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Abstract 
Modeling player engagement is a key challenge in games. 
However, the gameplay signatures of engaged players can be 
highly context-sensitive, varying based on where the game is 
used or what population of players is using it. Traditionally, 
models of player engagement are investigated in a particular 
context, and it is unclear how effectively these models 
generalize to other settings and populations. In this work, we 
investigate a Bayesian hierarchical linear model for multi-
task learning to devise a model of player engagement from a 
pair of datasets that were gathered in two complementary 
contexts: a Classroom Study with middle school students and 
a Laboratory Study with undergraduate students. Both groups 
of players used similar versions of CRYSTAL ISLAND, an 
educational interactive narrative game for science learning. 
Results indicate that the Bayesian hierarchical model 
outperforms both pooled and context-specific models in 
cross-validation measures of predicting player motivation 
from in-game behaviors, particularly for the smaller 
Classroom Study group. Further, we find that the posterior 
distributions of model parameters indicate that the coefficient 
for a measure of gameplay performance significantly differs 
between groups. Drawing upon their capacity to share 
information across groups, hierarchical Bayesian methods 
provide an effective approach for modeling player 
engagement with data from similar, but different, contexts. 

 Introduction   
Recent years have seen growing interest in player modeling 
in games. A key challenge in player modeling is devising 
models of player engagement. Engagement has several core 
components—these include cognitive, emotional, and 
behavioral dimensions—as well as complex relationships 
with related constructs such as motivation and interest 
(Fredricks, Blumenfeld, and Paris 2004; D’Mello, Dieterle, 
and Duckworth 2017). By inducing models of player 
engagement from gameplay data using machine learning, 
we can develop a better understanding of how players 
engage and disengage with games (Hadiji et al. 2014; 
Bertens et al. 2017; Demediuk et al. 2018). Predictive 
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models of player engagement have a broad range of 
applications, ranging from predicting player churn in online 
games (Demediuk et al. 2018), understanding how students 
interact with games for learning (Sabourin and Lester 2014), 
and driving player-adaptive experience managers for 
personalizing gameplay (Yu and Riedl 2015). 

A key challenge in modeling player engagement is 
accounting for varying contexts in which player interactions 
with games occur. The gameplay signatures of engaged 
players may vary significantly depending on players’ traits, 
where they used the game, when they used the game, and 
which version of the game they played. There are many open 
questions regarding how effectively player-analytic models 
generalize between games, players, and settings. Further, 
there is limited understanding of how we can leverage data 
from one context (i.e., one group of players in setting A) in 
order to improve player analytic models for a different 
context (i.e., a different group of players in setting B).  

In this work, we address this question by modeling player 
engagement in two considerably different contexts using a 
multi-task learning framework (Bakker and Heskes 2003). 
Specifically, we utilize Bayesian hierarchical linear models 
to predict players’ intrinsic motivation from in-game 
behavior data. Bayesian hierarchical models enable usage of 
prior distributions for model parameters, which are shared 
between contexts, as well as posterior distributions for 
model parameters, which are specific to each context and 
learned from data. In order to train and evaluate multi-task 
models of player engagement, we utilize data from player 
interactions with an educational interactive narrative game 
for middle school science called CRYSTAL ISLAND. We draw 
upon two complementary datasets that were gathered from 
a pair of studies representing different contexts. The first 
context, which we call the Laboratory Study, took place in 
a controlled laboratory setting with undergraduate students 
using a baseline version of the CRYSTAL ISLAND game 
(Taub et al. 2017). The second study, which we call the 
Classroom Study, took place in a middle school science 
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classroom with eighth-grade students using a modified 
version of CRYSTAL ISLAND that was enhanced to support 
students’ reflection processes. Using this data, we compare 
a multi-task model of player engagement to both pooled and 
context-specific models of player engagement induced with 
the same data. Further, we investigate the uncertainty of the 
model’s parameters, and we compare them across tasks to 
investigate their predictive value in Laboratory and 
Classroom Study contexts.  

