
Modeling Player Experience with the
N-Tuple Bandit Evolutionary Algorithm

Kamolwan Kunanusont
University of Essex

Wivenhoe Park
Colchester, CO4 3SQ

United Kingdom
kamolwan.k11@gmail.com

Simon Mark Lucas
Queen Mary University of London

Mile End Road
London, E1 4NS
United Kingdom

simon.lucas@qmul.ac.uk

Diego Pérez-Lébana
Queen Mary University of London

Mile End Road
London, E1 4NS
United Kingdom

diego.perez@qmul.ac.uk

Abstract

Automatic game design is an increasingly popular area of re-
search that consists of devising systems that create content or
complete games autonomously. The interest in such systems
is two-fold: games can be highly stochastic environments that
allow presenting this task as a complex optimization problem
and automatic play-testing, becoming benchmarks to advance
the state of the art on AI methods. In this paper, we propose a
general approach that employs the N-Tuple Bandit Evolution-
ary Algorithm (NTBEA) to tune parameters of three different
games of the General Video Game AI (GVGAI) framework.
The objective is to adjust the game experience of the players
so the distribution of score events through the game approxi-
mates certain pre-defined target curves. We report satisfactory
results for different target score trends and games, paving the
path for future research in the area of automatically tuning
player experience.

Introduction
Automatic Game Design (Togelius and Schmidhuber 2008)
is a subfield of Game AI that aims to apply AI techniques in
assisting game design tasks. A game may consist of game
rules, game maps (levels) or certain in-game parameters
that can be tweaked. Game design tasks include deciding
the look-and-feel and functionality of these components,
which usually requires a number of playtests to determine
the best composition. Manually playing games repeatedly
for this purpose is usually time consuming and inefficient
for a few reasons. Firstly, human testers tend to be inconsis-
tent and possibly unable to capture many possible playing
behaviours. Secondly, most of the human testing sessions
are significantly slow compared to automatic testing. This
is adequate to point out that an automatic tool to repeatedly
play the games for all settings and evaluate them similarly
with human testers is necessary. Attempts to develop such
systems have been proposed using Evolutionary Algorithms
(EA) (Browne and Maire 2010) (Ashlock 2010) (Sorenson
and Pasquier 2010), mainly because of their generality and
their suitability in optimization problems.

Automatic Game Design has been employed in the lit-
erature focusing on different objectives: from proof-of-
concept studies (Togelius and Schmidhuber 2008) (Nelson

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Mateas 2007), to focus on certain game components
such as maps (Ashlock 2010)(Sorenson and Pasquier 2010)
or even complete games, such as Ludi (Browne and Maire
2010) or ANGELINA (Cook and Colton 2011).

Another game design related task that would benefit from
an automatic approach is parameter tuning. Isaksen et. al.
(Isaksen et al. 2015) work for Flappy Bird, shows that EAs
are applicable for this task and underlines its importance in
the game development process.

Recently, the General Video Game AI competition (GV-
GAI) (Perez-Liebana et al. 2016) has just introduced a new
Game Design feature in the framework that does not focus
on game playing algorithm development, but on providing a
“general” parameterization task instead.

The objective of the research work presented here is to
propose a general approach for GVGAI game parameter tun-
ing to evolve games that provide a specific player experi-
ence, particularly focused on the game’s score trend. A set
of 4 functions has been selected as targets, so that the score
progression achieved by an agent that plays this game ap-
proximates such curves. Since player experience is difficult
to measure due to the uncertainty of player’s behaviour and
skill, we used 2 GVGAI agents that employ score-based
heuristic functions in action selection. Therefore it is fair
to assume that these AI players would always look to gain
score when the opportunities present, unless such score-able
option leads to losing the game.

The remaining of this paper is organized as follows. A
related work review is carried out in section 2. This is fol-
lowed by essential background knowledge (section 3). The
approach and experiments are then described in section 4
and 5 respectively. Then we conclude the paper with some
final remarks and outlining potential future works.

Related Works
Nelson and Mateas (Nelson and Mateas 2007) defined au-
tomatic game design as a problem-solving task by declar-
ing 4 design factors needed to create a game. This includes
game mechanics, game representation, game thematic con-
tent and control mapping. They also developed a method to
auto generate a game by designing all of these components
using a set of common sense composition rules. Togelius
and Schmidhuber (Togelius and Schmidhuber 2008) used
an EA to evolve a 15×15 2D grid game rules from scratch.

