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Abstract

This paper focuses on tracing player knowledge in educa-
tional games. Specifically, given a set of concepts or skills
required to master a game, the goal is to estimate the likeli-
hood with which the current player has mastery of each of
those concepts or skills. The main contribution of the paper
is an approach that integrates machine learning and domain
knowledge rules to find when the player applied a certain skill
and either succeeded or failed. This is then given as input to a
standard knowledge tracing module (such as those from Intel-
ligent Tutoring Systems) to perform knowledge tracing. We
evaluate our approach in the context of an educational game
called Parallel to teach parallel and concurrent programming
with data collected from real users, showing our approach can
predict students skills with a low mean-squared error.

Introduction
This paper focuses on the problem of player/student knowl-
edge modeling in the context of educational games. Player
knowledge modeling is the problem of estimating the am-
ount of knowledge or mastery that the current player pos-
sesses in a certain set of concepts or skill of interest. This
problem has been studied in several fields, such as Game
AI and Intelligent Tutoring Systems (ITS) (where it is
known as “knowledge tracing” (Corbett and Anderson 1994;
Pavlik Jr, Cen, and Koedinger 2009)). Specifically, in this
paper we present a new knowledge modeling approach de-
signed to monitor, in real-time, the degree of mastery that
the current player has on the different skills required to play
an educational game, based only on in-game player activ-
ity. A key contribution of this work is being able to perform
knowledge modeling in complex educational games, where
it is hard to determine when did a student apply a certain
skill, and whether it was successful or unsuccessful.

Our approach is presented in the context of an educational
game to teach parallel and concurrent programming called
Parallel (Ontañón et al. 2017). Parallel is an adaptive game
that presents different players with a different level progres-
sion, depending on their needs. In order for this adaptation
to happen, the game needs to maintain an estimation of the
knowledge of the current player (which concepts does the
current player understand and which it does not). It then
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presents each player with levels that are generated via pro-
cedural content generation (PCG) based on this estimation.

To address this problem, we build upon existing work on
player modeling (Yannakakis et al. 2013), and work from the
Intelligent Tutoring Systems (ITS) community on knowl-
edge tracing (Corbett and Anderson 1994; Pavlik Jr, Cen,
and Koedinger 2009). One of the challenges we faced when
attempting to integrate existing work on knowledge tracing
into Parallel is that knowledge tracing assumes that assess-
ing whether students are successfully or unsuccessfully de-
ploying certain skills is easy. However, in real gameplay ses-
sions students deploy skills in an interweaved manner while
playing the game, making this assessment non trivial. For
example, students might drag and drop different elements
onto the game board just to explore the behavior of certain
game elements, making it hard to assess when they deployed
a skill correctly or incorrectly.

Our main contribution integrates supervised machine lear-
ning inspired by existing work on player modeling and do-
main knowledge to assess successful skill application, and
applies this assessment to knowledge tracing for educational
games. Specifically, the problem outlined above is addressed
by capturing live-telemetry data and using machine learning
to make predictions concerning the problem solving strat-
egy (e.g. “trial and error”) students are currently deploying
using time windows. This problem solving strategy is used
as a proxy for whether they successfully or unsuccessfully
understand the different skills involved in the current level.
This is then fed to a knowledge tracing framework. To im-
prove the accuracy of the model, we included a collection of
domain-specific rules that complement the machine learn-
ing approach. We evaluated our approach using transcripts
of several think-aloud user study sessions to manually gen-
erate ground truth with which to compare the predictions
made by our model, showing a relatively low prediction er-
ror. Our results also show that the idea of predicting problem
solving strategy from a series of time windows can be used
to identify successful/unsuccessful applications of skills.

Background
Two major areas of work are related to the work presented
in this paper: player modeling and knowledge tracing. In
a game environment, a player model is an abstracted de-
scription of a player capturing certain properties of inter-
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est such as preferences, strategies, strengths, or skills (Van
Der Werf et al. 2003). Significant work exists in areas such
as modeling player preferences in order to maximize en-
gagement (Riedl et al. 2008; Thue et al. 2007), providing
better non-player-character AI (Weber and Mateas 2009), or
game analytics (Canossa 2013). For an overview on player
modeling, readers are referred to existing surveys (Smith et
al. 2011; Machado, Fantini, and Chaimowicz 2011).

The two approaches to modeling student knowledge most
related to our work are Knowledge Tracing (KT) and Per-
formance Factor Analysis (PFA). We refer interested read-
ers to Harrison and Roberts (2012) for an overview of these
techniques and others used in Intelligent Tutoring Systems
(ITSs) (Sleeman and Brown 1982). One of the most common
types of KT is Bayesian Knowledge Tracing (BKT) (Cor-
bett and Anderson 1994), which uses Hidden Markov Mod-
els. The model parameters are trained using Expectation
Maximization (Dempster, Laird, and Rubin 1977), Conju-
gate Gradient Search (Corbett and Anderson 1994), or brute-
force search (Baker, Corbett, and Aleven 2008).

