
A Hybrid Approach to Planning and Execution
in Dynamic Environments Through

Hierarchical Task Networks and Behavior Trees
Xenija Neufeld

Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany,
Crytek GmbH, Frankfurt, Germany

Sanaz Mostaghim
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany

Sandy Brand
Crytek GmbH

Frankfurt, Germany

Abstract

Intelligent autonomous agents that are acting in dynamic en-
vironments in real-time are often required to follow long-term
strategies while also remaining reactive and being able to act
deliberately. In order to create intelligent behaviors for video
game characters, there are two common approaches – plan-
ners are used for long-term strategical planning, whereas Be-
havior Trees allow for reactive acting. Although both method-
ologies have their advantages, when used on their own, they
fail to fully achieve both requirements described above. In
this work, we propose a hybrid approach combining a Hier-
archical Task Network planner for high-level planning while
delegating low-level decision making and acting to Behavior
Trees. Furthermore, we compare this approach with a pure
planner in a multi-agent environment.

1 Introduction
Following long-term strategies while acting deliberately is
an important requirement for autonomous agents that are
acting in real-time in dynamic environments. Such environ-
ments can be found in the area of robotics, simulations or
video games. There are two common groups of approaches
that are used for the creation of intelligent behaviors of video
game characters – planners and Behavior Trees.

Planners such as STRIPS (Stanford Research Institute
Problem Solver) (Fikes and Nilsson 1971), a modified ver-
sion of it – GOAP (Goal Oriented Action Planner) (Orkin
2006) – or the HTN (Hierarchical Task Network) plan-
ner (Ghallab, Nau, and Traverso 2004, Chapter 11.5) al-
low for strategical decision making and long-term planning.
They are used in multiple commercial video games (Neufeld
et al. 2017) as well as in some academic game research en-
vironments and benchmarks (Menif, Jacopin, and Cazenave
2014; Vassos and Papakonstantinou ; Soemers and Winands
2016). On the other hand, Behavior Trees are still used in the
majority of video games as richer extensions of Finite State
Machines (Rabin 2009). Constantly monitoring the environ-
ment, they allow for reactive decision making and acting.

However, both types of approaches have their disadvan-
tages and, when used on their own, fail to stay reactive while
following a long-term goal. Planners are good at the strate-
gic level but do not incorporate reactive behavior. If a created

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plan fails during execution (for example due to unexpected
changes in the environment), a new plan needs to be cre-
ated. In games, such changes are very likely to happen due
to unpredictable player behavior. This usually leads to a high
re-planning frequency and only short plans (Jacopin 2014;
Nau and Champandard 2012). Behavior Trees, in contrast,
can easily adapt the agent’s behavior to changes. However,
they do not take previous or future game states into consid-
eration and thus do not allow for long-term strategies.

Staying reactive while following a high-level goal be-
comes an even bigger problem if coordination of multiple
agents that follow a joint goal is required. As already pointed
out in Palma et al. (2011), especially when a group of agents
is controlled through a planner on a strategical level and sin-
gle agents follow their individual plans on a tactical level
without adjusting their actions to unexpected changes, one
of the following problems will arise: either 1) a low-level
action will continue to be executed as long as its plan pre-
conditions hold, even if some events in the world suggests
that the action should be changed or 2) if the action’s pre-
conditions become invalidated, the whole plan fails and a
new plan needs to be created even though the higher levels
of the plan might still be valid.

In this work, we propose a hybrid approach combining an
HTN planner (which is responsible for the coordination of
multiple agents) with Behavior Trees. We assume that the
lower levels of an HTN – which represent actions of single
agents – are more likely to fail due to small changes in the
environment, however the overall plan might still be valid
and most likely require only minimal changes. For example,
in a game, the preconditions for a coordinated group attack
might still be valid but the path of a single agent might be
blocked. Taking an alternative path for the agent would not
invalidate the group plan. However, when using a pure plan-
ner approach, re-planning would be required at this point in
order to find a new solution to the problem.