Related Work  
Player modeling is critical for understanding how players 
experience games. A key area of research on player 
engagement is modeling player churn, which aims to detect 
player disengagement, or when players stop playing a game, 
using logs of players’ in-game behaviors (Mahlmann et al. 
2010; Hadiji et al. 2014). Runge et al. (2014) predicted 
churn rates in a social game and assessed the business value 
of churn prediction through a controlled experiment that 
attempted to maintain players. Xie et al. (2015) expanded 
upon this work by devising a more generalizable feature 
representation that used frequency of game events to predict 
player disengagement. More recently, Demediuk et al. 
(2018) used mixed effects Cox Regression for survival 
analysis to predict player churn in League of Legends. 
Bertens et al. (2017) developed a game churn prediction 
model from survival ensembles that scales to games with 
millions of users. Together, this work on data-driven models 
of player churn has shown significant promise for enriching 
our understanding of player engagement, but it provides few 
guarantees about the models’ generalizability to new 
populations of players or new versions of the games. Other 
work has sought to address this problem by investigating 
generalized models that use game-independent features, but 
these methods potentially abstract away information that 
could be useful within a particular game but are not present 
in other games (Shaker, Shaker, and Abou-Zleikha 2015). 
 Multi-task learning and transfer learning provide a family 
of machine-learning techniques that use knowledge, models, 
and data from similar tasks to enhance the performance on 
new tasks. Specifically, multi-task learning tries to learn 
models for both source and target tasks simultaneously. 
Transfer learning aims to improve performance on a target 
task using information from a source task (Pan and Yang 
2010). To date, there has been relatively little research on 
applications of transfer learning in games and player 
modeling. Snodgrass and Ontanon (2016) used domain 
transfer to generate game levels for three classic video 
games. Shaker and Abou-Zleikha (2016) showed that 
transferring knowledge of player experience between two 
games is possible through feature replacement between 
tasks. In our work, there are several features that are shared 

between multiple contexts, and thus we seek a method that 
can effectively utilize shared features for each group (i.e., 
conditioned upon the particular setting, population, and 
version of the game that players are using).  
 In order to model player engagement across multiple 
contexts, we utilize hierarchical Bayesian models for multi-
task learning. Hierarchical Bayesian models have proven 
useful across a wide variety of applications, including 
modeling radon measurements (Gelman 2006), student 
exam score prediction (Bakker and Heskes 2003), and 
newspaper sales modeling (Vehtari et al. 2017). In this 
work, we use hierarchical Bayesian models with data from 
two versions of an educational interactive narrative game to 
predict player motivation from logs of in-game actions. 

Dataset 
CRYSTAL ISLAND is an educational interactive narrative 
game where players take on the role of a medical field agent 
who must solve a mystery about an infectious outbreak on a 
remote island. In the game, players explore a 3D virtual 
environment, interact with non-player characters, 
manipulate objects that may have transmitted the disease, 
conduct experiments in a virtual laboratory, read scientific 
books and articles, and record their findings in a science 
notebook. CRYSTAL ISLAND has been used by thousands of 
middle grade students in K-12 schools in the United States 
and internationally, and it has been shown to provide 
significant benefits for science learning (Rowe, Shores, 
Mott, and Lester, 2011). In this work, we utilize data from 
two studies involving CRYSTAL ISLAND. Each study 
involved a different group of students, took place in a 
different research setting, and centered on a slightly 
different version of the CRYSTAL ISLAND software.  

The Laboratory Study was conducted in a laboratory 
setting at a large mid-Atlantic university with college-aged 
students ranging from 18 to 26 years old (M = 20.1, SD = 
1.6). The original study assigned students to three different 
experimental conditions, but in this work, we utilize data 
from only one of the conditions, which involved students 
using a standard version of the CRYSTAL ISLAND game 

Figure 1: Screenshot of the infirmary in the CRYSTAL ISLAND 
educational interactive narrative. 
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(Taub et al. 2017). In this study condition, there were a total 
of 68 students, and after removing 5 due to corrupted or 
missing game trace logs, the study contained data for 63 
students (66.7% female). Participants in this condition 
played CRYSTAL ISLAND until they solved the mystery 
(95%), which resulted in a range of total gameplay durations 
from 35.5 minutes to 160.7 minutes (M = 69.5, SD = 22.0). 
During the study, students also completed a pre- and post-
test of science content knowledge, where 49 participants 
(78%) demonstrated positive learning gains with an average 
normalized learning gain of 0.267 (SD = 0.26). 