One issue with Knowledge Tracing is that it assumes
that there is a one-to-one mapping between questions and
skills. However, in practice, questions usually require mul-
tiple skills to answer them correctly (levels in Parallel re-
quire multiple interleaved skills). PFA (Pavlik Jr, Cen, and
Koedinger 2009), based on prior work on Learning Factor
Analysis (Cen, Koedinger, and Junker 2006), addresses this
issue by using a model independent of questions. Specifi-
cally, PFA models the performance of a student as follows:

m(u,KC, c, n) =
∑
j∈KC

(βj + γjcu,j + ρjnu,j) (1)

pu(m) =
1

1 + e−m
(2)

where the performance of a student u is defined, given a set
of skills KC, as a function of the number of times (cu,j) that
the student has correctly applied a given skill j or failed to
apply it (nu,j) in the past. The final performance of student
(pu) is then assessed using a logistic model (Equation 2).
The model parameters (βj , γj and ρj) can be trained us-
ing logistic regression. Thus, one necessary input to utilize
these models is the assessment of successful or unsuccessful
application of skills. This is not trivial in the context of edu-
cational games like Parallel, and is one of the contributions
of this paper. We compare our work against a modification of
PFA (described in our experimental evaluation section) for
Parallel. Although it is possible to extend BKT for multiple-
skill questions (Gong, Beck, and Heffernan 2010), compar-
ing against BKT is part of our future work.

Parallel: A Game for Learning Parallel and
Concurrent Programming Concepts

Parallel (Ontañón et al. 2017) is an educational computer
game designed to help students learn parallel and concur-
rent programming concepts as well as help us understand
their learning processes. The game renders different parallel
and concurrent programming concepts visually, and is de-
signed as a puzzle game, where students must solve differ-

Figure 1: Parallel’s Visual Representation of the “Cigarette
Smokers Problem” (top), and a possible solution (bottom),
with colors used to highlight which arrows move through
which tracks and their directions.

ent problems in order to advance to the next level. Within
each level (e.g., Figure 1), players see a collection of ar-
rows that follow different tracks (black lines, representing
programs). These arrows, which run at varying and unpre-
dictable speeds (to represent non-determinism inherent in
concurrent programming), represent threads. The main goal
is to design synchronization mechanisms so that arrows ac-
complish the given challenge (e.g. deliver packages while
preventing a “race condition”).

At any time while composing the solution to a level, a
player can press the “test” button, which will make the game
run a simulation of the current solution (with arrows mov-
ing stochastically). The solution might succeed or fail, but
the fact that it succeeds does not mean that it is a correct so-
lution, since it might be the case that if the arrows were to
have moved at different relative speeds, the solution would
fail. Students are free to “test” their solutions as many times
as they want, before pressing the “submit” button, which
causes a model checker to use systematic search to test every
possible schedule of arrow movements, and see if the solu-
tion would work in all possible situations. If the solution
works, the level is considered solved.

The game presents problems of varying complexity in the
form of different levels, from preventing simple race con-
ditions, to solving classic situations such as the “cigarette
smokers problem” (shown in Figure 1). Figure 1 (bot-
tom) shows a possible solution to this level with all the
semaphores and signals in place and connected in the right
way. Additionally, we colored the tracks with the color of
the arrows that can go through them. Notice that solutions to
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Figure 2: Student Knowledge Modeling Process

levels like this are non-trivial, and would be very hard to find
by trial and error. However, deploying concepts from paral-
lel programming (such as the idea of “identifying the critical
section”), the solution is easier to find, and corresponds ex-
actly to the typical solution to this problem in concurrent
programming textbooks (Downey 2008). Parallel has been
deployed twice in a real undergraduate computer science
course to help teach students about parallel programming.

Player Knowledge Modeling in Parallel
The goal of player modeling in Parallel is to help generate
the sequence of levels that a player will experience. Play-
ers should play game levels that help them practice the con-
cepts they do not currently understand, and that are feasi-
ble given their current mastery of parallel programming. The
output of our player modeling approach is a player knowl-
edge model capturing the level of mastery of the current
player in a set of concepts/skills required to play our game.
In order to elicit the set of required concepts/skills, we em-
ployed the methodology defined by Horn, Cooper, and De-
terding (2017), which resulted in the 21 skills shown in the
left column of Table 1, which we will denote by KC.

