an empty

action. This trigger has to be used in composition with
triggers that produce an action.

A quantification trigger takes one trigger (either atomic
or composite) as an argument, and additionally a variable
name, and a finite domain (for instance, a domain can be
“all main characters”). This variable is substituted in the
trigger’s argument for every value in the domain:
� UNIVERSAL QUANTIFIER trigger *���+� <��� ��=

has a condition
 ��/� �
 0 >? � ��=! �1@ABC0DE�/� �

and an action
 ��/� �
 0 ��1@ABC0F2E 6 - 6 �1@ABC0FGE
�/� �

where ��= H �I,�- � I: . This trigger is used when we
need to fire the trigger + for all members of the domain.

� EXISTENCE QUANTIFIER trigger
J������+� <��� ��=
 has a condition
 ��/� �
 0 K? � ��=! �1@ABC0DE�/� �

and an action
 ��/� �
 0 ��1@ABC0FE
�/� �

where I � ��= and �1@ABC0FE�/� �
 H). If the trigger
+ is applicable for more values, one is chosen randomly
to fire.

� A trigger L��
����+� <��� ��=
 has a condition
 ��/� �
 0 K? � ��=! �1@ABC0DE�/� �

and an action
 ��/� �
 0 ��1MABC0FG2N 6 - 6 �1MABC0FG2N
�/� �

where I:2� - � I:O � ��= is a maximal set of values sat-
isfying the condition ��1MABC0FGPN�/� �
 H)
>� �
�)�- � Q . In other words Foreach is like the existence
trigger, but it fires + for each value from the domain for
which + is applicable.

These definitions introduce the language demanded in
Req. 3. There are two problems remaining: First, changing
the order of actions in compositions may change the out-
come. Second, two triggers can collide (see Fig. 2b again).

7

However, solving these issues on a rigor basis is out of
scope of this paper. We think that if the story is carefully
designed, these conflicts can be avoided. In (Brom et al.
2007a) we actually introduced a mechanism for solving the
conflicts, but it was avoided by the designer: he opted to
solve the conflicts on his own.
 As a sidenote, we have two auxiliary triggers with spe-
cial behaviour, which is roughly similar to metaprogram-
ming—ONCE trigger can be applied just once, FIRED
trigger on the other hand is bound to another trigger, and is
applicable iff this trigger was applied at least once. When
composed with another triggers, FIRED trigger enable the
programmer to express the situations where the application
of some triggers need to be ordered. This mechanism has
turned out to be needed quite often for the plot specifica-
tions. Formal description of this behaviour is out of the
scope of this paper; simply said it is possible to emulate it
by adding containers and tokens, but it is more convenient
to use these triggers.

The quantifier triggers push the PN-model from the
original Petri Nets towards a general reactive rule-based
system. This has two negative consequences. First, these
triggers slow down the evaluation. Second, they cannot be
easily portrayed graphically, as opposed to simple transi-
tion function from original Petri Nets. Thence, a designer
can specify graphically only the gross structure of the plot,
as described by the methodology above, but not individual
Petri Nets embedded within the atomic plots. As s/he is not
expected to use the formalisation of the PN-model directly,
the methodology demands him/her to specify the plot using
a single-sentence narrative; however, since verbal descrip-
tion is not exact description, misunderstandings between
the designer and the programmer can arise. On the other
hand, without quantifier triggers one cannot easily express
rules like “after all important characters arrive at location
X, start event Y”. Apparently, there is a trade-off between
complexity of expressive power of triggers and intuitive-
ness of their graphical portrayal. Needless to say that nei-
ther canonical dFSM nor Petri Nets possess triggers with
powerful expressiveness.

Implementation
The story manager is presently fully implemented, includ-
ing a debugger of stories. The scenario detailed above is
implemented as well, except for some background charac-
ters’ behaviour. The whole scenario is described by about
20 nets with the hierarchy depth of 3. Together, the nets
contain about 100 triggers (without triggers nested in com-
position), 10 containers and 20 distinct tokens.

