Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

Talin: A Framework for Dynamic Tutorials
Based on the Skill Atoms Theory

Batu Aytemiz, Isaac Karth, Jesse Harder,
Adam M. Smith, Jim Whitehead
Design Reasoning Lab
University of California, Santa Cruz
{baytemiz,ikarth,jhharder,amsmith} @ucsc.edu, ejw @soe.ucsc.edu

Abstract

Most tutorials in video games do not consider the skill level
of the player when deciding what information to present. This
makes many tutorials either tedious for experienced play-
ers or not informative enough for players who are new to
the given genre. With Talin, implemented as an asset in the
Unity game engine, we make it possible to create a mastery
model of an individual player’s skill levels by operationaliz-
ing Dan Cook’s skill atom theory. We propose that using this
mastery model opens up a new design space when it comes
to designing tutorials. We show an example tutorial imple-
mentation with Talin assembled using only graphical compo-
nents provided by our framework, without the need of writing
any code. The dynamic tutorial implementation results in the
player receiving information only when they need it, when-
ever they need it. While the novice player is given all the
information they need to learn the system, the expert player
is not bogged down by tooltip pop-ups regarding mechanics
they have already mastered.

Introduction

The opening minutes of any video game, which often take
the form of a tutorial level, are extremely crucial. It is crit-
ical that the tutorial captures the attention of the player and
teaches them how read the game’s visual interface and use-
fully act in the game world. If the pace of this initial level
is either too slow or too fast the player loses interest: tutori-
als have a major impact on player progress for games with
unfamiliar mechanics, particularly when the tutorials are
context-sensitive. At the same time, tutorials can be detri-
mental in games where players are already familiar with the
genre (Andersen et al. 2012). Therefore, it is in the de-
signers’ interest to have tutorials that can provide context-
sensitive help when the player is unfamiliar with the game
but also completely disappear when the player is comfort-
able.

In this paper we introduce the Talin framework,! in the
form of an asset for the Unity game engine,” to help de-
signers implement adaptive tutorials without the need of any

Copyright (©) 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
Uhttps://github.com/batu/talin
“https://unity.com/

138

programming skills. Tutorials built with our framework con-
tinuously monitor evidence of player skills and act in the
game world to give targeted feedback just where needed. In
effect, they can bring some of the designer’s intelligence out
of the studio and apply it during play-time.

Not everyone requires an explanation of equivalent depth
when it comes to learning new game concepts — not ev-
ery player has identical gaming literacy. An experienced
player will complain if the game locks away the interesting
parts behind a series of simple tasks, such as camera control
lessons, whereas a person new to video games will feel lost
if not enough time is spent teaching the very basics. Rather
than binning players into coarse classes (e.g. newbie versus
expert) or projecting them onto a single axis of skill, Talin-
supported tutorials can distinguish players along many di-
mensions, supporting players with distinct constellations of
previous experience.

Meanwhile, in many video games, the tutorial is not inte-
grated into the whole experience but rather exists only in the
first few levels, or pops into view whenever a new mechanic
is introduced. This front-loaded structure makes it difficult
for players to remember the components of the game if they
ever take a break or if a friend who was just watching the
earlier interaction grabs the controls later on. When a player
returns to any game after a hiatus, the natural instinct is to
pick the game up from where they left off. In most cases this
means they will spend some time trying to remember how
to interact with the system, making very little progress. In
severe cases, they will have to go back and replay the tuto-
rial levels they already completed to bring themselves up to
speed. Neither of these circumstances are desirable. Talin-
supported tutorials can allow tutorial content to be sprin-
kled throughout a game’s level progression (or even baked
into the behavior of common level design elements) with the
knowledge that it will only be seen by players who need to
see it.

Even if the player does not take a break, it is difficult
to gauge the player’s understanding of the more compli-
cated concepts. The game designers have to expertly craft
their levels to ensure the desired progression is accurately
reflected in the player’s experience. In most cases, the sys-
tem has no explicit feedback acting as a model of a player’s
mastery over the skills, which makes it impossible to give
personalized help. The designers have to work with a one-

design-fits-all structure which inevitably loses some players
through the cracks.