Since such failures can only be recognized during execu-
tion, we propose using Behavior Trees in order to observe
the environment, make decisions at run-time and execute
lower-level tasks of an HTN. In this case, the planner cre-
ates a high-level plan, without going into details of how the
lower-level tasks will be executed. Using preconditions and
effects of higher hierarchy levels (described in section 3.1),
the planner assumes that the low-level tasks will succeed

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

201

during execution. In order to achieve a flawless execution
of the overall plan, the responsible Behavior Trees are cre-
ated in such a manner, that they achieve the effects of the
plan task that they represent under the given preconditions.
Only the failure of all Behavior Tree branches is propagated
as a task failure to the planner triggering a re-planning.

The main contribution of this work is a comparison of the
robustness of HTN plans that are executed without run-time
decision making and adaptation to environmental changes,
and the novel hybrid approach which is able to adapt low-
level plan steps. The rest of the paper is structured as fol-
lows: in section 2, we describe the most relevant work so far.
Section 3 summarizes the two approaches used in this work:
HTN planners and Behavior Trees. Afterwards, we describe
the proposed hybrid solution in section 4 which follows by
a description of our experimental setup and and its results in
section 5. Finally, we conclude the paper with some outline
for future work in section 6.

2 Related Work
Creating behaviors for agents in dynamic environments is
a very complex task. Dini et al. describe important aspects
which are to be considered when designing a robust plan-
ning and execution system for virtual worlds (Dini et al.
2006). They consider a) plan recovery as a major motiva-
tion for putting a monitoring system on top of a planner.
Further problems are b) uncertainty, c) dynamics of the en-
vironments, d) distributed plans and teamwork, e) mainte-
nance of the environment data, f) authorability of the plan-
ning domain and g) constraints on the plan content (Dini et
al. 2006). They describe contingency planning (Dearden et
al. 2003) as a possible approach to deal with a broken plan
if there is a way to anticipate where a plan might fail. In that
sense, our approach is similar to contingency planning. The
major difference is, however, that in contingency planning
a plan for every possible contingency is created offline. In
our case, possible solutions to sub-tasks (parts of the plan)
are encoded as Behavior Trees which can be re-used across
multiple situations and the decision on which actions to exe-
cute is made at runtime resulting in a more flexible behavior
and a lower usage of runtime memory.

Two works that are most related to our approach are de-
scribed in Weber et al. (2010, 2011) and Palma et al. (2011).
In both approaches, case-based planning is used to select
high-level goals in a real-time strategy (RTS) game and Be-
havior Trees are used for low-level decision-making. The
case bases contain samples of recorded games, played by
experts. In Weber et al. (2010, 2011), after selecting a goal
from the case base, multiple manager systems make high-
level decisions such as ’which buildings to build next’ or
’where to place them’. Afterwards, a so-called Active Be-
havior Tree is created at run-time. In Palma et al. (2011), it
is possible that multiple Behavior Trees represent the same
kind of a tactical action. The selection of a particular Behav-
ior Tree is then done measuring the similarity of the current
game state and the states provided by each of the trees.

While inspired by the idea of using a planner on higher
levels and Behavior Trees on the lower levels, there are dif-
ferences between these two approaches and our work. First,

we argue that using an HTN planner instead of a case base
might provide better authorability and maintainability of the
system which is very important for complex game environ-
ments. Second, as pointed out in Palma et al. (2011), the
major disadvantage of case-based planning lies in the size
of the case base that is required in order to cover all pos-
sible situations. A planning domain that is hand-crafted by
a designer with expert knowledge of the domain might be
more flexible and extensible. Third, instead of creating one
shared Behavior Tree for all agents at runtime (as in Weber
et al. (2010, 2011)), we use one of the predefined Behavior
Trees for each agent according to the high-level task (similar
to Palma et al. (2011)). This allows us to re-use predefined
trees and maintain them in accordance to the plan tasks. Fur-
thermore, single agents can independently switch between
Behavior Trees while proceeding with their own plans with-
out affecting each other’s behavior.