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

180

They claimed that this was the first attempt to do single-
player game rule evolution and to apply EA into non-board
game design. Browne and Maire introduced Ludi (Browne
and Maire 2010), which was the first combinatorial auto-
matic game generator framework with a commercially pub-
lished game (Yavalath), that has an interesting winning con-
dition beyond human common sense (create a four-in-a-row
without three-in-a-row). This points out that a computer pro-
gram can find a rule set that humans are interested in but
failed to find. Cook and Colton proposed an automatic ar-
cade game generator named ANGELINA (Cook and Colton
2011). They implemented generators for three game com-
ponents: rule sets, character layouts and maps. An EA was
applied to evolve these components separately, while share
information of the fittest individuals with others.

For game parameter tuning, Isaksen et. al (Isaksen et al.
2015) defined a parameter space of Flappy Bird and tweaked
those parameters using EAs to see variants of games while
keeping the rules fixed. Four unique settings were discov-
ered, all are different in pipe lengths, gaps, player size and
gravity, which leaded to a unique gameplay experience for
each. This shows that only changing parameters can lead
to new game sets, even when the same rules. Liu et. al.
(Liu et al. 2017) evolve Space Battle game parameters us-
ing Random Mutation Hill Climber (RMHC) evolutionary
algorithm and its improved version called Multi-Armed Ban-
dit Mutation RMHC (MABM-RMHC), applied UCB equa-
tion to select a next mutated parameter and value. MABM-
RMHC performed better as it explored more and converged
faster. Kunanusont et. al. (Kunanusont et al. 2017) proposed
a novel EA named N-Tuple Bandit EA (NTBEA) for Game
AI optimization and applied it to a modified version of Space
Battle called Space Battle Evolved to tune 30 in-game pa-
rameters, aiming to evolve games that favour skillful play-
ers to weak players. The fitness value of a game was cal-
culated after three playtests with different General Video
Game AI (Perez-Liebana et al. 2016) controllers: MCTS as
a skillful player, RAS as an middle-skill player, and a One-
Step-Look-Ahead (1SLA) as a weak player. The fitness func-
tion was chosen following the Relative Algorithm Perfor-
mance Profiles (RAPP) principles: it should maximize the
gaps between MCTS-RAS score and RAS-1SLA score, with
assumption that good games should separate players with
different skills.

The automated parameterization research reviewed ear-
lier are all done based on player experience, but did not
consider a non-subjective evaluating matrix for the whole
gameplay like score trends. Instead, our work aims to evolve
games that provide specific scoring experience throughout
the game, regardless of the players.

Background

General Video Game AI
General Video Game Artificial Intelligence (GV-
GAI; (Perez-Liebana et al. 2016)) is a framework and
competition for General Video Game Playing (GVGP),
which aims to advance research on Artificial General Intel-
ligence (AGI; (Goertzel and Pennachin 2007)), particularly

focusing on the video games domain. GVGAI was firstly
introduced in 2014 and has since become widely spread
among the researchers in the Game AI field.

Research in AGI involves developing AI that is capable of
solving problems with different levels of difficulty and char-
acteristics with very little domain knowledge. In GVGAI,
the agents are not given the game rules in advance, but they
can use the environment information and a forward model
to provide an action to the game. Since video games usually
require real-time interact ions with the game, the agents are
asked to return an action in just a few milliseconds.

Selected Games
Three GVGAI games: Defender, Waves and Seaquest were
chosen to do parameterization from pre-defined score trend
function. These games have been selected because, firstly,
they all have accumulative score-system, in which players
obtain score at any time during the game. Secondly, the in-
game events in which the players gain score are similar, as
they are all shooting games. Given these characteristics, they
are good testbeds for our experiment as the score trends can
be varied from the pre-defined game parameters.

1. Defender is inspired by the game Defender in the Atari
2600 framework. In this game the player plays as an
armed aircraft trying to protect a city from alien assault
that occasionally drop bombs to destroy the city. The air-
craft can shoot missiles at aliens to kill them. In the GV-
GAI version, aliens move from their spawn points hori-
zontally in one direction and are harmless to the avatar.
The avatar missiles is limited and can collect more from
supply packs that constantly fall from the sky.