The Classroom Study was conducted at a middle school 
in the mid-Atlantic region within an eighth-grade science 
class, providing data for 44 students ranging in age from 13 
to 14 (M = 13.4, SD = 0.5). The study was tied to the regular 
microbiology unit in students’ science class, and therefore 
students received complementary instruction about 
microbiology prior to exploring CRYSTAL ISLAND. Students 
played the game until solving the mystery (59%) or two 
class periods had expired, with a range of total gameplay 
lasting from 31.4 minutes to 143 minutes (M = 79.1, SD = 
19.9). Students in this study used a slightly modified version 
of CRYSTAL ISLAND in which reflection prompts were given 
at specific milestones in the game. These prompts asked 
students to rate their progress on a scale of 1-10 and reflect 
on their progress toward solving the mystery. Students took 
a similar pre- and post-test as the Laboratory Study group, 
but three questions were removed for being too difficult for 
middle-school students. Students in the Classroom Study 
also demonstrated positive learning gains, as 24 participants 
(55%) achieved positive learning gains with an average 
normalized learning gain of 0.028 (SD = 0.252). 

In addition to the science content pre- and post-tests, 
students in both studies also completed several other 
attitudinal questionnaires, including the Intrinsic Motivation 
Inventory (IMI; Ryan 1982). The IMI is a questionnaire that 
measures participants’ subjective experience related to a 
target activity, and it is grounded in self-determination 
theory, which is a general theory of human motivation 
(Ryan 1982). The survey consists of 29 items in which 
students respond on a 7-point Likert scale, and it has been 
validated across a range of domains (McAuley 1989). The 
survey includes seven subscales, but the primary subscale 
utilized here is the Interest-Enjoyment subscale, which 
consists of 7 items that provide a self-report measure of 
students’ intrinsic motivation toward CRYSTAL ISLAND. In 
this work, we seek to devise models of player engagement 
by predicting student responses on the Interest-Enjoyment 
subscale of the IMI using predictor features distilled from 
trace logs of students’ in-game behaviors.  

To predict player motivation, several features were 
extracted from the game trace logs generated by CRYSTAL 
ISLAND. These features consisted of in-game problem-
solving behaviors standardized for the duration students 

spent performing the behaviors relative to their time in the 
game. Specifically, the features included the following:  
• Proportion of time spent conversing with non-player 

characters 
• Proportion of time spent reading books and articles 
• Proportion of time spent testing virtual objects 
• Proportion of time spent editing in-game diagnosis  
• Binary indicator of whether the mystery was solved  
• Proportion of gameplay time spent answering 

reflection prompts (for the Classroom Study group) 
• Average response on the in-game reflection prompts 

(on a 1-10 scale, for the Classroom Study group) 
• Final game score, which is a measure created by 

domain experts to assess students’ problem-solving 
process roughly ranging between +/- 1500 (Rowe et 
al. 2011) 

Each of these was standardized to a zero-mean unit 
normal distribution. Table 1 presents mean and standard 
deviations for each of these features prior to standardization 
for each group. 
 

 Laboratory 
Mean (Std) 

Classroom 
Mean (Std) 

Conversation 0.13 (0.027) 0.11 (0.036) 
Reading 0.40 (0.083) 0.30 (0.14) 

Testing Objects 0.028 (0.016) 0.029 (0.017) 
Diagnosis  0.091 (0.040) 0.018 (0.021) 

Solved Mystery 0.95 0.59 
Prompt Time N/A 0.083 (0.034) 

Prompt Response N/A 6.59 (1.84) 
Game Score 674 (616) 34.4 (760) 
IMI Score 4.65 (1.36) 5.25 (1.14) 

Table 1. Summary statistics of in-game features and response 
variable (IMI Score) used for modeling player engagement. 