Another approach is used in the area of
robotics (Colledanchise, Almeida, and Ögren 2016). Here,
the Hybrid Backward-Forward (HBF) algorithm (Garrett,
Lozano-Pérez, and Kaelbling 2015) is used to create
reachability graphs with possible action sequences (plans)
that lead to a given goal which are then used to create
Behavior Trees. Even though this approach allows for
reactive behavior while following a high-level plan, it might
create very large and unmaintainable Behavior Trees for
long-term goals. In contrast to the graphs created by the
HBF algorithm, the hierarchical structure of an HTN is more
intuitive and similar to human reasoning (see section 3.1).
Furthermore, because of their hierarchical structure, HTNs
allow for distribution of tasks and coordination between
multiple agents.

Another work that combines elements of Behavior Trees
and planners is described in Hilburn (2014). Here, a planner
makes uses of typical Behavior Tree elements such as Selec-
tor or Sequence Nodes simulating possible plan outcomes.
Although this approach leads to an extended decision mak-
ing in the planning phase, it is unclear how it impacts the
execution of the created plans.

Further works that address the topic of (multi-agent) plan-
ning under uncertainty include epistemic planning (Engesser
et al. 2015; Muise et al. 2015; Bolander 2017) which focuses
on the notion of beliefs about the world state. The planner
tries to reason about parts of the world state that are not
known to it using an epistemic model of the world. Our ap-
proach is related to epistemic planning in the sense that it
replaces epistemic notions that are created during the plan-
ning phase by decision making through Behavior Trees dur-
ing the execution.

3 Background
3.1 HTN Planner
A Hierarchical Task Network planner generates plans by
decomposing a high-level compound task that needs to be
accomplished by an agent into a sequence of further com-
pound or primitive sub-tasks. Thus, the tasks build a hierar-
chical network. The divide-and-conquer-decomposition of
tasks resembles much more human reasoning than classical

202

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)
IsInRoom(agent_A, room_A)

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)

IsReachable(door_A, agent_A)
IsNextToDoor(agent_A, door_A)IsReachable(door_A, agent_A)

Facts

Simulated
World State

S

Method Selection
(OR branch)

Decomposition
(AND branch)

Preconditions,
Effects

Method

Primitive Task

Compound Task

S 3S 2S 1

S 0
precondition not checked

precondition fails

Preconditions:
IsNextToDoor(agent_A, door_A)

IsDoorOpen(door_A)
Effects:

IsInRoom(agent_A, room_A)

StepIn(agent_A, door_A)

Preconditions:
IsNextToDoor(agent_A, door_A)

!(IsDoorOpen(door_A))
Effects:

IsDoorOpen(door_A)

OpenDoor(agent_A, door_A)

Preconditions:
(IsDoorOpen(door_A)

StepInDirectly(agent_A, room_A, door_A)

Preconditions:
!(isDoorOpen(door_A))

OpenAndStepIn(agent_A, room_A, door_A)

Preconditions:
IsReachable(door_A, agent_A)

Effects:
IsNextToDoor(agent_A, door_A)

GoToDoor(agent_A, room_A, door_A) StepInThroughDoor
(agent_A, room_A, door_A)

Preconditions:
IsReachable(gate_A, agent_A)

IsAgentFree(agent_B)
NotEqual(agent_A, agent_B)

Preconditions:
IsReachable(door_A, agent_A)

EnterThroughGate(agent_A, gate_A)EnterThroughDoor(agent_A, door_A)

EnterRoom(agent_A, room_A)

Decomposition

Decomposition

Figure 1: HTN for the Enter a Room example.

planning techniques, where a plan is created by searching a
space of world states.

A compound task might be decomposed in multiple dif-
ferent ways through different methods. For example in or-
der to enter a room, an agent might use a door or a gate
as shown in Figure 1. In order to select a decomposition
method, the planner checks the preconditions of a compound
task’s methods and applies a valid method. For example, the
method EnterThroughDoor requires the door to be reach-
able by the agent. Entering through a door decomposes into
the primitive task GoToDoor and another compound task
StepInThroughDoor. In a depth-first manner, the decompo-
sition process continues until all compound tasks are decom-
posed. The resulting plan is a sequence of primitive tasks. If
a decomposition fails, the plan created by this decomposi-
tion is reverted, the failure is back-propagated and the next
method is evaluated.

