
Mimisbrunnur: AI-Assisted Authoring
for Interactive Storytelling

Ingibergur Sindri Stefnisson, David Thue
School of Computer Science

Reykjavik University
Reykjavik 101, Iceland

Abstract

Authoring in the context of Interactive Storytelling (IS) is in-
herently difficult, and there is a need for authoring tools that
both enable and assist authors in the creation of new con-
tent. In this paper, we discuss our approach for creating an
AI-assisted authoring tool via the concept of mixed-initiative
systems. We introduce our tool, Mimisbrunnur, which uses
this concept to assist authors in the creation of story content.
We explain how the tool functions and introduce its funda-
mental components, including Natural Language Processing,
a Suggestion Generator, and three authoring modules.

1 Introduction
Interactive stories (IS) are stories where the audience can
interact and have an effect on what happens. Versions of
these stories can be seen in such formats as Choose Your
Own Adventure books, or story-based video games such as
The Wolf Among Us or Life is Strange (Telltale Games 2013;
Dontnod Entertainment 2015). Authoring interactive stories
can be a long and arduous process. For the audience to have
interesting choices and a reliable sense of agency, a large
amount of content needs to be produced, some of which
might never even be seen by most of the audience of the
resulting interactive story. For example, during the creation
of Façade (Mateas and Stern 2003), multiple person-years
of authoring were needed to produce roughly 20 minutes of
content that can be replayed with novelty only six or seven
times. Despite extensive work in the context of authoring for
IS (Louchart et al. 2008; Spierling and Szilas 2009), easing
the authorial burden remains a challenging task.

Medler and Magerko (2006) gave requirements that a
good authoring tool needs to have; they included general-
ity, debugging capabilities, usability, environment represen-
tation, and the ability to specify pacing, timing, and scope.
While meeting these requirements seem likely to make it
possible to author using a given tool, the challenge of cre-
ating a large amount of content would still remain. The cre-
ation of content itself is one of the most challenging parts of
authoring, and is an issue that needs to be addressed. In this
paper, we present a system that we designed to tackle this
challenge. The system can be used by an author to create

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an outline for a set of possible stories, one of which will be
realized by a story generator at runtime (Thue et al. 2016;
2017). An outline includes information such as what the
initial state looks like (e.g., entities and relations between
them) and what conditions every generated story should sat-
isfy, with respect to how the state of the world changes dur-
ing the story. These outlines, along with a set of actions, can
then be fed to a story generator (Guðmundsson 2017), which
generates a partially ordered plan of actions that satisfies the
conditions of the outline. We have implemented an author-
ing tool named Mimisbrunnur that incorporates Artificial In-
telligence (AI) technologies in a variety of ways. Specifi-
cally, our tool uses natural language processing and mixed-
initiative exploration to help the author create an outline, and
stories from this outline can be previewed within the tool us-
ing the outputs of a story generator that uses AI planning.

Mimisbrunnur has three key modules: an Initial State Ed-
itor, an Action Editor, and a Goal Editor. The Initial State
Editor is where an author can state facts about the outline’s
entities that should hold at the beginning of any generated
story. The Action Editor is where they can create, view, and
change the set of actions that can occur in any story. The
Goal Editor is where an author can specify the conditions
(goals) that they want to be met during every story.

In the following sections, we begin by explaining mixed-
initiative systems and offer some background about the sto-
rytelling system that we are working with. We then review
what others have done in this area. Next, we present our ap-
proach in more detail. We then explain our plan for eval-
uating our tool and discuss the benefits and limitations of
our approach. Finally, we offer some conclusions as well as
some ideas for the future of this work.

2 Background
Before we can present our authoring tool, some background
concepts need to be explained. These include what we mean
by “mixed-initiative system” and how our target story gen-
eration system operates.