The story manager works as follows. After it loads the
plot specification, it creates its internal representation.
Then, it starts the execution of the plot, changing its state,
step-based-step, in hand with the world manager simulat-
ing the virtual world. Execution of the PN-model resem-
bles the original. All applicable triggers are selected and
one of them is randomly chosen to fire. Closed and shrunk
nets are not evaluated at all, a method for execution opti-
mization and elimination of unwanted trigger firing.

For illustrative purposes, we now detail several example
situations from the Karo narrative, some of which are diffi-
cult to represent without our model. For brevity, we will
use pseudo-formal form for description of actual triggers
along with quoted statements describing complex triggers
descriptions of which are out of the scope of this paper:
Bryant warns the girls. This action is actually represented
by a trigger conjunction stating “If it is randomly decided
that Bryant warns the girls, a token is put to a specific con-
tainer, but this action can be done only once.” The pseudo-
formal form of the trigger is: “Random decision” &
CREATE_TOKEN(container c, token t) & ONCE.
If the girls do not want to take Jonas with them, he goes
another way. There are two subnets for the two girls’ op-
tions (i.e. branching), one of them (“not to take”) having
two successions describing the two parallel subplots (Fig.
4b). Expansion of two parallel subnets is described by con-
junction of two EXPAND_NET triggers along with a
ONCE trigger.
The event, when Rob Robber emerges from the shadows
starts when all important characters arrive at the scene
(Fig. 4b). The condition is expressed by a universal quanti-
fier trigger with a domain comprising of the story’s main
characters, and a trigger argument being a condition on a
character location. This quantifier is then conjunct with
change of a Rob Robber’s goal. In the pseudo-formal form:
ONCE & “Change the Rob’s goal” & All(“character c is in
the Lonely Tree location”, c, story_characters).
When Rob Robber is intimidating the girls, someone who is
passing by overhears his threats and goes to the town to
get help. The selection is performed by an existence quan-
tifier trigger. The character chosen is “stored” in a token as
the object parameter, so this information can be used later
in the story. Pseudo-formal form would then be: ONCE &
Exists(“character c is near the Lonely Tree” & “change c’s
goal to get_help” & CREATE_TOKEN(“some container”,
“token containing c as object parameter”), c, help-
ful_characters). This trigger promotes exactly one unim-
portant character to t-important character. Demotion of the
character is simple: the net removes the token with this
character from the specific container and changes the char-
acter’s goal to its former one (or possibly lets the character
perform some transition behaviour).

Fig. 5. A screenshot from the prototype – the final scene.

8

Conclusion and Discussion
This paper has demonstrated a novel technique, based on
Petri Nets, for representing plots and controlling their evo-
lution in games emphasising a story and featuring large
worlds inhabited by virtual characters, like RPGs. The
main advantage of the technique is that at the same time:
(1) It allows for describing plots of stories that can evolve

in parallel. This cannot be done easily by classical de-
terministic FSMs, but this can be achieved with a non-
deterministic FSM as well as canonical Petri Nets.

(2) It allows for hierarchical decomposition of a story,
which helps with speeding up the evaluation and sim-
plifying the design; hierarchical dFSMs and nFSMs can
also help in this way, but not canonical Petri Nets.

(3) It explicitly addresses the issue of story-manager—
world interface by providing triggers allowing for
monitoring the state of the world and by possessing to-
kens coupled with deictic variables by which the story
manager can access world objects. Neither d/nFSM nor
canonical Petri Nets possess such a mechanism; how-
ever, they can be augmented with it in principle.

(4) The expressive power of the triggers is that of the first-
order logic, which allows for formulating complicated
expressions.