In order to be able to plan further into the future, the
planner needs to reason about changes in the world that are
caused by its plan steps. Therefore, it holds an inner repre-
sentation of the world state which is described by so-called
facts. For example, the fact IsDoorOpen(door A) in Fig-
ure 1 is true if the door instance door A is open. Changes
in the world state are described by the effects of primitive
tasks which add or delete facts to or from the planner’s in-
ner world representation. Similarly to methods, primitive
tasks have preconditions under which they are applicable
and which are true if corresponding facts exist in the plan-
ner’s current world state. For example, the primitive task
StepIn(agent A, door A) in our example is only applicable
after the task OpenDoor(agent A, door A) adds the effect
IsDoorOpen(door A) to the simulated world state S2.

3.2 Behavior Trees
Since the representation of AI characters in the game Halo
2 (Isla 2005), Behavior Trees are widely used in commercial
video games. In contrast to HTNs, Behavior Trees are not
only responsible for decision-making but also for monitor-
ing and the execution of behaviors. Starting with a root node,
a Behavior Tree is built from the following nodes shown in

StepIn

IsGateOpenIsReachable(gate_A)

GoToGateIsDoorOpen StepInOpenDoor

IsReachable(door_A) GoToDoor

Count Limit =2

StepIn

Action

!IsDoorOpen

?

?

Parallel-Node

Selector-Node

Sequence-Node

Root-Node

?

Condition

Decorator

Figure 2: Behavior Tree for the Enter a Room example.

Figure 2: sequence, parallel, selector (also known as pri-
ority or fall-back) that define how sub-behaviors should be
executed. Additionally, the so-called decorator nodes can be
used to extend sub-trees without modifying single behaviors.
Decorators are for example loop, counter or timer nodes.
Furthermore, conditions can be added for the selection of
certain branches of a tree. Leaves of a Behavior Tree repre-
sent concrete actions that an agent can execute. More details
on Behavior Trees can be found in Ogren (2012).

The execution of a Behavior Tree starts at the root node.
In each execution cycle (so-called tick), the tree is evalu-
ated and open leaf nodes are selected for execution. Due to
the parallel node, multiple nodes can run simultaneously. In
each tick, a leaf node returns its status to its parent node. The
status can be running (as long as a behavior is executed),
success or failure. Once a node succeeds or fails, its par-
ent node reacts accordingly, either selecting another child or
propagating the status further upwards. Since the conditions
are constantly checked and instant switches between behav-
iors are possible, Behavior Trees lead to very reactive be-
haviors. Coming back to our previous example of entering a
room, in the first tick, the Behavior Tree in Figure 2 checks
the first branch of the selector node. This opens into a se-
quence node that checks the condition IsReachable(door A).
If the condition check succeeds, the GoToDoor action is ex-
ecuted in the next tick. In case the door is closed, a failure
is propagated back to the selector node which then tries to
execute its second branch. If the second branch fails twice in
a row (shown by the decorator node), the selector node and
thus the whole tree fails.

4 Hybrid Approach
In order to combine the advantages of an HTN planner and
Behavior Trees we propose replacing the lower levels of an
HTN by Behavior Trees with behaviors similar to the tasks
they replace. Although the purposes of HTN planners and
Behavior Trees are different, from their descriptions in pre-
vious sections, it becomes obvious that there are similari-
ties in the ways how a behavior is defined in each approach.
This allows for an easy conversion between the domains of
the two approaches. When a method is used to decompose a
compound task in an HTN, it results in a sequence of further
tasks. This corresponds to a sequence node in a Behavior

203

StepIn

IsGateOpenIsReachable(gate_A)

GoToGate
OpenGateGoToGateIsReachable(gate_A)

!IsDoorOpen OpenDoor StepIn IsDoorOpen StepIn

?

IsReachable(door_A) GoToDoor

Preconditions:
IsReachable(gate_A, agent_A)

IsAgentFree(agent_B)
NotEqual(agent_A, agent_B)

Preconditions:
IsReachable(door_A, agent_A)

Effects:
IsGateOpen(gate_A)

Preconditions:
IsReachable(door_A, agent_A)

OpenGate(agent_B, room_A) EnterThroughGate(agent_A, room_A)EnterThroughDoor(agent_A, room_A)

BT
EnterThroughGateBehavior(agent_A, room_A)OpenGateBehavior(agent_B, room_A)EnterThroughDoorBehavior(agent_A, room_A)

Preconditions:
IsReachable(gate_A, agent_A)

Effects:
IsInRoom(agent_A, room_A)

Preconditions:
IsReachable(door_A, agent_A)

Effects:
IsInRoom(agent_A, room_A)

EnterThroughGate(agent_A, gate_A)EnterThroughDoor(agent_A, door_A)

EnterRoom(agent_A, room_A)
HTN

Decomposition

Figure 3: Hybrid representation of the Enter a Room exam-
ple.