Bayesian Hierarchical Linear Models of  
Player Engagement 

Multi-task learning involves performing multiple parallel 
tasks (in this case, predicting player motivation in different 
settings) with a single shared model, taking advantage of 
structural similarities between the tasks in order to improve 
generalization. We compare three methods for approaching 
the multi-task problem: (1) the Pooled Model, where all data 
is pooled into the same group, (2) the Context-Specific 
Model, where each group is fitted with its own regularized 
model, and (3) the Bayesian Hierarchical Model, which 
aims to fit each group individually while sharing 
information between groups through shared latent priors. 
The Pooled Model omits information by treating each group 
equally, potentially underfitting the data. The Context-
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Specific Model is prone to overfitting each of its respective 
groups, as each group has its own set of model parameters, 
increasing the overall model capacity. Thus, the Bayesian 
Hierarchical Model should provide the best predictive 
accuracy among these three variations, and it also provides 
posterior distributions over the model parameters to 
compare model fit between groups. 
 We focus on linear models in this work, using in-game 
behavior features as predictor variables and average IMI 
interest-enjoyment score as the response variable. Since our 
datasets are relatively small, linear models provide a natural 
framework to avoid overfitting, as well as to maintain the 
interpretability of the model parameters after training. Thus, 
in the Pooled Model there is one model parameter per 
feature (plus one intercept) and in the Context-Specific 
Model and Bayesian Hierarchical Model there are two per 
feature (one for the Laboratory Study group and one for the 
Classroom Study group, one intercept for each group).  
 The pooled and context-specific models use a prior that is 
normally distributed about zero with a variance of 10. Since 
linear models with Gaussian priors are used, the Pooled and 
Context-Specific Models are mathematically equivalent to 
ridge regression (L2-regularized linear regression) (Murphy 
2012). The hierarchical models use a latent variable for the 
prior mean, which has a hyperprior that follows a normal 
distribution about zero with variance 10. The latent variable 
enables sharing of information through penalizing 
parameters which differ between groups. The variance of 
the hyperprior over the latent means controls the strength to 
which the between-group differences in model parameters 
are penalized; they approach the Pooled Model as the 
variance goes to zero, and they approach the Context-
Specific model as the variance approaches infinity. Setting 
the prior variance to 10 provides a relatively weak prior and 
serves to balance the regularization between these two 
extremes. 

All models were trained using Markov chain Monte Carlo 
sampling in Python with PyMC3 (Salvatier et al. 2016). The 
plate notation for the Bayesian Hierarchical Model is shown 

in Figure 2. In this notation, g represents the index for a 
group-specific parameter, * represents a latent variable, HC 
is a Half Cauchy distribution with a scale parameter, N is a 
normal distribution with parameters for mean and variance, 
and yig is the ith student of group g’s interest score while xig 
is that student’s feature vector composed of in-game actions. 
Since the Prompt Time and Prompt Response features are 
not present in the Laboratory data, these features have their 
own prior (the same as the latent mean vector) instead of the 
latent variable. 

Results 
In this section, the predictive accuracy of each model is 
evaluated under cross validation. The posteriors are used for 
inference, and the potential for generalization to future tasks 
is investigated.  
 
Predictive Accuracy 
The predictive accuracy for each model was compared using 
10-fold cross validation at the player level. For each fold, 
1000 MCMC samples were drawn and used to make 
predictions after omitting the first 500 for burn-in. Burn-in 
is a common procedure in MCMC sampling that is intended 
to reduce the potential for sampling from a non-converged 
Markov chain, and in our case, it comes at little practical 
cost. The posterior predictive distribution is estimated by 
making predictions from each of the 1000 sampled model 
parameters, and the final prediction taken is the mean of 
these 1000 predictions. This allows the parametric 
uncertainty of the model to be taken into consideration when 
making predictions. 
 Table 2 shows the mean squared error (MSE) of the 
models averaged over all folds by fold size, as well as cross-
validation R2. Lower MSE indicates a better model, and 
higher cross-validation R2 indicates a better model. Cross-
validation R2 is a standardized measure that can be 
interpreted as the percent decrease in MSE by using 
predictions from the model rather than a naïve predictor: the 
mean. It is calculated in the same manner as traditional R2, 
except its value can be negative because the residual sum of 
squares can be greater in magnitude than the total sum of 
squares, since predictions are made on held-out data. A 
negative cross-validation R2 indicates that the predictions 
from the model were worse than using the mean as the 
predictor. The MSE for predictions for all students (All), the 
Laboratory Study group (Lab), and the Classroom Study 
group (Class) are reported to demonstrate the model’s 
predictive performance within specific contexts. 