2.1 Mixed-Initiative Systems
We say that a system is mixed-initiative when one or more
agents work together iteratively (i.e., taking turns) to per-
form a task in the context of that system; any agent can take

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

236

the initiative to decide what should be done next. A mixed-
initiative system is a useful way to model the process of
multi-agent authoring, since iterative refinement is a com-
mon part of many authoring strategies. One powerful exam-
ple of a mixed-initiative system is Google Search, in which
the human agent can start typing in the search box and an AI
agent starts filling in ways to complete the human’s query.
In prior work (Stefnisson and Thue 2017), we discuss this
perspective in more detail.

2.2 Storytelling System
Our authoring tool is designed to help create Thue et al. story
outlines (2016; 2017). They defined an outline as a set of re-
lations, either true or false, that restrict how a story should
start (initial conditions), as well as what should happen in
the middle of the story (intermediate goals), and then how it
should end (final goals). They also define abstract entities,
which are author-created entities that serve as “roles” that a
concrete entity in the “story world” can fill when the story is
running. Stories are then created by feeding an outline to an
AI planner, which produces a partially-ordered plan of ac-
tions that satisfies the outline’s constraints. The stories are
then playable in the storytelling system; a player can inter-
act with the characters, (e.g.take their items, give them other
items) and the storytelling system can react by fixing the sto-
ries if the player disrupts a story that was already planned.

To give authors more control over what stories are possi-
ble, we give them the opportunity to create the actions that
can occur. Actions are planning operators that have precon-
ditions that need to be met and postconditions (effects) that
change the world. An outline is authored using an open-
world assumption, meaning that all unspecified relations are
considered to be undetermined. Here is an example outline:
Initial State:

Hero has heirloom

Villain does not have heirloom

treasure is lost

Intermediate Goal 1:

Villain has heirloom

Final Goal:

Hero has heirloom

Hero has treasure

We define a few terms: an entity has a name and a type
(which can be either Character or Item); a relation consists
of a name, a list of entities, and a template text for an as-
sociated natural-language sentence; a condition consists of
a relation and a Boolean value that specifies whether the re-
lation is true or false; an effect consists of a relation and an
operator that specifies whether the relation should be added
or removed when its associated action is executed; a goal
consists of a name and a list of conditions; and an action
consists of a name, a list of conditions, and a list of effects.

3 Related Work
The challenge of creating content has often been approached
using the techniques of Procedural Content Generation
(PCG) (Yannakakis and Togelius 2011; Togelius et al. 2011;
Hendrikx et al. 2013), where content is generated or recom-
bined from a base set of elements. Any outputs of the genera-

tor that are undesirable are simply discarded, leaving the au-
thor to guess at which new inputs might yield a better output.
One exception is Sentient Sketchbook (Liapis, Yannakakis,
and Togelius 2013), a map editor in which the system gives
map suggestions in real time based on genetic algorithms
that maximize given fitness parameters.

Another way that generative systems have been used
to ease the authoring burden is by directly assisting in
the authoring process itself. Examples such as Say Any-
thing (Swanson and Gordon 2008; 2012) and Creative
Help (Roemmele and Gordon 2015) used an AI agent to pick
responses to authored text from a corpus of natural language
text. Say Anything requires users to use a suggestion after ev-
ery sentence, while Creative Help allows authors more con-
trol over the suggestions. However, the artifacts of both sys-
tems become non-interactive as soon as the authoring stops.

PERSONAGE (Walker et al. 2011) uses an AI agent to
assist with styling authored dialogue according to learned
character models and author-selected parameters. This work
allows relatively little cooperation between the mixed-
initiative agents, since each agent (author and stylist) takes
only one turn and they act in different spaces.

The authoring tool ENIGMA (Kriegel et al. 2007; Kriegel
and Aylett 2010) has a mixed-initiative component in which
AI characters can give suggestions for the next event and
then the author can either accept that event or force a dif-
ferent event to occur. This system has similarities to our au-
thoring tool, but its goal is different from ours; they aimed to
simplify the authoring of autonomous character behaviours,
while we aim to simplify the authoring of plot.