The Talin system provides a solution to these problems
by offering a new way of designing tutorials and mak-
ing it seamless for any designer to implement. The system
achieves this by operationalizing Dan Cook’s skill atoms
theory to build a mastery model representing the player’s
current understanding of the game. The mastery model can
be queried to decide which information the player is lacking
at any given moment.

On the high level, the way the system tracks the user’s
skill mastery is as follows: The designer defines what skill
atoms needs to be tracked, for example attacking breakable
doors. The skill mastery for each skill is represented as a
scalar.® Then the designer adds a detector to the breakable
door object. The detector activates whenever the player is
detected by the detector, in this case, when the player is near
a breakable door. The detector will then decide how to adjust
the skill mastery value, either increasing it or decreasing it.
If the player is near a breakable door but they are not break-
ing the door, the skill mastery value will decay. If the player
attacks the breakable door, the skill will be considered ex-
ercised and the value will increase. The designer can decide
to react to the player based on the value of the skill mas-
tery value by activating predetermined hints. For example,
if the skill mastery value is below a threshold, the break-
able door might start shimmering as a form of a subtle hint.
If the value decays even further, a textual pop-up might ap-
pear reminding the button press for attacking. Through the
combination of skill atoms (keeping track of individual pro-
ficiencies), detectors (understanding when a skill is relevant)
and hints (the way the game responds) designers track and
respond to individual players.

We built the Talin framework as a Unity asset and focused
extensively on usability and expandability. Skill atoms, de-
tectors, and hints can be configured using the engine’s
graphical editor and placed into useful locations in the
2D/3D scenes of a game. We understand that, in most cases,
video game tutorials are designed and implemented by game
designers who are not proficient programmers. In order to
ensure the tool is accessible and easily introduced into the
workflow, we structured Talin to require no programming
expertise. We also ensured that the framework is easily ex-
tensible if a developer with expertise wants to use the system
for more specialized purposes (such as game-specific detec-
tor logic). Later in this paper, we walk through a no-code
implementation of dynamic tutorialization for the Unity-
provided 2D Game Kit* example game.

This paper operationalizes Daniel Cook’s skill atom the-
ory into a designer-friendly tool. With the Talin framework
we hope to streamline the process of making personalized
tutorials for game designers and developers alike. The ad-
dition of this type of adaptive tutorials should increase the
player retention rate as every player could get a tutorial tai-

3The designer may interpret a value between 0 and 1 as a prob-
ability that the player has mastered a given skill, but the framework
does not enforce this interpretation.

*https://unity3d.com/learn/tutorials/s/2d- game-Kkit

139

lored to fit their knowledge level. Adaptive tutorials will also
help designers ensure that the player is effectively utiliz-
ing all the tools they have created. Overall, we believe this
framework can greatly improve the process of authoring per-
sonalized tutorials and help create better game experiences.

Background

Our approach to a tutorial system is based on the knowledge
model of the player. The initial inspiration for the project
was the skill atoms player model developed by Daniel Cook
(2007). The player’s model of the game system is disas-
sembled into atomic components, individual skills that the
player learns and combines to form more complicated skills.
The player interacts with the game in a feedback loop, as the
actions the player takes update the state of the simulation,
which gives feedback to the player. The player uses the feed-
back to update their internal model of the game and uses that
to inform their next decision. Each individual unit of action-
simulation-feedback is a skill atom. In Cook’s model, skill
atoms can be chained together to describe more complex
skills that are assembled out of multiple atoms: for example,
learning how to stack blocks efficiently in Tetris depends on
first learning the skills to move and rotate the blocks.

The skill atom model was originally developed as part of
an effort to create a game grammar, and it has been adopted
and adapted several times. For example, in the HCI field the
model has been amended by Sebastian Deterding to con-
sist of “goals, actions and objects, rules, feedback, emer-
gent challenge, and motivation” and combined with “design
lenses” and “intrinsic integration” to arrive at a theory of in-
trinsic skill atoms for “gameful design” (Deterding 2015).