Given KC, the knowledge model of a given student u is
represented by a vector SVu = 〈p(s1), p(s2) . . . p(sm)〉,
where each element represents the student’s understanding
of each skill si ∈ KC as a likelihood that the student has
mastered that skill (in the interval from 0 to 1). A challenge
in our domain is that, unlike in previous work on ITS, it is
not obvious to identify when a player has attempted to de-
ploy a skill, or when this deployment succeeded or failed.
Suppose a level requires a student to apply two skills from
Table 1 at the same time, Block critical sections and Use di-
verters, but the user is just focusing on making the arrows
use the diverters in the right way. The fact that, for some
time, they did not block the critical sections does not mean
that they failed at applying the skill, but that they focused
on something different. It is not trivial to infer what a player
was focusing on, as they are free to place elements anywhere
within the level and “test” the proposed solution at any time.

In order to address this problem, our approach uses
the idea of “time windows”, and tries to identify success-

ful/failed attempts of skill application in each time window.
Specifically, it has 3 main steps (illustrated in Figure 2):

• Step 1: Feature Extraction: Real-time telemetry data con-
cerning players actions are collected, and divided in time
windows of fixed size. From each window, a collection of
features is computed.

• Step 2: Skill Success/Failure Detection: This step iden-
tifies whether a player was trying to successfully or un-
successfully apply a certain skill. We employ two com-
plementary approaches: a machine learning component
which predicts the problem solving strategy the player is
currently deploying, from where successes or failures can
be inferred as detailed below, and a collection of domain
knowledge rules, which can directly identify instances of
skill application for some skills (shown in Table 1).

• Step 3: Knowledge Tracing: This step builds a knowledge
model of a player using the output of the previous steps.

The remainder of this section describes each of these steps.

Step 1: Feature Extraction
Given a sequence of telemetry information of a student for
a level, and a tunable time interval size τ , we extract a fea-
ture vector based on the telemetry information from each
time interval (t, t+τ) at intervals of τ/2. The feature vector
consisted of frequencies and rates (per minute) of different
actions and events that occurred in game, as well as time
differences between certain actions done by the player. We
currently calculate 65 features.

Step 2: Skill Success/Failure Detection
We use two complementary approaches to detect when play-
ers succeed or fail in deploying a skill: supervised machine
learning and a collection of domain knowledge rules.
Machine Learning: Given that it is hard to predict when
students succeeded or failed in deploying skills in general,
our approach instead predicts the problem solving strat-
egy a student is deploying. After analyzing transcripts of
think-aloud sessions from earlier user studies concerning
how players play Parallel, we identified three basic prob-
lem solving strategies: Trial and Error, Sequential Think-
ing, and Parallel Thinking. We define Parallel Thinking as
the process of considering multiple arrows (threads) at the
same time whereas Sequential Thinking is defined as solv-
ing levels by considering one arrow at a time. Trial and Er-
ror is the process of repeatedly trying different solutions to
solve the current level by chance without any specific pur-
pose. Given the set of skills in a given level l, KC l, when
our machine learning module predicts that the student is de-
ploying trial and error for a given time window, we signal
that there is a failed attempt at deploying all the concepts
of KC l (notice that there might just be one of the concepts
that has failed, but since we do not know which one, we
signal them all). When we predict parallel thinking, we sig-
nal a successful application of the skills in KC l and for se-
quential thinking, we signal all skills with 0.5 probability of
success. Notice the strong assumption in this process: when
students deploy trial and error, we assume that they do not
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understand the logic behind a level. The high predictive ac-
curacy reported in our experiments shows, however, that this
assumption works in practice.

To train the machine learning model, we generate a train-
ing set from a set of annotated play-throughs. These annota-
tions corresponding to problem solving strategies that were
determined through analysis of one-on-one game-playing
sessions with each student using a think-aloud protocol by a
member of our research team (and revised by another). Stan-
dard supervised classification was used in our experiments,
as described in the evaluation section.
Domain Knowledge Rules: Additionally, a collection of
manually defined domain knowledge rules are applied to
each time window in order to detect additional evidence of
successful or failed skill application. Table 1 shows the rules
used in our experiments. Each rule is used to detect a certain
skill using both telemetry information and information from
the game’s model checker, and was hand-authored by ob-
serving video recordings of students playing the game. Ev-
ery time a rule is successfully fired, we signal a successful
application of the corresponding skill.