The authoring tool Bowman (Thomas and Young 2006;
Thomas 2006) uses mixed-initiative planning in a plot-based
system. The author gives a domain and describes goals for
the story, and an AI planner produces possible stories. The
author can then refine the domain and goals to try to get
different stories from the planner. This process is similar to
our description of common PCG systems, in which differ-
ent results can only be obtained by acting in a space (e.g.,
possible domains) that is distinct from the generator’s space
(e.g., possible stories). Bowman also requires authors to be
specifically trained in their STRIPS-like (Fikes and Nilsson
1971) authoring language, while our tool allows authors to
write in a restricted natural language.

StoryFramer (Hayton et al. 2017) offers a way to use gen-
erate planning models from natural language text. Their nat-
ural language processing is stronger than what we present in
this work, but their approach does not help in the generation
of the stories themselves. Instead, their system takes a fully
created plot and uses it to generate a planning model.

To the best of our knowledge, no system has been created
that both (i) assists authors with creating a set of possible
stories that will be chosen from at runtime and (ii) supports
authoring in a restricted natural language.

4 Proposed Approach
With Mimisbrunnur, we aim to support creativity and ease
the authorial burden for authors of interactive stories. We
have created a tool that (i) allows authors to create outlines

237

Suggestion
Generator
AI Planner

Goal Editor

Actor

EL

NLP
Actor

Initial
State
Editor

Actor

Action Editor

Actor

AL

PO

PO PO

AL

EL

EL

Figure 1: A schematic overview of the tool. Diamonds show
modules where authoring occurs, rectangles show internal
modules, and cylinders show libraries that are used by the
modules (PO = Prototype Outline, EL = Entity Library, and
AL = Action Library). The figure appears on modules that
an author can interact with. Thick arrows mean that the re-
ceiving module observes everything in the source module.

in a restricted natural language, (ii) offers suggestions con-
cerning what conditions they might want in their outlines,
and (iii) allows authors to visualize and edit potential stories
that their outlines produce.

As shown in Figure 1, our tool offers three modules for
authoring: the Initial State Editor, the Action Editor, and
the Goal Editor. These modules then interact with a Nat-
ural Language Processing system, a Suggestion Generator,
and three libraries: an Action Library, an Entity Library, and
a Prototype Outline. The Initial State Editor is where an au-
thor states the facts of the world in the beginning of the story,
including: the context of the story, which entities the author
cares about, how the entities relate to one another, and so on.
The Action Editor is where an author can either see which
actions are available or create new actions if desired. The
Goal Editor is where the author can create goals for their
outline; they can arrange the goals in the order they want
them to happen, and add constraints to the outline and see
the possible stories that can come out of the story generator.

We use the Suggestion Generator to generate suggestions
for the author. We believe that doing so can help ease the au-
thoring burden in two ways. First, it can produce sentences
that an author might already have in mind. Second, it can
find, produce, and highlight sentences whose addition to the
outline would help generate more varied stories. Our Natural
Language Processing module is what allows authors to write
restricted natural language sentences, which the tool parses
and attempts to understand using the Lexicalized Parser and
Part-Of-Speech tagger of Stanford’s CoreNLP (Toutanova et
al. 2003; Manning et al. 2014). The libraries are databases
that store and maintain all actions, entities, and the prototype
of the outline that the author is writing. Before we introduce

Algorithm 1: Suggestion Generator
Inputs : canvas: a list of conditions (as a partially

completed goal or initial state)
actions: a list of all actions in the Action Library
entities: a list of all permutations of entities in the

Prototype Outline
Outputs: suggestions: a list of conditions as suggestions

1 for each permutation in entities do
2 for each action in actions do
3 rename(action.entities, permutation)
4 if action.preconditions are all in canvas or
5 action.preconditions contains a negation of any

canvas condition then
6 continue
7 else
8 if canvas contains all but one of

action.preconditions then
9 suggestions← suggestions⊕

action’s missing precondition

10 PS← {} : an empty list of conditions (poss. suggestions)
11 for each action in actions do
12 PS← PS⊕ action.preconditions
13 if canvas is not an initial state then
14 PS← PS⊕ action.effects

15 for each permutation in entities do
16 if length(suggestions) > 10 then
17 break
18 for each condition in PS do
19 rename(condition.entities, permutation)
20 if condition and ¬condition are not in canvas then
21 suggestions← suggestions⊕ condition

the authoring modules, we will first explain how suggestions
are generated and how authored sentences are parsed.