Importantly for our approach, the model has also been
inverted by Isaac Karth (2014), replacing the emphasis the
original model puts on goals and with the idea of the aporia:
the gaps in the player’s understanding. Rather than view-
ing the player as an informed agent seeking a known goal,
we model the player exploring an unknown system via the
process of play. As the inexperienced player naturally has
little knowledge of the possible future goals, this agency-
and-play-centric model is a more natural fit for our system,
foregrounding that the player’s primary interaction is play-
ing with the unknown.

Naturally, skill atoms are hardly the first attempt to model
user knowledge. For example, a formal knowledge model
of a user’s understanding can be represented as a graph of
the knowledge space (Doignon and Falmagne 2012). The
introduction of Intelligent Tutoring Systems (ITS) was pred-
icated on personal computers becoming fast enough to gen-
erate intelligent computer-assisted instruction based on cog-
nitive science models of how a student acquires new cogni-
tive skills (Anderson, Boyle, and Reiser 1985). In contrast,
rather than being concerned with the formal accuracy of our
player-knowledge model, our approach is oriented toward
the process of designer-accessible model specification and
the output of the dynamic tutorials in a widely adopted game
making environment. In this sense, our work is related to
the Vixen project (Drenikow and Mirza-Babaei 2017) which
aims to support visual analytics directly from within the
Unity editor UL

—
Detector

Skill Atom
-

Knowledge Base

Skill
Atom

Skill
Atom

Skill Skill ‘ Hint
Atom Atom
’ Hint }—

Figure 1: Overview of how skill atoms, detectors, and hints
are structured.

ITSs have been the basis for several tutorial genera-
tors. One recent example is the Thought Process Language
(TPL). While TPL can “generate explanations for a given
problem” it requires that an algorithm for solving the prob-
lem first be encoded in TPL (O’Rourke et al. 2015). Fur-
ther, it assumes that the goal of the tutorial system should be
to give the user complete understanding of a specific prob-
lem solving process. In contrast, our system is designed to
be added to an existing game without reimplementing the
gameplay elements, focusing on the elements of tutorial gen-
eration that are more important for games. Importantly, Talin
is designed to suggest ways for the player to interact play-
fully with the game, not to instruct the player on the opti-
mum solution.

For a game-specific approach, Michael Green et al. sug-
gested ways in which Al techniques could be applied to the
tutorial generation problem in the General Video Game Al
(GVG-AI) framework (Green et al. 2018). Our goal differs
from this project: rather than inferring the game rules that
the tutorial explains, we assume that the developer is best
equipped to manually specify the elements using our tutorial
development toolkit. Our focus is on the dynamic presenta-
tion of the tutorial to the player, using the skill atom graph
to dynamically focus the tutorial on only the elements that
the player needs to have explained.

Another related research area is dynamic difficulty adjust-
ment (DDA) (Hunicke 2005). While dynamic difficulty ad-
justment systems implicitly have a player model, they are
more concerned with keeping the player in the flow channel
rather than tracking which skills the player knows about or
strategizing how to introduce an unknown mechanic to the
player. Dynamic difficulty adjustment can be complemen-
tary to a dynamic tutorial system- perhaps the system dis-
plays hints before later escalating to adjusting the difficulty,
while using the knowledge model to better track if the player
is finding particular skills to be too frustrating or boring.