Table 2 shows that the Bayesian Hierarchical Linear 
Model outperforms both the Pooled and Context-Specific 
Models across all students, as well as within each group. A 
major component of the difference is attributable to the 

Figure 2. Plate notation of the Bayesian Hierarchical Linear 
Model with N total participants and G groups.  

218



Pooled Model’s weak predictive performance on the 
Classroom Study group, which suggests that modeling the 
two groups separately is preferable to take advantage of  
inherent differences between the two contexts. However, the 
Context-Specific Model appears to overfit the smaller 
Classroom Study group, achieving a negative R2 = -0.251, 
despite using L2-regularization during training. The R2 for 
the Hierarchical Model indicates that its predictions yield a 
13.9% reduction (i.e., improvement) in MSE relative to a 
baseline mean predictor. It similarly yields a 3.4% reduction 
in MSE relative to the Pooled Model’s predictions across all 
students and a 6.8% reduction relative to the Pooled Model’s 
predictions for the smaller Classroom Study group. 

 

Table 2. 10-fold cross-validation results for predictive accuracy 
between models and contexts. 

Posterior Distributions of Model Parameters 
A key benefit of the Bayesian approach to modeling player 
engagement is that samples from posterior distributions of 
the model parameters can be used to summarize, compare, 
and draw inferences about the models. Since the Bayesian 
Hierarchical Linear Model outperforms the Pooled and 
Context-Specific models in predictive performance, 
inferences can be drawn from the induced posterior 
distributions for the model parameters. Table 3 shows 
summary statistics for the posteriors for each group in the 
Hierarchical Model. The row labeled “Uncertainty” lists the 
estimated standard deviations for the residuals 𝜎". 

Table 3 reveals that several model parameters differ based 
upon whether they are associated with the Classroom Study 
context or Laboratory Study context. For example, the 
difference in posterior distributions for the Reading 
Duration coefficient is notable, as this indicates that reading 
in the Classroom Study group was less predictive of player 
motivation than in the Laboratory Study group. The 
uncertainty parameter is also higher in the Laboratory Study 
group, indicating that model predictions in this context are 
less certain than in the Classroom Study context, which is 
further reflected in the overall predictive accuracy of the 
respective models (Table 2).  
 The largest difference in parameter estimates between 
groups is for the Game Score feature. Figure 3 plots the 

posterior distribution of the Game Score parameter for both 
the Laboratory Study and Classroom Study groups using 
5000 MCMC samples from the full dataset. In 97.6% of 
these posterior samples, the Game Score parameter for the 
Laboratory Study group is larger than the Classroom Study 
group, indicating a statistically significant difference.  
 

Table 3. Summary statistics of the posterior distributions of 
model parameters in the Bayesian Hierarchical Linear Model. 

Transfer to Future Tasks 
After fitting the Bayesian hierarchical linear model, the 
latent variables representing the prior mean of each group, 
which allow sharing of information between contexts, are 
not used in predictions. However, these latent variables can 
be used in future transfer tasks, where similar features are 
available to predict player motivation, as the prior 
distributions for the model parameters. Using prior means 
provides a method for addressing the cold start problem in 
player modeling, where a model initially provides poor 
predictions because it has not yet seen enough data to 
estimate its model parameters effectively. This issue arises 
whenever we seek to devise a model of player engagement 
for a new setting—in the case of CRYSTAL ISLAND, this 
could be in a museum or home—or with a new population 
of players, such as high school students. The distribution of 
the prior means is shown in Figure 4, and it conveys the 
uncertainty associated with estimating each parameter in a 
future player modeling task. For example, the distribution of 
the prior mean for the Game Score parameter has a wider 
spread than many other parameters, suggesting greater 
uncertainty about how this feature would transfer to future 
modeling tasks. 