4.1 Suggestion Generator
Algorithm 1 shows how the tool generates suggestions based
on a given canvas of conditions. This canvas might describe
a partial initial state (in the Initial State Editor) or a partial
goal (in the Goal Editor). Lines 1 to 9 search the Action
Library for actions whose preconditions are almost met by
the conditions in the current canvas, toward suggesting that
the author add the conditions that are not yet met. Doing
so requires generating and iterating over every possible per-
mutation of each action, given the entities in the Prototype
Outline (lines 1 to 3). Lines 4 to 5 check the preconditions
of the current action permutation. If they are all already in
the canvas (line 4), there are none left to suggest. If any of
them negate a condition in the canvas (line 5), then the cur-
rent action is impossible from the initial state or goal that
the canvas represents. Line 6 skips every action permutation
that meets these criteria. Line 8 checks the remaining action
permutations for those which have all but one of their pre-
conditions satisfied by the current canvas, and line 9 adds
each such “missing” precondition to the list of suggestions
to output. Lines 10 to 21 produce additional suggestions (if
necessary) up to an arbitrary threshold of ten suggestions.

238

Algorithm 2: Natural Language Processing
Inputs : sentence: a sentence in restricted natural

language
Outputs: condition : a condition that represents sentence

1 removeContractions(sentence)
2 for each word in sentence do
3 taggedWord← tagPenTreebank(word)
4 if taggedWord is a proper noun then
5 entity← newEntity(word,Character)
6 condition.entities← condition.entities⊕ entity
7 else if taggedWord is a singular or plural noun then
8 entity← newEntity(word, Item)
9 condition.entities← condition.entities⊕ entity

10 parseTree←
getGrammaticalStructure(lexicallyParse(sentence))

11 if parseTree contains negation then
12 condition.value← false
13 else
14 condition.value← true

15 if parseTree.root is part of a nominal subject clause and a
direct object clause or parseTree.root is part of a passive
auxillary or a copula then

16 condition.name← parseTree.root
17 else
18 condition.name← unknown

First, lines 10 to 14 gather all of the conditions that appear
in the actions of the Action Library into a list of possible
suggestions. If the canvas represents an initial state, the ef-
fects of the actions are excluded, because an effect added to
the initial state does not allow for any more possible actions.
Next, lines 15 to 21 iterate through all potential permutations
of each possible suggestion, given the entities in the Proto-
type Outline. Until the threshold is met, lines 20 and 21 will
add possible suggestion permutations to the suggestions list,
provided that neither the candidate condition nor its negation
are already in the canvas.

4.2 Natural Language Processing
Algorithm 2 shows how our tool parses an authored sentence
into a condition; conditions are the main building blocks of
goals, actions, effects, and the initial state. To explain the
algorithm, we will use the input sentence “Sam didn’t steal
cookies from John” as a running example. To start, line 1 re-
moves all detected contractions (e.g., “didn’t” becomes “did
not”). Lines 2 to 9 examine each word in the sentence to in-
fer what entities should be in the output condition. To do
so, line 3 tags each word using the Penn Treebank nota-
tion (Marcus, Marcinkiewicz, and Santorini 1993):

(Sam NNP) (did VBD) (not RB) (steal VB)

(cookies NNS) (from IN) (John NNP).

Based on those tags, proper nouns (NNP) become Charac-
ters in the output condition (lines 5 and 6), while singular
and plural nouns (NNS) become Items (lines 8 and 9). Sam
and John become characters, and cookies becomes an item.