2. Waves is an alien fighting GVGAI game that the player
controls a spaceship trying to survive from a big alien at-
tacking wave. Aliens are spawned from their spawn points
and moving considerably fast towards the avatar’s start-
ing position. Aliens also shoot harmful missiles and lasers
to the avatar. The avatar can regain health by collect-
ing shields that dropped from destroyed lasers. The game
ends if the player can survive during a number of time
steps, unless it dies earlier by losing all health.

3. Seaquest is inspired by Seaquest in the Atari 2600 frame-
work. In this game, the player controls a submarine aim-
ing to rescue divers while defending itself from the ag-
gressive underwater creatures by shooting them with tor-
pedoes. The submarine has an oxygen level bar that will
continuously decrease with the time it is underwater, and
can be refilled once it moves to the surface. In GVGAI
version, the player wins if they survived until a maximum
number of game steps is reached.

Play-testing Controllers
In the experiments shown in this paper, the games were
played and evolved using a GVGAI controller called
Rolling-Horizon Evolutionary Algorithm (RHEA). To verify
that the evolved games do not only provide the targeted score
trends for this agent, a Monte Carlo Tree Search (MCTS)
agent is also employed to validate the results. This section
describes the methods behind these controllers.

181

Rolling Horizon Evolutionary Algorithm (RHEA)
RHEA was first introduced by Perez et. al. (Perez et al. 2013)
as an online planning game player and then implemented as
a sample controller for the GVGAI framework. RHEA has
achieved promising performance in average and multiple
variants and enhancements have been proposed in the
recent literature (Gaina, Lucas, and Pérez-Liébana 2017a;
2017b). The general RHEA starts with randomly initialized
a population of individuals (sequence of to-be-applied
in-game action). Then evaluate each individual’s fitness by
applying the sequence of actions and computing a value
for the state reached at the end. After that regular operators
(crossover, mutation and elitism) are applied to generate the
next population. Next, the new individuals are evaluated and
the best N individuals are kept. The last two steps would be
repeated until exhausting the decision time budget, and the
first action of the best individual is returned.

Monte Carlo Tree Search (MCTS) MCTS (Browne et al.
2014) is a tree search algorithm designed to tackle problems
with large branching factors, such as Go. Its main strength is
the ability to explore mainly those sections of the space that
are most likely to give promising outcomes, while neglecting
other non (or almost non) informative branches. The MCTS
algorithm can be divided into 4 phases: Selection: Repeat-
edly selecting a known child node from root using Upper
Confidence for Bounds (i.e. with the UCB1 equation 1) un-
til a node with some unexpanded children is found.

a∗ = argmax
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The best action (a∗) is selected as the one that maximizes
the UCB1 equation. Q(s, a) is the estimated reward of tak-
ing action a from state s. N(s) is the number of times s has
been visited and N(s, a) represents how many times action
a has been chosen from s. C is a constant that balances be-
tween exploration and exploitation, with a value typically
set as

√
2 when rewards are bounded in [0, 1]. Expansion: A

new unexplored child node is added to the tree, typically
selected at random. Simulation: A Monte Carlo Simula-
tion (rollout) is done from the newly added child node until
the termination condition is reached, by picking random ac-
tions at each decision point, either uniformly or informed by
some heuristic knowledge if available. Back-propagation:
The outcome of the rollout is repeatedly back-up through the
visited nodes from the new one till the root node, updating
the values Q(s, a), N(s) and N(s, a) on each node.

N-Tuple Bandit Evolutionary Algorithm (NTBEA)
The N-Tuple Bandit Evolutionary Algorithm (NTBEA),
firstly introduced in (Kunanusont et al. 2017), is an EA that
was designed for a noisy domain task which one fitness eval-
uation may not provide an accurate value. In many cases in-
stead it is approximated by averaging multiple evaluations
(resampling). All of our selected GVGAI games, and both
controllers, are stochastic, which makes the evaluation of
the individuals extremely noisy. Therefore, a fast and noise-
robust EA is necessary in parameterization.