Discussion 
The Bayesian hierarchical linear model outperformed both 
the Pooled Model and Context-Specific Model in predicting 
player motivation from in-game actions. The Pooled Model 

 Pooled Context-
Specific Hierarchical 

All MSE 1.520 1.677 1.469 
Lab MSE 1.583 1.688 1.565 

Class MSE 1.430 1.662 1.332 
    

All R2 0.106 0.0129 0.139 
Lab R2 0.143 0.0826 0.156 

Class R2 -0.0752 -0.251 0.0341 

 Laboratory  Classroom 
 Mean Std  Mean Std 

Intercept 4.68 0.15  5.22 0.16 
Game Score 0.54 0.28  -0.14 0.24 

Solved Mystery 0.30 0.23  0.23 0.23 
Conversation -0.28 0.17  -0.15 0.17 

Reading 0.04 0.23  -0.18 0.19 
Worksheet 0.04 0.21  0.02 0.16 

Scanner 0.10 0.23  0.07 0.19 
Prompt Time - -  0.34 0.19 

Prompt Response - -  0.40 0.17 
Uncertainty 1.19 0.11  1.06 0.13 
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performed better in the Laboratory Study setting than in the 
Classroom Study setting, suggesting that the Pooled Model 
was prone to losing key information for modeling player 
engagement due to differences in how the same features 
predict player motivation across the two different contexts. 
For example, Game Score was a strong predictor in both the 
Laboratory and Classroom studies, but it had a different sign 
in each context, which the Pooled Model was unable to 
distinguish between, and thus it evaluated Game Score as a 
weak predictor. This underscores the value of modeling 
each context separately, despite the two contexts sharing the 
same response variable and much of the same feature space.  

The Context-Specific Model offers a naïve approach for 
devising models of player engagement that account for 
contextual differences by separating the data into separate 
groups. This approach reduces the effective amount of data 
available for modeling player engagement in each context, 
which can lead to overfitting. These downsides were 
illustrated by the Context-Specific Model’s weak 
performance for the Classroom Study group; the model’s 
predictions were worse than simply using the Classroom 
Study’s group mean. The Bayesian Hierarchical Linear 
Model regularizes the parameters toward each of the two 
groups, providing capacity to model each group 
independently while preventing overfitting from small 
sample sizes within each group. This enables efficient usage 
of all available data while simultaneously accounting for 
contextual differences that may distinguish data from 
different users, settings, and versions of the game. 
 We also observed significant differences in the posterior 
distributions of model parameters between the two groups. 
The most salient example is the Game Score feature 
(Figure 3). Since Game Score is a measure of problem-
solving performance, the negative coefficient for the 
Classroom Study group indicates that participants with 
higher problem-solving performance were predicted to be 
less motivated toward the game. This negative coefficient 
could indicate that in the Classroom Study setting, players 
who solved the mystery efficiently thought that CRYSTAL 

ISLAND was less interesting than other games or activities 
they preferred to engage with. The Laboratory Study model 
did not share the same effect of Game Score on player 
motivation; a positive coefficient was estimated for Game 
Score. The developmental differences between the two 
group populations likely explains the between-group 
discrepancy in observed Game Scores, as it appears the 
undergraduate students in the Laboratory Study exhibited 
more effective problem-solving strategies, which were 
reflected in higher average Game Scores. 

Conclusion 
Modeling player engagement across different contexts is an 
important challenge, as games are increasingly used in 
different settings by different populations of players, and 
they are regularly updated with new features and assets. We 
have presented a model of player engagement that predicts 
player motivation from in-game actions in two different 
contexts: a laboratory setting with undergraduate students 
and a classroom setting with middle-school students. 
Students in the two studies used slightly different versions 
of the CRYSTAL ISLAND educational interactive narrative. 
Results demonstrated that Bayesian hierarchical linear 
models outperform pooled models and context-specific 
models in predictive accuracy, and the distribution of model 
parameters in the Bayesian hierarchical linear model 
revealed that several features yielded different coefficient 
estimates across different contexts.  

In future work, it will be important to investigate 
extensions to this framework in order to support run-time 
models of player engagement and dynamic personalization 
of player experiences. As more data becomes available, 
alternative machine learning techniques for modeling player 
engagement also show promise.  
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Figure 3. Posterior distributions for coefficients of Game Score 

for the Classroom Study and Laboratory Study contexts. 

Figure 4. Posterior distributions of the latent variables that are 

the prior means for the model parameters of each group. 
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