Lines 10 to 18 use the structure of the sentence to infer
what the name of the output condition should be. Line 10
parses the sentence using a lexicalized parser and produces

a parse tree which is then used to process the grammatical
structure of the sentence:
[nsubj(steal-4, Sam-1), aux(steal-4, did-2),

neg(steal-4, not-3),root(ROOT-0, steal-4),

dobj(steal-4, cookies-5), case(John-7, from-6),

nmod:from(steal-4, John-7)].

If the parse tree contains a negation (neg), then the con-
dition’s value gets set as false; otherwise, it gets sets as
true (lines 11 to 14). If the root word of the parse tree
is part of either (i) both a nominal subject clause (nsubj)
and a direct object clause (dobj), or (ii) a passive auxil-
liary (auxpass) or copula (cop), then the name of the out-
put condition is set as the root word (lines 15 to 16). Oth-
erwise, the name is set as unknown (line 18). Our exam-
ple would then be a condition that the AI planner could
use: steal(sam, cookies, john) = false, with the template
text: “Sam didn’t steal cookies from John”.

If the algorithm sets the condition’s name as unknown, we
allow the author to choose what the condition’s name should
be. Once a condition name has been set, the tool then saves
that information for future use. Therefore, if an author writes
a new sentence that involves the same condition, lines 10
to 18 of Algorithm 2 can be skipped.

To manage the scope of this project, the natural language
that authors are able to write with is restricted in the fol-
lowing ways. (i) Conditions that refer to the same concept
must always be written using the same word. For example,
if an author has stated that “John has gold”, and then wants
to state that someone else does not have gold, they must use
“not has” instead of “not have” (e.g., “Robin does not has
gold”). (ii) Sentences can not contain more than one con-
dition at a time, nor use pronouns; sentences such as “John
stole gold from Robin and buried it”, would need to be split
into two different sentences to be parsed properly. A fu-
ture system could integrate more complex NLP so that more
complicated sentences could be parsed.

4.3 Initial State Editor
Figure 2 shows a screenshot of the Initial State Editor, which
has two different areas. The area on the left is a text field
where an author can write sentences about the initial state
of any abstract entities that are important in their outline.
These sentences describe conditions that must be true at the
beginning of every story that is generated from the current
outline. The area on the right is the suggestion box, which
displays sentences generated by the suggestion generator;

Figure 2: A screenshot of the Initial State Editor.

239

Author
Conditions

NLP

Processed
Conditions

Entity
Library

Proto
Outline

Action
Libary

Suggestion
Generator

Suggested
Conditions

Accepted
Suggested conditions

Valid Conditions

Initial State
Canvas

Figure 3: A high level overview of the Initial State Editor.

the author can accept any suggestion by double-clicking on
it. Both areas together comprise the initial state canvas.

Figure 3 shows how the Initial State Editor connects to the
other parts of our tool. An author writes sentences, and each
sentence is processed by our Natural Language Processing
system to produce a new condition (Section 4.2). For each
condition produced, the abstract entities that it describes are
stored in an entity library (a database of all the entities in
the outline), and the condition itself is sent to the initial
state canvas. The suggestion generator sees the conditions in
the canvas and generates suggested sentences that the author
can choose from (Section 4.1). The author can also continue
writing new sentences. When the author finishes setting up
the initial state, both the authored conditions and the author-
accepted, suggested conditions are sent into the Prototype
Outline as its initial state. The tool then automatically gen-
erates inequality relations for all entities of the same type,
under the simplifying assumption that two abstract entities
(roles) with different names can never be filled by the same
entity in the story world (Thue et al. 2016).

4.4 Action Editor
Figure 4 shows the Action Editor, where authors can see
possible actions and create their own. Actions are based on
planning operators; they have preconditions that need to be
met so that an action can be performed, and effects that then
change the world. When an author wants to create a new ac-
tion, they first provide a name for the action (e.g., “steal”
in Figure 4). They then write the preconditions and effects
as sentences (using any abstract entities that they wish), and
these sentences are then parsed into conditions by our Natu-
ral Language Processor. We convert conditions to effects by
using the condition’s Boolean value to determine whether
the effect should be added (value: true), or removed (false).