Talin Technical Design

The Talin framework consists of three modular building
blocks that the game designer manipulates to create the
dynamic tutorials (Fig. 1). Skill Atoms capture a player’s
current mastery of a skill as a scalar value, Detectors de-

140

= Hierarchy & = | © Inspector | =% Lighting Services Clo=
=D R AN G " ¥ BreakwallSkill] static
v €J Zone_3 =| Z -
B e Tag | Untagged +| Layer | Default ™
Prefab [Selsct | Revert | Apaly__J
LedgeDropSkillatom v A Transform ﬁ FEY
ezl Pasition x[0 ¥[o z[o
AttackSkill Rotation x[0 Yo z[o
ShootCrystalSkill
MoveBoxSkill ezl L L =
openDoorskill v o [skill Atom (Script) @ 3 #
HPPickUpSkill Script Skillatom @
Wallskill skill Atom Name Break wall
BossFightRangedskill Initial Mastery —_——[045 |
BossFightMel kil
[Add Component]

Figure 2: In-editor Talin designer interface showing how the
Skill Atoms are initialized.

cide when a skill mastery update is relevant, and Hints ac-
tivate whenever the skill mastery value crosses a designated
threshold.

Consider the mechanic of attacking a breakable wall in
order to remove it. This is a game mechanic that can benefit
from being taught in a dynamic fashion for several reasons:
First, it is a common game mechanic that seasoned players
will have internalized. Second, the mechanic affords a sense
of discovery that could be undermined if a tooltip pops up
and reveals the salient information too soon. Third, it is a
context specific skill that is only applicable when a break-
able wall is present. Due to the skill not being in the core
gameplay loop, it can be easily forgotten when the player
takes an extended break from the game.

The implementation process starts with the designer creat-
ing the skill atom representing the BreakWall skill (Fig. 2).
The designer then initializes the skill atom with a starting
value that represents the initial skill mastery of the player.
The designer is free in deciding how to initialize the skill
mastery level. If they wish, they can assume prior knowl-
edge of a common game mechanic, such as moving around
and initialize the skill at a high value. Otherwise, if the skill
in question is more domain specific, they can initialize the
skill at a much lower initial value. The skill mastery value
range is set to be between 0 and 1, where 1 represents to-
tal mastery of the skill and O represents lack of any under-
standing regarding the skill. Regardless of the initialization,
as the player progresses through the game this skill mastery
value increases or decreases to reflect the understanding of
the player for the wall-breaking mechanic.

Not every skill that is required by the game is relevant
throughout the experience. BreakWall skill is only of inter-
est when the player is near breakable walls. This is where de-
tectors come in. Detectors allow designers to specify when a
skill atom is exercised (the atom’s value is increased) or de-
cayed (its value decreased). Designers can choose from sev-
eral built in detectors covering the majority of simple cases.
Those with programming experience can even extend an ex-
isting detector class to cover complex edge cases. The most
commonly used detectors are proximity detectors and input
detectors.

As the name suggests, the proximity detector allows the
designer to check whether an object, often the player, is near
the detector. For the BreakWall skill, a sensible option is to

“This place just got interesting! Use K to hit df
to shoot. Let’s try it on this innocent looking

» N\

Figure 3: Visual representation of the proximity detector, in-
dicated by the green circle. The proximity detector is at-
tached to the breakable wall, and linked to the BreakWall
skill.

attach a proximity detector to the breakable wall object and
decay the BreakWall skill whenever the player is within a set
radius (Fig. 3). The proximity detector represents the idea
that if a player is standing right next to breakable wall, and
not breaking it, they might not realize that the wall is actually
breakable. The longer the player actively lingers right next
to the breakable wall without making any progress, the more
likely it becomes that they need a hint to figure out that the
wall is indeed interactable.

Yet, it is not enough to only decay the breakable wall skill
value. The designer also needs a method to increase mas-
tery level whenever the player shows that they know how to
break a wall. To compliment the proximity detector, an in-
put detector can be used. The input detector tracks whether
a player successfully attacks and breaks a wall. Using the
combination of the proximity detector and the input detector,
the designer is be able to update the wall breaking mastery of
the player simply by observing the play pattern. Due to the
context specific implementation, the updates only happen
when the skill itself is relevant. In order to allow designers
to customize how the skill mastery values change we offer
different ways of manipulating the value itself. The designer
can pick between a linear change (increase/decrease by a
constant amount), logistic change (reduce the distance to a
target value by a constant fraction), or exponential change
(scale the value by a constant fraction).