Tree. Being able to decompose a compound task by multiple
alternative methods allows to replace these alternatives by a
selector node in a Behavior Tree. Preconditions of methods
and primitive tasks can be replaced by condition nodes.

The major difference between the two domains are effects
of primitive tasks. These are required for a planner in order
to be able to simulate changes in the world and plan further
in advance. However, since a Behavior Tree does not plan
in advance but only selects a behavior for the current situa-
tion, it can detect changes through direct observations of the
environment and does not require predefined effects. Thus,
effects of an HTN can only be represented implicitly in a Be-
havior Tree, manually ensuring that the predicted outcome
of a behavior defined in a Behavior Tree corresponds to the
predefined effects of an HTN task.

Returning to our example of entering a room from sec-
tion 3, we can leave the high-level decision of whether an
agent should enter a room through a door or a gate to the
planner since this decision can be part of some high-level
strategy. However, the decisions on lower levels of the en-
tering tasks can be passed to Behavior Trees along with the
actual execution of the tasks. As shown in Figure 3, the
tasks EnterThroughDoor, OpenGate and EnterThroughGate
are now changed to primitive tasks. Even though the HTN
planner does not know the details of the execution of these
tasks, it knows through their effects that after executing ei-
ther of the selected methods agent A will be in room A and
can continue planning with this information. On the other
side, the corresponding Behavior Trees are designed in such
a way that they can check certain conditions (such as Is-
DoorOpen(door A)) at run-time and select appropriate ac-
tions that lead the agent into the room.

The planning and execution loop works as follows: the
planner creates a high-level plan assigning a sequence of
tasks to every agent. Each agent starts executing his first
task by running the corresponding Behavior Tree. While it
is running, the tree constantly checks whether the precondi-
tions defined by the planner still hold and thus if the high-

level plan is still valid. If the preconditions do not hold, the
tree aborts all running behaviors and reports a failure to the
planner. Additionally, it performs further checks through its
nodes and makes decisions at run-time. In case the tree fails
to execute the expected behavior (for example, the agent
cannot find a path to the door), it also returns a failure to
the planner and triggers a re-planning. Otherwise, once the
tree finishes the task, it returns a success and the agent can
proceed with the overall plan. If the preconditions for his
next task hold, it starts running a new Behavior Tree.

5 Experiments
5.1 Experiment Setup
In order to analytically compare the execution of plans gen-
erated by the hybrid approach and a pure HTN planner
(without Behavior Trees) we have created an experimental
game environment using the CryEngine1 game engine. We
have used the engine’s Behavior Trees and an adapted ver-
sion of the open-source HTN planner derPlanner2 (Shafra-
nov and Champandard 2013). This planner is a total order
planner which means that it decomposes tasks in the same
order that they will be executed in later (Nau et al. 1999). In
our scenario, multiple hunters are controlled by a centralized
HTN planner. Their goal is to lure a zombie into a cage. The
zombie is not controlled by our approach. Instead, it uses a
simple Behavior Tree moving randomly within a room and
attacking any hunter whenever it sees him. The room can be
entered through multiple entrances, one of which is a co-op-
gate (which requires an additional agent to hold it open).
One cage entrance is inside the room so that the zombie
can be lured through it into the cage. This entrance can be
opened by a single agent and stays open until it is closed.
The exit of the cage leads outside of the room and is also a
co-op-gate. After luring the zombie into the cage, a hunter
has to (re-) enter the room and close the cage quickly before
the zombie can escape. Afterwards, the hunter can exit the
room and – if required – repeat the procedure in the next
room. An example of the experiment performed with the
pure planner approach is shown in the video3.