In general, story actions should be more general than what
Figure 4 seems to show; it should be generally possible for

Figure 4: The steal action shown in the Action Editor.

one character to steal an item from another, so long as the
specified preconditions hold for whichever entities are in-
volved. To recover the general version of each action, our
tool automatically replaces each named entity in an authored
action with typed placeholder entities. For example, “John”
becomes “Character 1”, “Robin” becomes “Character 2”,
and “gold” becomes “Item 1”. It also adds inequality precon-
ditions among placeholders of the same type (e.g., between
“Character 1” and “Character 2”), under the assumption that
different placeholders should be filled by different entities
when the action is instantiated. It also adds an effect that
states that the action happened with these entities, which is
used for hard constraints as we explain in Section 4.5.

4.5 Goal Editor
Figure 5 shows the Goal Editor, where an author can define
what they want to have happen in the story in two ways:
by partially ordering a sequence of goals (rectangles in the
figure), and by placing hard constraints directly on story ac-
tions (ellipses in the figure).

Figure 5: A potential plan shown by the Goal Editor. Ellipses
are actions and rectangles are goals. The steal action being
green shows that the action is required (a hard constraint).

The author can set up as many goals as they want to have
met during the story, and they can connect the goals with ar-
rows to indicate the order in which they should become true
in every story that is generated from the outline. Goals are
authored similarly to initial state conditions: by writing sen-
tences. The primary difference is that each goal sentence de-
scribes a condition that must become true in every generated
story at some point after it begins. The Suggestion Genera-

240

tor produces suggestions while goals are authored, using a
screen similar to the Initial State Editor.

Hard constraints allow an author to state that a certain
instance of an action (i.e., with particular entities filling
its placeholders) should always happen in every possible
story, or should never happen in any story. To place con-
straints on story actions, the author must first ask the Sug-
gestion Generator to suggest a plan of actions that meets the
goals that are currently on the canvas (via the “Find New
Plan” button in Figure 5). To generate this plan, the Sug-
gestion Generator uses an AI Planner (Guðmundsson 2017;
Thue et al. 2017). It analyzes the resulting actions to deter-
mine which actions satisfy which goals. It then places an
ellipse on the editor’s canvas for each action, and connects
each action to each goal that it satisfies with an arrow from
the action’s ellipse to the goal’s rectangle.

Technically, we implemented hard constraints by auto-
matically generating an extra effect for every action called
internalActionHappened. This effect includes all the enti-
ties in the action. It gets added to the initial state as a false
condition for all possible permutations of entities from the
Prototype Outline. When an author sets a hard constraint, a
corresponding internalActionHappened condition is created
inserted into a final goal for the AI planner, with its value
being true/false for the action always/never happening.

Figure 6 shows a schematic diagram of the Goal Editor.
As an example of how the Goal Editor might be used, con-
sider an outline with an initial state such that John has gold
and Robin is jailed. Suppose that the author wants Robin
to somehow get free from jail and then steal the gold from
John. One way to do so would be to have two goals set up
in order. The first goal could contain the condition Robin
is not jailed, and the second goal could contain the con-
dition Robin has gold. For convenience, authors can name
each goal; they might choose Robin freed and Robin steals
gold, respectively (the rectangles in Figure 5). Suppose that
there are two actions that could lead to each of these goals.
For the first goal, John could set Robin free or Robin could
break out of jail. For the second goal, John could give Robin
the gold, or Robin could steal the gold from John.

Now the author can run the planner for their goals. Sup-
pose that the output plan is: John sets Robin free and then
John gives Robin the gold. This is a perfectly acceptable
story, but not close enough to what the author wanted (Robin
did not steal the gold). There are two ways that an author
could mend this. One is to change the goals, adding Robin
stole gold from John as a goal to ensure that the give action
is not possible. Another way is to add a hard constraint by
selecting the action John gives Robin the gold in the canvas
and stating that it should never occur. In both cases, clicking
“Find New Plan” would yield a desired result: either John
sets Robin free and then Robin steals the gold from John, or
Robin breaks free and then Robin steals the gold from John.