Table 1: Defender’s Parameter Space

Name Min—Max—Step Size
BSPEED 0.1—0.9—0.2 5
ASPEED 0.2—1.0—0.2 5

SUPSPEED 0.05—0.45—0.2 3
APROB 0.01—0.05—0.01 5

AMPROB 0.05—0.25—0.1 3
SLOWPPROB 0.05—0.25—0.05 5
FASTPPROB 0.3—0.5—0.2 2

ADDSUP 1—5—1 5
ACOOLDOWN 2—10—2 5
PCOOLDOWN 5—20—5 4

AMCOOLDOWN 5—20—5 4
LOSSCITY -4—-1—1 4

BLIMIT 5—20—5 4
AREWARD 1—9—2 5

DELAY 0—300—50 7
CLOSE 350—500—50 4

Total search space size 1.08× 1010

NTBEA starts by approximating the fitness landscape of
the problem by sampling points of the search space as sug-
gested by a multi-armed bandits. An N-Tuple structure is
used to store statistical information of each point (evaluated
parameter set in this case) in the search space. Each time a
point is evaluated, its fitness is added to the landscape model,
as well as an estimation for a number of neighbours (two
neighbouring solutions are two points in the search space
which only differ in the value of one of the dimensions).

The landscape model is stored using N-Tuples, a struc-
ture used firstly by S. Lucas in (Lucas 2008). In our work,
N-Tuples are a group of lookup tables that store statistics
for each dimension. These statistics are used by multi-armed
bandits to select which is the next point to sample from the
search space. The reader is referred to (Kunanusont et al.
2017) for a full description of this algorithm, but the basic
steps starts with building a population randomly. Then eval-
uate the fitness of each individual and update the statistics in
the landscape model. Next, a set of new individuals (neigh-
bours) are generated and their UCB1 (equation 1) are calcu-
lated. The neighbours with the highest UCB1 value are then
selected as the next individual. The last 3 steps are repeated
until the termination condition is reached.

Approach
Game Rules & Search Space

In the original games, benign and malicious sprites are
spawned from portals and the portals spawns sprites at a
constant rate during the whole game. In order to be able to
define a rich search space where interesting solutions can
be found, all original portals have been replaced with time-
limited spawning portals for this study. Therefore, all por-
tals can spawn sprites during a specific period of the game
as determined by two parameters; the first and the last game
step the portals are allowed to spawn. Note that the original
games are still included in the search space, concretely when
these limits are set to 0 and the last game tick, respectively.
Tables 1, 2 and 3 show the parameter spaces for the three se-
lected games with their description and possible values these
may have. All games have a search space size of E10.

182

Table 2: Waves’ Parameter Space

Name Min—Max—Step Size
RSPEED 0.45—2.45—0.5 5
SSPEED 0.5—2.0—0.5 4
LSPEED 0.1—0.5—0.1 5
PSPEED 0.5—1.5—0.5 3
ASPEED 0.05—0.3—0.05 6

ACOOLDOWN 2—14—4 4
RCOOLDOWN 2—14—4 4

APROB 0.01—0.05—0.04 2
RPROB 0.15—0.4—0.05 6

ASPROB 0.005—0.02—0.005 4
SLIMIT 2—10—2 5

SREWARD 1—9—2 5
SPLUS 1—5—1 5

LASERPEN -4—-1—1 4
APEN -4—-1—1 4

DELAY 0—300—50 7
CLOSE 350—500—50 4

Total search space size 7.741× 1010

Table 3: Seaquest’s Parameter Space

Name Min—Max—Step Size
SSPEED 0.05—0.5—1.5 4
WSPEED 0.05—1.5 2
PSPEED 0.05—0.5—1.5 4
DSPEED 0.1—0.9—0.2 5
SHPROB 0.01—0.16—0.05 4
DHPROB 0.005—0.045—0.01 5
WSPROB 0.01—0.1—0.03 4

OFDHPROB 0.05—0.09—0.02 3
TIMERHPLOSS 5—20—5 4

WHPROB 0.005—0.085—0.02 5
WHALESCORE 5—20—5 4

HPPLUS 1—4—1 4
HP 9—33—8 4

MHP 10—40—10 4
DCONS 1—3—1 3

CRLIMIT 1—7—2 4
DELAY 0—200—50 5
CLOSE 200—400—50 5

Total search space size 5.892× 1010

Selected Target Functions
All of the selected target functions are positive-definite func-
tions (f(x) > 0 for all x > 0). These include a linear
function (equation 2 with m ∈ {0.2, 0.4, 1}), left and right
shifted versions of the original sigmoid function (equation
3 with K1 = 150,K2 = 30 and K3 ∈ {3, 12}), a loga-
rithm (equation 4) and an exponential (equation 5) functions.
These were included to see if the EA can react differently
with the fast increasing rate in different areas.

f(x) = mx (2)

f(x) = K1(
1

1 + exp(− x
K2

+K3)
) (3)

f(x) = 15 log2 x (4)

f(x) = 2
x
70 (5)

Note that these are ideal functions for score progression.
The objective is for evolution to tune games so actual game-
play by agents generate such score trends. In some cases,
these progressions may simply not be possible, but obtain-
ing an approximation to them can also provide the desired
player experience in the games under test.