The described scenario is very dynamic due to the the ac-
tions of zombies and agents. It contains a certain degree of
uncertainty because a zombie’s actions are not deterministic.
Also, the time required by an agent to complete a task is not
known. Thus, even more uncertainty is added because, for
example, one agent might not open a gate for his teammate
in time. Furthermore the scenario requires a) multiple agents
(at least two of them in order to exit the cage and at most
three per room), b) coordination between agents, c) long-
term planning (entering the room, making zombies aware
and exiting it) and d) reactive behavior (reacting to zombies
and proceeding through the level). It is suitable for a com-
parison between the hybrid approach and pure HTNs. How-
ever due to points b and c, which are not possible to achieve
purely by Behavior Trees (without any coordination mech-

1CryEngine: www.cryengine.com
2derPlanner: www.github.com/alexshafranov/derplanner
3Experiment videos: https://bit.ly/2MW1OdY

204

anism on a higher level), we do not test the given scenario
with pure Behavior Trees.

The domains for the given scenario are defined as 1) a
pure HTN where tasks are refined up to the lowest hierarchy
level as shown in Figure 1 and 2) a partial HTN describ-
ing the higher-levels of the hierarchy and multiple Behavior
Trees describing lower-level tasks as shown in Figure 3.

Since a hunter can die after receiving a certain amount
of damage from a zombie, he should react fast once he has
the zombie’s attention. Taking this into account, the hunters’
goal is to lure each zombie in each room into a cage with-
out dying. If at least one hunter dies, the execution is re-
garded as a failure. As soon as all zombies are in cages,
the experiment is regarded as a success. In order to measure
the effects of the reactivity added through Behavior Trees,
we measure the percentage of execution trials in which a
hunter died (failures). Additionally, we assume that the hy-
brid approach will be more flexible regarding small changes
in the world and thus will trigger re-planning less often than
the pure planner approach. For that reason, we measure the
number of plan failures that trigger re-planning until the goal
is reached. Here, we take into account only successful exper-
iments. Furthermore, we assume that by not being reactive,
the execution of the detailed HTN plan should take longer
compared to the hybrid approach. Therefore, we measure
the time required by the hunters to achieve the goal.

5.2 Results
The experiments for this work were performed with 1 to 3
rooms with each 1 zombie in it. Since the planning domain
is designed in such a way that clearing one room requires
at least 2 and at most 3 hunters, the experiments were per-
formed with 2 to 3 ∗ n hunters where n is the number of
rooms. This allowed us to examine the simultaneous execu-
tion of multiple hunters (for example with 3 rooms and 9
hunters) as well the successive execution of a high amount
of tasks by a few agents (for example with 3 rooms and 2
hunters). Each combination of rooms and hunters was first
executed 20 times with each approach in order to measure
the failure rate (hunters’ deaths). Afterwards, the experi-
ments were repeated until the amount of 20 successful ex-
ecutions was reached by each approach.

As described in the experiment setup, we have mea-
sured the percentage of experiment runs that failed due to
a hunter’s death. The results in Figure 4 show that the per-
centage of failed trials is, in overall, lower for the hybrid
approach. We have seen that the agents using the hybrid ap-
proach were indeed more reactive. For example, instead of
running towards the position that the planner assumed the
zombie to be in (as can be seen in the videos), the hunters
with Behavior Trees ran towards the zombie’s actual posi-
tion only until the zombie had visual contact with them. That
way, they started moving towards the cage much earlier hav-
ing more time to open the cage gate before receiving the
first bit of damage. Nevertheless, they still got some dam-
age and especially in those experiments where only a few
hunters had to clear multiple rooms in a row the failure per-
centage was similar for both approaches. This is reflected in
the values for 2 and 3 hunters in Figures 4b and 4c. How-

ever, in cases where enough hunters were available to clear
multiple rooms simultaneously, the difference between the
approaches was significantly higher. For example when 2
hunters had to take care of only 1 room, they almost never
failed to catch the zombie (see Figure 4a and Figure 4b for
4 hunters and 2 rooms).