5 Discussion and Future Work
We have created a system that supports authoring in a re-
stricted natural language and assists authors with creating a
set of possible stories. We believe this will help to ease the
authorial burden for creating interactive stories, and we have

Author Suggestion
Generator

Constraints

Goals /
Goal conditions

AI Planner
Find

new plan
Suggested

Goal
conditions

Suggested
Actions

Action
Libary

Possible story

Proto
OutlineValid Goals

and Constraints

NLP

Processed
Goal conditions

Goal
Canvas

Figure 6: A high level overview of the Goal Editor.

shown how the modules of the authoring tool interact with
one another to assist with the authoring process.

There are some limitations to our approach. Although the
natural language processing seems reasonably capable, it
can only understand very simple relations. While it is possi-
ble for an author to resolve many misunderstandings using
a temporary, Wizard-of-Oz interface, there are some words
like locations that our parser simply does not handle well.
It would be helpful to determine what relations the parser
should understand easily (e.g., by working with potential
authors). We discussed other limitations related to NLP in
Section 4.2. Although our tool aims to ease the authoring
burden, an author must still set up the necessary elements of
an outline as well as a library of actions.

Other avenues of future work include extending the Sug-
gestion Generator to allow an author to add a score such as
interestingness to the actions that come out of the planner.
The Suggestion Generator could then use plans with higher
interestingness to generate its suggestions. Mimisbrunnur is
currently “raw”; it is a research tool for creating stories for a
specific storytelling system. To make it ready for public use,
it would need more generality and further improvements. An
evaluation of our tool is currently underway using the Cre-
ativity Support Index (CSI) (Cherry and Latulipe 2014), a
psychometric survey designed for evaluating a tool’s ability
to assist a user’s creative work.

6 Conclusion
We have presented our work toward easing the authorial bur-
den of generative, interactive storytelling. Our solution has
extended prior work by allowing authors to create story out-
lines using a restricted natural language and with assistance
from an AI agent. Our authoring tool puts the author and
the AI agent into a mixed-initiative context, where the agent
suggests ideas for initial constraints and goal constraints
and visualizes possible stories that could result from the au-
thored outline. By using our tool, authors gain actionable
insight into how the content they author will manifest as a
set of generated stories.

241

References
Cherry, E., and Latulipe, C. 2014. Quantifying the cre-
ativity support of digital tools through the creativity support
index. ACM Transactions on Computer-Human Interaction
(TOCHI) 21(4):21.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4):189–208.
Guðmundsson, T. T. 2017. Flexible authoring using
GOLOG planning in interactive storytelling. Master’s dis-
sertation, School of Computer Science, Reykjavik Univer-
sity.
Hayton, T.; Porteous, J.; Ferreira, J.; Lindsay, A.; and Read,
J. 2017. Storyframer: From input stories to output planning
models. In ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling, 1–9. ICAPS.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 9(1):1.
Kriegel, M., and Aylett, R. 2010. Crowd-sourced AI author-
ing with ENIGMA. In Aylett, R.; Lim, M. Y.; Louchart, S.;
Petta, P.; and Riedl, M., eds., Interactive Storytelling, 275–
278. Springer Berlin Heidelberg.
Kriegel, M.; Aylett, R.; Dias, J.; and Paiva, A. 2007. An
authoring tool for an emergent narrative storytelling system.
In AAAI Fall Symposium on Intelligent Narrative Technolo-
gies, 55–62. AAAI Press.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Proceedings of the 8th International Conference on Founda-
tions of Digital Games, 213–220. Society for the Advance-
ment of the Science of Digital Games.
Louchart, S.; Swartjes, I.; Kriegel, M.; and Aylett, R. 2008.
Purposeful authoring for emergent narrative. In Spierling,
U., and Szilas, N., eds., Interactive Storytelling, 273–284.
Springer Berlin Heidelberg.
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S. J.; and McClosky, D. 2014. The Stanford CoreNLP nat-
ural language processing toolkit. In Association for Compu-
tational Linguistics: System Demonstrations, 55–60. ACL.
Marcus, M. P.; Marcinkiewicz, M. A.; and Santorini, B.
1993. Building a large annotated corpus of english: The
penn treebank. Computational linguistics 19(2):313–330.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. Game Develop-
ers Conference, Game Design track.
Dontnod Entertainment. 2015. Life Is Strange. https://www.
lifeisstrange.com/.
Telltale Games. 2013. The Wolf Among Us. https://telltale
.com/series/the-wolf-among-us/.
Medler, B., and Magerko, B. 2006. Scribe: A tool for author-
ing event driven interactive drama. In Göbel, S.; Malkewitz,
R.; and Iurgel, I., eds., Technologies for Interactive Digital
Storytelling and Entertainment, 139–150. Springer Berlin
Heidelberg.