Hints are the structured way to create in-game events that
trigger in relation to the given skill mastery level. A hint
can be a simple tooltip pop up or even a sound cue. Or they
can be much more intricate, resulting in substantial changes
within the game systems. A hint activates when the mas-
tery value of a skill crosses a designated threshold. It is up
to the designer to define their own hints and at which mas-
tery level the hints trigger. There is no limit as to how many
hints can be attached to a particular skill atom. This allows
the designer to combine different hints as they see fit. Using
multiple hints with distinct thresholds, designers can start by
introducing subtle hints and gradually become more explicit
as the player shows signs of struggling.

Within the tool we offer several pre-built hints such as

141

activating a particle system, playing a sound cue, or intro-
ducing a tool tip. For example, for the BreakWall skill, the
designer can decide to activate a hint that creates a particle
effect system emphasizing the cracks on the wall when the
skill atom decays past a certain threshold. If the player stays
within the radius of the proximity detector without breaking
the wall even further, a second, more explicit hint can acti-
vate. Since the player missed both the cracks on the wall and
the animated particles, the new hint has grounds to be very
direct: a tooltip explicitly stating that the wall is breakable
appears. For extreme scenarios, we can even imagine a hint
implementation that assumes control of the player character
to physically demonstrate the desired action (something the
player might perceive as a cutscene).

Using the combination of skill atoms, detectors, and hints,
a designer creates levels that adjust to the players. The skill
atoms give the designers a method to keep track of what the
player knows. The detectors allow the designer to manipu-
late the skill values. Finally, the hints introduce a convenient
way to trigger user-defined in-game events.

Tutorial Implementation

Talin can be used without any programming knowledge. All
of the skill atoms, detectors and hints can be implemented
using the visual interface that Unity offers (Fig. 4). We be-
lieve it is crucial for the tool not to require programming to
function. In most cases the person who is tasked with creat-
ing the tutorial is a game designer who might or might not
be comfortable with programming. It is important that the
tool offers enough flexibility out of the box to seamlessly
adapt into the workflow of whoever is using it. If someone
can create the rest of their tutorial scene with graphical scene
editing tools, those tools should also serve them in making
the tutorial dynamic.

In this section, we walk through a no-code implementa-
tion of dynamic tutorialization for the Unity-provided 2D
Game Kit example game. This example game includes an
existing, static tutorial design that we adapt via integration
with Talin-provided building blocks.

Referring back to our example, if a designer wants to
implement the BreakWall skill they start by instantiating a
Knowledgebase prefab’ in the editor and attaching a skill
atom GameObject to it as a child. The skill atom game ob-
ject has input fields for its name and the initial skill mastery
value. The Knowledgebase is simply a container for all skill
atoms. Then, they will attach a proximity detector game ob-
ject to the breakable wall prefab and link it with the Break-
Wall skill atom through the visual interface. The ability to
add a detector as a child of another game object makes it
so that only one change to a prefab propagates through all
instances of said object throughout the game. Even if the tu-
torial is being implemented long after other levels are com-
pleted, implementing the tutorial at the prefab level makes
it relatively easy to embed the dynamic tutorial all through-
out the game with very little effort. After linking the skill

3In Unity, prefabs are the editor’s abstraction of game object
templates. In a lower-level game engine, our framework primitives
might be realized as base classes to be instantiated or extended.

> Ellen
EnemySpa

--- LevelAssets -

» TilemapGrid

» Background

» Foreground v

> Ex

» PassThroughPlatform

» PassThroughPlatform

¥ MovingPlatform

» MovingFlatform

P MovingPlatform

¥ WeaponPickup

¥ HealthPickup (2)

> Key

P HealthPickup (1)

» HealthPicku

i | =

x[o ¥ [1.005
%[0 [0
X[L ¥[1

v o | Proximi ity Detector (Script) e
ProximityDetestor o
~Breakwallskill (SkillAtom))

skill Atom

What should happen when the detector is triggered?
On_trigger [Decay o)

Decay or Exercise rate of the mastery when triggered.
Weight

¥ = Activate Game Object Hint (Script)
Seript ActivateGameObje ctint @
Hint Activation Mastery Treshold 05

SetActive hint specific variables.
Game Object To Be Activated w First Hint Particle Effects

)
Activate Game Object Hint (Script) (TR
Seript ActivateGameObje ctHint o
Hint Activation Mastery Treshold O (0,025
SetActive hint specific variables.