In the next step, we have measured the number of plan
failures that triggered a re-planning. Assuming that most
plan failures occur due to small changes in the world, we
supposed that plans should fail less often and only due to
severe changes when using Behavior Trees for the detection
of such low-level changes and reacting to them. Also, agents
with Behavior Trees should be more flexible and reach the
goal faster. Figure 6 shows that in almost all cases the time
needed by the hunters to reach the goal was shorter for those
using the hybrid approach. Similarly, as Figure 5 shows, the
number of plan failures was always higher for the agents that
used a planner only. During the experiments we could see
that, for example, agents with the hybrid approach were able
to change their behavior slightly by stepping aside or open-
ing a closed door, whereas agents without Behavior Trees
would trigger a new plan. The difference became more obvi-
ous as the number of agents grew, as we can see in Figure 5c.
This is because with a higher number of agents more coor-
dination on the higher hierarchy levels was required from
the planner where at the same time more disturbances on the
lower levels appeared. For example, the agents were more
likely to cross or block each other’s path and manipulate exit
objects. At this point, it is noteworthy that the experiments
were meant to show the differences between the two ap-
proaches for different setups. Thus, the differences between
the results of different number of hunters for one approach
are not relevant since they strongly depend on the domain.

6 Conclusions and Future Work
This work proposes a hybrid approach to planning and exe-
cution which allows for building long-term strategies while
staying reactive to changes in the environment. This is
achieved through a combination of a Hierarchical Task Net-
work planner for high-level planning and Behavior Trees for
low-level decision making and execution. The centralized
planner is able to create plans for multiple agents without
going into details of how the low-level tasks will be exe-
cuted. Every low-level task is encoded as a separate Behav-
ior Tree which decides how to execute the task while moni-
toring the preconditions given by the planner as well as fur-
ther changes in the environment at run-time.

The hybrid approach is tested in a video-game environ-
ment and compared against a pure HTN planner. Although
both approaches share the same high-level planning domain,
there are visible advantages when using the hybrid approach.
The behaviors executed with the hybrid approach are more
flexible and thus fail less often. Furthermore, agents using
the hybrid approach can reach their goals faster avoiding
some unnecessary actions.

The experiments performed in this work show that there
are many ways to further extend this work. One possibility is
to translate HTNs into Behavior Trees automatically. Alter-
natively, Behavior Trees that replace the lower levels of an

205

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each. (c) 3 rooms with 1 zombie each.

Figure 4: The percentage of failed execution trials which occurred due to a hunter’s death that occurred trying to catch 1,2 and
3 zombies by varying numbers of hunters using a pure HTN planner and the combination of an HTN planner with Behavior
Trees.

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each. (c) 3 rooms with 1 zombie each.

Figure 5: The average number of plan failures that triggered re-planning before the goal was reached. Measured with 1,2 and
3 zombies and a varying number of hunters using a pure HTN planner and the combination of an HTN planner with Behavior
Trees.

(a) 1 room with 1 zombie. (b) 2 rooms with 1 zombie each. (c) 3 rooms with 1 zombie each.

Figure 6: The average time in seconds required to reach the goal. Measured with 1,2 and 3 zombies and a varying number of
hunters using a pure HTN planner and the combination of an HTN planner with Behavior Trees.

HTN could be learned from scratch (similar to (Colledan-
chise, Parasuraman, and Ögren 2015)). This could be done,
for example, taking the preconditions and effects of higher-
level HTN tasks into account. Another important aspect to
look into is the extensibility of this approach to bigger search
spaces and higher numbers of agents, for example in an
RTS game. The setup used here was quite simple, so that
the depth of the HTN was shortened by the Behavior Trees
by approximately 3 levels (from a maximum depth of 7).
In more complex environments, the HTNs might be much
deeper. It is worth investigating the differences in the com-

putational time as well as behavioral changes when replac-
ing different levels of an HTN with Behavior Trees.

References
Bolander, T. 2017. A gentle introduction to epistemic
planning: The del approach. Theoretical Computer Science
243:1–22.
Colledanchise, M.; Almeida, D.; and Ögren, P. 2016. To-
wards blended reactive planning and acting using behavior
trees. arXiv preprint arXiv:1611.00230.
Colledanchise, M.; Parasuraman, R.; and Ögren, P. 2015.