Roemmele, M., and Gordon, A. S. 2015. Creative help: A
story writing assistant. In Schoenau-Fog, H.; Bruni, L. E.;
Louchart, S.; and Baceviciute, S., eds., Interactive Story-
telling, 81–92. Springer International Publishing.
Spierling, U., and Szilas, N. 2009. Authoring issues be-
yond tools. In Iurgel, I. A.; Zagalo, N.; and Petta, P., eds.,
Interactive Storytelling, 50–61. Springer Berlin Heidelberg.
Stefnisson, I., and Thue, D. 2017. Authoring tools should be
mixed-initiative systems. In Proceedings of the ICIDS 2017
Workshop on Authoring for Interactive Storytelling. Online:
https://narrativeandplay.org/ais/proceedings.html.
Swanson, R., and Gordon, A. S. 2008. Say anything: A mas-
sively collaborative open domain story writing companion.
In Spierling, U., and Szilas, N., eds., Interactive Storytelling,
32–40. Springer Berlin Heidelberg.
Swanson, R., and Gordon, A. S. 2012. Say anything: Using
textual case-based reasoning to enable open-domain inter-
active storytelling. ACM Transactions on Interactive Intelli-
gent Systems (TiiS) 2(3):16.
Thomas, J. M., and Young, R. M. 2006. Author in the loop:
Using mixed-initiative planning to improve interactive nar-
rative. In Proceedings of the ICAPS-06 Workshop on Pref-
erences And Soft Constraints for Planning, 21–30. ICAPS.
Thomas, J. M. 2006. Collaborative authoring of plan-based
interactive narrative. In Proceedings of the ICAPS-06 Doc-
torial Consortium, 127–130. ICAPS.
Thue, D.; Schiffel, S.; Árnason, R. A.; Stefnisson, I. S.; and
Steinarsson, B. 2016. Delayed roles with authorable con-
tinuity in plan-based interactive storytelling. In Nack, F.,
and Gordon, A. S., eds., Interactive Storytelling, 258–269.
Springer International Publishing.
Thue, D.; Schiffel, S.; Guðmundsson, T. Þ.; Kristjánsson,
G. F.; Eiríksson, K.; and Björnsson, M. V. 2017. Open
world story generation for increased expressive range. In
Nunes, N.; Oakley, I.; and Nisi, V., eds., Interactive Story-
telling, 313–316. Springer International Publishing.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of the Conference of the
North American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology, 252–
259. ACL.
Walker, M. A.; Grant, R.; Sawyer, J.; Lin, G. I.; Wardrip-
Fruin, N.; and Buell, M. 2011. Perceived or not perceived:
Film character models for expressive NLG. In Si, M.; Thue,
D.; André, E.; Lester, J. C.; Tanenbaum, J.; and Zammitto,
V., eds., Interactive Storytelling, 109–121. Springer Berlin
Heidelberg.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147–161.

242