Fitness Calculation
We used a Normalized Root Mean Square Error (NRMSE)
to calculate the total deviation between the obtained score
and the target function. Suppose that ŝ is a set of real score
sequence from time step 1 to the last, and ŷ is the set of
f(x) values for the selected target function with domain set
= 1, 2, ..., n where n is the last time step, the RMSE value
between ŝ and ŷ can be computed as in equation 6.

NRMSE(ŝ, ŷ) =

√∑n
i=1(ŷi − ŝi)2

n(ŷmax − ŷmin)
(6)

Given a target function t̂, an NRMSE Loss(x) function
(equation 6) and a game g, each point in the search space
p̂ parameterizes the game (g(p̂)). The RHEA agent plays
g(p̂) and the score observed at every time step is stored in
ŝ. When the game is over, the fitness of p̂ is calculated as
1− Loss(t̂, ŝ), which should be maximized.

Experiments
We ran NTBEA to evolve game parameter sets for Defender,
Waves and Seaquest, fitting each of 4 target functions (3 ver-
sions of a linear function, a logarithmic function, an expo-
nential function and 2 versions of a shifted sigmoid func-
tion), giving 3 × 7 = 21 different experimental settings in
total. 10 evolutionary runs were executed for each one of
these settings, and the outcomes were then averaged. RHEA
was the player controller during the parameter evolutionary
runs. After that, the best evolved games were validated 10
times each using MCTS. RHEA population size was set at
20, while the individuals’ length was set to 10. The mutation
rate was set at 0.1, meaning that one gene is mutated on aver-
age on each individual. MCTS rollout depth was set at 10 to
match the length of the RHEA individuals. Both controllers
used the same heuristic function to evaluate states. The score
is used as fitness (resp. reward in MCTS) unless the games
end with a victory or loss, in which case the reward is 1000
or −1000 respectively. The C value for the UCB1 equation
is
√
2 for both the MCTS agent and the NTBEA. The num-

ber of neighbours for NTBEA was set to 100.
The analysis of the results is presented next, divided into

two sections: evolution and validation.

Evolving Game Parameters
The performance of NTBEA for game parameter evolution
is reported using average score for each time step in differ-
ent generation ranges (as in Figure 1). The result analysis is
done in between games and between target functions.

Different Games We compared the results between the
three games to fit the same target function. Only y = 0.2x is
selected here since it was the easiest function to fit.

The score trends (Figure 1) shows the averaged values for
score per game tick on different generation ranges. All target
lines are plotted in red. The final generations shown for each
game are different just for visualization purposes as differ-
ent games converged at different speeds. The first 50 gener-
ations for Seaquest produced a score trend (blue line) above
the target score line by a significant gap, and managed to find

183

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep
Average score over all generations

Defender_Lin_0.2
gen = 0-200
gen = 200-400
gen = 400-600
gen = 600-800
gen = 800-1000
wanted

(a) Defender score

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(b) Waves score

0 100 200 300 400 500
Steps

0

25

50

75

100

125

150

175

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Lin_0.2

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

(c) Seaquest score

Figure 1: Average score trend throughout evolution for the linear function y = 0.2x on the games tested in this study. Each plot
shows different trends, averages taken at different generation ranges through evolution. Trends for later generations tend to be
more fitted to the target function.

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(a) Score trends for left-sigmoid

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

(b) Score trends for right-sigmoid

Figure 2: Average score trends for the shifted sigmoid func-
tion in Waves.

the parameter sets that fit the target line more (black line). In
contrast, the initial (random) parameter set for Waves pro-
vided a score trend below the target line, but it was able to
progress during evolution to fit the linear target (Figure 1b).
Finally, the starting score trend in Defender (Figure 1a) was
negative (i.e. losing points), but NTBEA was able to find pa-
rameters for a positive linear-like trend after generation 800.