Game Gbject To Be Acti # Second Hint Tooltip Prompt)

Add Component

[Console
| Glear

il |4

1 project

| Gollapse | Clear an Play | Erar Pause

Figure 4: In-editor Talin designer interface. The proximity detector is displayed in the level editor view on the left as a yellow
circle. In the center, the Detector is listed in the scene hierarchy, parented under the breakable object. On the right is the interface
for the proximity detector properties, which allows the designer to completely specify the behavior without needing to use code.

atoms and the detector all that remains is to set up the de-
sired hints. The hints are also added to the detector object as
a script. This allows for the designer to have the ability to
have different sets of hints at different detectors. In the case
of the BreakWall skill, the designer can select the predefined
hint that activates a game object, and through the visual in-
terface set it up so that whenever the BreakWall skill decays
under a certain threshold a tooltip gameobject activates.

While the simple workflow of Talin requires no program-
ming knowledge, the system allows for easy expandability.
If a developer wants to have a certain detector trigger in
more specific scenarios than simple radius or input situa-
tions, they can extend any of the base classes to include the
desired functionality. Consider a case where the designer
wants to introduce a PickUpHealthPack skill atom. In this
context, a standard proximity detector will not be sufficient.
If the player is lingering next to a health pick up while they
are not missing any health points, the designer can not as-
sume that the player doesn’t know how the health pack func-
tions, as they might be deciding not to pick it up so as to save
it for later. Thus, the proximity detector can be extended with
a few lines of code to decay only when the person is near
a health pick up and they are missing a certain amount of
health points. While this is a trivial example, the extendibil-
ity of the base classes allows the developers to create game
specific structures to support the type of tutorials they want
to achieve.

The tool also comes with simple debugging support, in-
cluding visualizations of the values of each skill atom and
how they change as the player progresses.

142

Example Personas

Compared to the existing static tutorial in 2D Game Kit, the
dynamic tutorial made by Talin offers different experiences
to different players (Fig. 5). For example the expert player
starts the game and immediately knows how to navigate the
space. Because they move around with ease, the input detec-
tor recognizes the player exercising the movement skill and
thus, no hint regarding movement appears.

When the expert player reaches the first breakable wall
segment, it takes only a few seconds for them to realize there
are cracks on the wall sprite. At this point, due to their pre-
vious experience the expert player discovers that they can
attack the wall to destroy it. Similarly, when they reach the
second breakable wall several levels down the line, they do
not need any support.

Overall, the expert player, due to never needing any help,
never sees any of the hints. This allows them to discover
some of the game mechanics themselves hopefully increas-
ing their enjoyment.

Whereas an expert player doesn’t need any help, a novice
player might need more pointers than we expect. When the
game starts the novice player spends some time exploring
the controls but doesn’t figure them out. The initial detector
tracks that the player is not making any progress and acti-
vates the first hint explaining how to navigate the game.

When the player arrives at the second moment, they spend
some time near the breakable wall without making any
progress. Due to the proximity detector this loitering incre-
mentally decays their BreakWall skill. When the break wall
skill crosses the first threshold a particle effect system ac-
tivates drawing the attention of the player to the well. Yet,
the player spends a little bit more time near the wall with-
out any progress. Then the second hint activates, explicitly

Talinified Dynamic Tutorial

Static Tutorial

Legend

Figure 5: The experience of the different personas through different game moments, contrasting our dynamic tutorial experience

with the traditional static tutorial.

telling how to make progress at this step.

When it comes to the third moment, another breakable
wall several levels into the game, the player still takes a few
moments. This time however, they do not need the tooltip to
appear as the particle effects are enough for them to remem-
ber the break wall mechanic.