206

Learning of behavior trees for autonomous agents. arXiv
preprint arXiv:1504.05811.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. E.;
and Washington, R. 2003. Incremental contingency plan-
ning. In Proceedings of the 13th International Conference
on Automated Planning and Scheduling workshop on Plan-
ning under Uncertainty and Incomplete Information, 38–47.
Dini, D. M.; Van Lent, M.; Carpenter, P.; and Iyer, K. 2006.
Building robust planning and execution systems for virtual
worlds. In Proceedings of the 2nd Artificial Intelligence and
Interactive Digital Entertainment Conference, 29–35.
Engesser, T.; Bolander, T.; Mattmüller, R.; and Nebel, B.
2015. Cooperative epistemic multi-agent planning with im-
plicit coordination. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling
3rd Workshop on Distributed and Multi-Agent Planning, 68–
76.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
volume 2, 189–208. Elsevier.
Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P. 2015.
Backward-forward search for manipulation planning. In In-
telligent Robots and Systems (IROS), 2015 IEEE/RSJ Inter-
national Conference on, 6366–6373. IEEE.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
Hilburn, D. 2014. Simulating behavior trees: A behavior
tree/planner hybrid approach. In Game AI Pro: Collected
Wisdom of Game AI Professionals, 99–112. CRC Press.
Isla, D. 2005. Managing complexity in the halo 2 AI system.
In Proceedings of the Game Developers Conference.
Jacopin, E. 2014. Game AI planning analytics: The case
of three first-person shooters. In Proceedings of the 10th
Artificial Intelligence and Interactive Digital Entertainment
Conference, 119–124.

Menif, A.; Jacopin, É.; and Cazenave, T. 2014. SHPE: HTN
planning for video games. In Computer Games. Springer.
119–132.
Muise, C. J.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2015. Planning over multi-
agent epistemic states: A classical planning approach. In
Proceedings of the 29th AAAI Conference on Artificial In-
telligence, 3327–3334.
Nau, D., and Champandard, A. 2012. Inside hierarchi-
cal task network planners. http://aigamedev.com/premium/
interview/htn-planners/.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of the 16th international joint conference on Artificial intel-
ligence, volume 2, 968–973. Morgan Kaufmann Publishers
Inc.
Neufeld, X.; Mostaghim, S.; Sancho-Pradel, D.; and Brand,
S. 2017. Building a planner: A survey of planning sys-
tems used in commercial video games. IEEE Transactions
on Games.

Ogren, P. 2012. Increasing modularity of UAV control sys-
tems using computer game behavior trees. In AIAA Guid-
ance, Navigation, and Control Conference, 4458.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. In
Proceedings of the Game Developers Conference.
Palma, R.; González-Calero, P. A.; Gómez-Martı́n, M. A.;
and Gómez-Martı́n, P. P. 2011. Extending case-based plan-
ning with behavior trees. In Proceedings of the 24th In-
ternational Florida Artificial Intelligence Research Society
Conference, 407 – 412.
Rabin, S. 2009. #define GAME AI. In Proceedings of the
Game Developers Conference.
Shafranov, A., and Champandard, A. 2013. Planning do-
mains and compiling htn to c++. http://aigamedev.com/
premium/interview/plan-compilation/.
Soemers, D. J., and Winands, M. H. 2016. Hierarchical
task network plan reuse for video games. In Proceedings
of the IEEE Conference on Computational Intelligence and
Games, 1–8. IEEE.
Vassos, S., and Papakonstantinou, M. The simpleFPS plan-
ning domain: A PDDL benchmark for proactive NPCs. In
Proceedings of the 7th Artificial Intelligence and Interactive
Digital Entertainment Conference Workshop on Intelligent
Narrative Technologies, 92 – 97.
Weber, B. G.; Mawhorter, P.; Mateas, M.; and Jhala, A.
2010. Reactive planning idioms for multi-scale game AI.
In Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 115–122. IEEE.
Weber, B. G.; Mateas, M.; and Jhala, A. 2011. Building
human-level AI for real-time strategy games. In Proceed-
ings of the AAAI Fall Symposium: Advances in Cognitive
Systems, volume 11, 329 – 336.

207