These results show that NTBEA is able to find game pa-

rameters that fit a linear score trend in the three games tested.
It’s worthwhile highlighting that the final score trends never
fit perfectly the targets, but in many cases these targets are
practically impossible to achieve: they serve as mere guide-
lines for evolution to make progress in the desired direction.

Functions and Parameters We compared the results from
fitting different target functions, by pairing the same types
with opposite trends. For the sake of space, only results from
the shifted sigmoid functions in Waves are included in this
paper. The average score in later generations for the left sig-
moid (Figure 2a) case is higher than the right sigmoid (Fig-
ure 2b) one at step 300. As it would be expected, the blue
curves in both cases are very similar, showing that the initial
(random) parameter sets in both scenarios provide a simi-
lar score trend. However, NTBEA managed to evolve games
with different score trends in the end, in both directions
(more score events at the beginning versus the end). This
suggest that NTBEA and the approach we are proposing is
general and adaptable to different target functions from a
single starting point.

Validating Evolved Games
To validate the results obtained by NTBEA, the best individ-
ual of each run was selected and played for 10 times using
MCTS. We analyze here the results using the same compar-
ison criteria as in the previous subsection.

Different Games Figure 3 shows the score trends of the
best individuals found in all evolutionary runs for the three
games. Most of the parameter sets evolved for Defender
(Figure 3a) provided an environment for positive score on
average, which is a very relevant improvement considering
that most of the initial parameter sets gave negative score.
None of them, however, achieved a linear positive trend with
m = 1, which seems to be difficult to achieve in this game.
Waves and Seaquest evolved parameter sets gave better re-
sults, with points progression more similar to the target line.
We can see that NTBEA was capable of tuning parameters
for these games at least in for this function, with the final
outcomes of the evolution still provide the game scoring en-
vironment in the similar trend as the target functions.

184

(a) Defender score (b) Waves score (c) Seaquest score

Figure 3: Average score trend on validation for y = x on the games of this study.

Figure 4: Average score trend on validation for Defender,
shifted sigmoid target functions

Figure 5: Average score trend on validations for the game
Defender, logarithm and exponential target functions.

Functions and Parameters We center this discussion on
the sigmoids and logarithmic-exponential function results
from the game Defender, which NTBEA seems to strug-
gle more to achieve the desired score trends. We expected
that the games evolved to fit the left sigmoid function would
provide more score in the beginning and then stop later on.
Based on the blue dotted curves in Figure 4, the score seems
to increase in a more linear trend for this game after step
100. In contrast, results from fitting right sigmoid function

(green dotted curves) look more similar to the target curve.
NTBEA is more successful in evolving games to fit right
shifted sigmoid. It is possible that it is more challenging to
stop providing the score than to suppress it in the beginning
and start producing score events later.

Figure 5 shows the results of average score for Defender
in logarithm-exponential function comparison. For loga-
rithm fit (blue dotted curves), the final individuals struggle
to achieve a quick increase on score at the beginning of the
game. It is worth noticing that the target values of the few
early steps are hardly achievable, as it requires to achieve
35 points after only 5 game steps. In contrast, green dotted
curves which shows an exponential function seems easier to
achieve, and results show that it is possible to evolve param-
eters so score events are rare at the beginning of the game
but more common towards the end.

In general, we conclude that the evolved games show the
desired trends up to certain degree, with some particular in-
dividuals deviating from the target occasionally.

Evolved Games
We observed the final parameters evolved by NTBEA in De-
fender and compared them within the same group of target
functions. For linear functions, we compared m = 0.2 and 1
and found that the game with m = 1 tended to have slower
bomb speed and alien spawn probability. In right-shifted sig-
moid final parameter set, alien speed and spawning proba-
bility are higher, while the portal opened later and closed
earlier compared with the left-shifted version. In logarith-
mic/exponential comparison, the portal opened and closed
later in exponential version, with faster alien. All games
evolved maximized the reward given when an alien is shot
while minimized the penalty of a city being bombarded.

Examples of the evolved games in Defender can be found
in an online video1. This video shows one game from each
analyzed set (linear with m = 2 and 1, left/right shifted sig-
moids and logarithm/exponential). In the videos, it is no-
ticeable the differences in supply speed/spawning rate and
numbers of enemies spawned, as well as the lack of enemies
at the beginning of the exponential-function-evolved game.