Next we consider a player who has gone through the first
two moments, then has decided to take a long break from
playing the game before coming back. Their memory of the
two moments and the tutorial prompts attached to them is
blurry. When the player reaches the third moment, they do
not remember the break wall mechanic. As they linger, the
attached proximity detector decays their BreakWall skill.
When the mastery level crosses the first threshold the par-
ticle effects appear, but in this case that is not enough. The
player spends a few more seconds within the radius of the
proximity detector which results in the explicit tooltip hint
activating. The player remembers the controls and the me-
chanics. This allows them to keep on making progress, in-
stead of getting frustrated and stopping playing the game
altogether.

Overall every single player gets an experience that is
specifically tailored to their skill level, which is made possi-
bly by the constant tracking of the individual mastery levels.

Conclusion

In this paper we presented a new tool designed to help game
designers create dynamic tutorials. We showed how Talin
operationalizes Dan Cook’s skill atom theory to create com-
partmentalized skill mastery tracking. We showed the steps
outlining how to create a dynamic tutorial and discussed how
different players engage with the dynamic tutorials.

While this paper mainly focused on contributing in the
area of tutorials, we believe this granular level of skill mas-
tery tracking can be an incredibly valuable dataset when it

143

comes to understanding the holistic experience of the play-
ers going through games.

In future work we will be evaluating the dynamic tutorials
to better quantify the benefits and will be exploring other
uses of the tracked skill levels of the players to enhance both
the development and playing experience of the games.

Talin currently requires the manual specification of skill
chains. While this is consistent with our design goal of
developer-control, a possible future direction is to build on
the research by using Cognitive Task Analysis to identify
skill chains (Horn, Cooper, and Deterding 2017).

We believe that it should be useful to model the player’s
mastery level for many more skills than are explicitly ad-
dressed with hints. Additional skills that are tracked behind-
the-scenes should provide useful context for nuanced game-
play analytics. Beyond knowing where in a given level play-
ers are likely to abandon gameplay, we would like to know
which concepts they were struggling with. Analytics based
on skill level might suggest the need for additional dynamic
hints far from the game’s traditional tutorial level.

References

Andersen, E.; O’Rourke, E.; Liu, Y.-E.; Snider, R.; Lowder-
milk, J.; Truong, D.; Cooper, S.; and Popovié, Z. 2012. The
impact of tutorials on games of varying complexity. In Pro-
ceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM.

Anderson, J. R.; Boyle, C. F,; and Reiser, B. J. 1985. Intel-
ligent tutoring systems. Science 228(4698):456—462.

Cook, D. 2007. The chemistry of game design.

Deterding, S. 2015. The lens of intrinsic skill atoms: A
method for gameful design. Hum.-Comput. Interact. 30(3-
4):294-335.

Doignon, J., and Falmagne, J. 2012. Knowledge Spaces.
Springer Berlin Heidelberg.

Drenikow, B., and Mirza-Babaei, P. 2017. Vixen: interactive
visualization of gameplay experiences. In Proceedings of the
12th International Conference on the Foundations of Digital
Games, 3. ACM.

Green, M. C.; Khalifa, A.; Barros, G. A.; and Togelius, J.
2018. press space to fire”: Automatic video game tutorial
generation. arXiv preprint arXiv:1805.11768.

Horn, B.; Cooper, S.; and Deterding, S. 2017. Adapting
cognitive task analysis to elicit the skill chain of a game. In
Proceedings of the Annual Symposium on Computer-Human
Interaction in Play, 277-289. ACM.

Hunicke, R. 2005. The case for dynamic difficulty adjust-
ment in games. In Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in computer enter-
tainment technology, 429—433. ACM.

Karth, I. 2014. Ergodic agency: How play manifests un-
derstanding. Engaging with Videogames: Play, Theory and
Practice 205-216.

O’Rourke, E.; Andersen, E.; Gulwani, S.; and Popovi¢, Z.
2015. A framework for automatically generating interactive
instructional scaffolding. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
1545-1554. ACM.

144