In general, we think the technique is ready for use in
practice. Its features make it especially suitable for large
worlds. However, point (4) complicates the design process
and slows down the execution. Hence, if the expressive
power of first-order logic is not needed, simple triggers
should be opted for. Actually, the more the triggers are
simplified, the more the technique starts to resemble hier-
archical nFSMs. In general, in small words, dFSMs or Beat
approach (Mateas 2002) can be sufficient. If a parallelism
is needed in a small world, a flat Coloured Timed Petri
Nets model can do their job.

It has to be also kept in mind that the technique is reac-
tive, having all the advantages and disadvantages of this
approach, similarly to other techniques discussed here.
Most notably, one cannot expect miracles concerning com-
binatorial complexity of branching; this has to be ad-
dressed manually by a designer. We think that it may be
possible to overcome this by using off-line planning, i.e. to
construct branches automatically to some extent during the
design process; this is, however, out of our scope now.

Acknowledgement
This research was partially supported by the Program “In-
formation Society” under project 1ET100300517, by stu-
dent grant GA UK No. 1053/2007/A-INF/MFF, and by the
Ministry of Education of the Czech Republic (Res. Project
MSM0021620838). The authors also thank to three
anonymous reviewers for their helpful comments.

References
Blackwell, L., and von Konsky, B. 2001. Petri Net Script:
A Visual Language for Describing Action, Behaviour and
Plot. In Proc. 24th ACSC, 26-37. ACM Int. Conf. Proc. Ser.
Bratman M. E. 1987. Intention, plans, and practical rea-
son. Cambridge, Mass: Harvard University Press.
Brom C., Abonyi A. 2006. Petri-Nets for Game Plot. In
Proc. of AISB, Vol. 3. 6–13. AISB press.
Brom C., Sisler V., Holan T. 2007a. Story Manager in
‘Europe 2045’ Uses Petri Nets. In Proc. 4th ICVS, LNCS
4871. 38-50. Springer-Verlag.
Brom C., Sery O., Poch T. 2007b. Simulation Level-of-
detail for Virtual Humans. In Proc. IVA’07, LNCS 4722. 1-
14. Springer-Verlag. IVE framework is available at:
http://urtax.ms.mff.cuni.cz/ive/public/about.php [1.7.2008]
Brom C., Balas D., Abonyi A., Holan T., Sisler C.,
Galambos L. 2008. Petri Nets for Representing Story Plots
in Serious Games. In AISB Journal. Forthcoming.
Cavazza M., Charles F., Mead S. J. 2002. Planning Charac-
ters’ Behaviour in Interactive Storytelling. In Jn of Visuali-
zation and Computer Animation, Vol. 13, 121–131.
Delmas, G., Champagnat, R., Augeraud, M. 2007. Plot
Monitoring for Interactive Narrative Games. In Proc. of
ACE 07, 17-20.
Mateas, M. 2002. Interactive Drama, Art and Artificial In-
telligence. Ph.D. Dissertation. Department of Computer
Science, Carnegie Mellon University.
Natkin, S., Vega, L. 2003. Petri Net Modelling for the
Analysis of the Ordering of Actions in Computer Games.
In Proc. of Game-ON, 82–92.
Petri Nets World: Petri Nets World, a web collection.
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
[6.7.2008]
Reidl, M. O., Stern, A. 2006. Believable agents and Intelli-
gent Story Adaptation for Interactive Storytelling. In Proc.
of TIDSE, LNCS 4326, 1-12. Springer-Verlag.
Sheldon, L. 2004. Chap. 7 and 14. Character Development
and Storytelling. Thompson Course Technology.
Silva A., Raimundo G., Paiva A. 2003. Tell Me That Bit
Again... Bringing Interactivity to a Virtual Storyteller. In
Proc. of Virtual Storytelling II, 146–155. Springer-Verlag.
Szilas, N. 2007. BEcoll: Towards an Author Friendly Be-
haviour Narrative. In Proc. 4th ICVS, LNCS 4871, 102-113.
Springer-Verlag.

9

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