1https://youtu.be/GADQLe2TiqI

185

Conclusions and Future Work
The work presented in this paper proposes the usage of N-
Tuple Bandit Evolutionary Algorithm (NTBEA) as a way
to tune game parameters. The objective is to tweak games
so they produce different target scoring trends. This can be
seen as one of the possible ways to tune player experience
in a given game. Three games from the GVGAI framework
are used (Defender, Seaquest and Waves) and their parame-
ters are tuned to fit 5 different target functions. Two agents
are employed for play-testing: Rolling Horizon EA (RHEA)
during evolution, and Monte Carlo Tree Search (MCTS) to
validate the evolved games. Results show that NTBEA has
the ability to evolve in a highly noisy environment toward
different target trends and for different games, and its ef-
fectiveness is shown consistently on each experiment. Ad-
ditionally, these validation results also show that the games
evolved did not overfit to RHEA, as a different agent was
able to show a similar behaviour in most cases. The experi-
ments described here suggest that NTBEA is sufficiently ro-
bust to the agent used in playtest, as both controllers repro-
duce similar score trends during evolution and validation.

In fact, Defender has shown to be the most challenging
game to tune for all target functions. Random parameter
sets for this game typically produced scenarios in which the
agents finished with negative score, but NTBEA was able to
modify the game experience in order to achieve most of the
target functions. It’s possible that longer evolution or differ-
ent settings for NTBEA could have landed better results in
Defender, which is left as future work in this area.

References
Ashlock, D. 2010. Automatic Generation of Game Elements
via Evolution. In Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on, 289–296. IEEE.
Browne, C., and Maire, F. 2010. Evolutionary Game Design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1):1–16.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2014. A Survey of Monte Carlo Tree
Search Methods. 4(1):1–43.
Cook, M., and Colton, S. 2011. Multi-faceted Evolution of
Simple Arcade Games. In Computational Intelligence and
Games (CIG), 2011 IEEE Conference on, 289–296. IEEE.
Gaina, R. D.; Lucas, S. M.; and Pérez-Liébana, D. 2017a.
Population Seeding Techniques for Rolling Horizon Evolu-
tion in General Video Game Playing. In 2017 IEEE Confer-
ence on Evolutionary Computation (CEC). IEEE.
Gaina, R. D.; Lucas, S. M.; and Pérez-Liébana, D. 2017b.
Rolling Horizon Evolution Enhancements in General Video
Game Playing. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE.
Goertzel, B., and Pennachin, C. 2007. Artificial General
Intelligence, volume 2. Springer.
Isaksen, A.; Gopstein, D.; Togelius, J.; and Nealen, A. 2015.
Discovering Unique Game Variants. In Computational Cre-

ativity and Games Workshop at the 2015 International Con-
ference on Computational Creativity.
Kunanusont, K.; Gaina, R. D.; Liu, J.; Perez-Liebana, D.;
and Lucas, S. M. 2017. The N-Tuple Bandit Evolution-
ary Algorithm for Automatic Game Improvement. In IEEE
Proceedings of the Congress on Evolutionary Computation
(CEC).
Liu, J.; Togelius, J.; Pérez-Liébana, D.; and Lucas, S. M.
2017. Evolving Game Skill-Depth using General Video
Game AI Agents. In IEEE Proceedings of the Congress on
Evolutionary Computation (CEC).
Lucas, S. M. 2008. Learning to play Othello with N-tuple
Systems. Australian Journal of Intelligent Information Pro-
cessing 4:1–20.
Nelson, M. J., and Mateas, M. 2007. Towards Automated
Game Design. In Congress of the Italian Association for
Artificial Intelligence, 626–637. Springer.
Perez, D.; Samothrakis, S.; Lucas, S.; and Rohlfshagen, P.
2013. Rolling Horizon Evolution versus Tree Search for
Navigation in Single-player Real-Time Games. In Proceed-
ings of the 15th annual conference on Genetic and evolu-
tionary computation, 351–358. ACM.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Lucas,
S. M.; and Schaul, T. 2016. General Video Game AI: Com-
petition, Challenges and Opportunities. In Thirtieth AAAI
Conference on Artificial Intelligence.
Sorenson, N., and Pasquier, P. 2010. Towards a Generic
Framework for Automated Video Game Level Creation. Ap-
plications of Evolutionary Computation 131–140.
Togelius, J., and Schmidhuber, J. 2008. An Experiment
in Automatic Game Design. In Computational Intelligence
and Games, 2008. CIG’08. IEEE Symposium On, 111–118.
IEEE.

186