Step 3: Knowledge Tracing
Next, we describe the process of updating the student knowl-
edge model using the output of machine learning, and
the domain knowledge rules. Recall that time windows of
telemetry data are generated while a player is playing a level.
Let F be the set of time windows generated for the current
play-through of a player u (which might include one or more
levels), and let us denote by ML(f) to the output of the ma-
chine learning classifier for time window f , encoding trial-
and-error as 0, single-threaded thinking as 0.5, and parallel
thinking as 1. Let us now denote Rsi(f) to be the number of
times domain knowledge rule Rsi was applied to time win-
dow f . Also, let Isi(f) be the indicator function that is 1 if
skill si was part of the level from where f was extracted,
and 0 otherwise. With these definitions, let us now define
Rsi(F ) =

∑
f∈F Rsi(f), Isi(F ) =

∑
f∈F Isi(f), and

MLsi(F ) =
∑

f∈F |Isi (f)=1 ML(f). Now, for a given stu-
dent u, we compute the understanding of each skill si ∈ KC
in the knowledge model SVu as follows:

p(si) =
MLsi(F ) +Rsi(F )

Isi(F ) +Rsi(F )
(3)

Notice this is the average of the predictions made for a given
skill by machine learning and the domain knowledge rules.

Experimental Evaluation
This section details our experimental evaluation including
datasets, setup, and results. Concerning the machine learn-
ing module, we evaluated seven different machine learning
techniques provided by the WEKA (Eibe Frank and Witten
2016) framework: J48, Random Forest, Bagging, AdaBoost,
Naive Bayes, Bayes Net, and Multilayer Perceptron. All ma-
chine learning algorithms were tuned to their default param-
eters. Additionally, we compared the performance of our ap-
proach against PFA (Pavlik Jr, Cen, and Koedinger 2009).

Datasets and Ground Truth
All datasets consist of telemetry logs from play sessions of
Parallel by real undergraduate students. Each log contains
mouse movements and events triggered by the player.
Datasets: In our experiments, we use two different datasets.
The first dataset, which we refer to as Dataset A, contains
data from 31 levels and was gathered from one-on-one ses-
sions with six students where we asked them to think-aloud
their thinking process as they played six levels in our game
(not all students completed all levels). The second dataset,
which we call Dataset B contains data from 395 levels col-
lected from an undergraduate parallel programming course
of 17 students. For four weeks, each student was required to
play some set of levels (different from Dataset A) each week
at home. The set of levels played in datasets A and B were
different.
Ground Truth: The ground truth for Dataset A (both for
problem-solving strategies, and for the level of mastery of
each of the skills in the game), was manually generated by
researchers on the team from transcripts of the think-aloud
sessions and recorded videos of their gameplay. For each
student, we calculated ground truth values for all skills for
all the levels they played. For Dataset B, we requested each
student in the undergraduate class fill out a survey assessing
how well they understood each parallel programming con-
cept each week, which is used as the ground truth. Since
Dataset B has no think-aloud transcripts, no ground truth on
problem-solving strategy exists for Dataset B, and thus, it
cannot be used for training, but only to test our approach.

Experimental Setup
We had three objectives for our experimental evaluation.
First, we wanted to analyze the accuracy of machine learn-
ing techniques in predicting problem solving strategies (Ex-
periment 1). Second, we wanted to evaluate the performance
of combining machine learning and domain knowledge for
player knowledge modeling (Experiments 2 and 3). Finally,
even if some of the information required to execute Perfor-
mance Factor Analysis (PFA) is not directly available in our
setting, we wanted to compare against PFA assuming that
this information were available (Experiment 4).
Experiment 1: We computed prediction accuracy for each
machine learning classifier in predicting problem solving
strategy over three time intervals τ (shown in Table 2) using
leave-one-student-out cross validation on the 31 traces from
Dataset A. We tested on data from one student and trained
on data from the remaining.
Experiments 2 and 3: For the next two experiments, we
compared the use of both machine learning and rules for
knowledge tracing against several baselines: random predic-
tion, “always predict 1” (since skill values of 1.0 are the most
common in the ground truth, this performs better than ran-
dom), using only machine learning (ML), and using only
rules (R). For experiment 2, we trained on Dataset A and
tested on Dataset B, and for experiment 3, we ran a leave-
one-out cross validation on the set of students using Dataset
A. This leave-one-out policy is the same as the one em-
ployed in Experiment 1. Since predictions of skill value are
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Skills Rules
Hover over components to see what they do Player hovers over component
Use help bar Player click on help bar and reads one or more of the guides
Drag objects Player clicks and drags either semaphore or signal
Place objects on the track Player either places a semaphore or signal on track
Hover over side arrows to see different colored tracks Player hovers over arrows on side or clicks the side arrows
Remove unnecessary elements Player drags semaphore or signal to trash
Deliver packages All required packages are delivered
Be able to link signals to direction switches Player links a signal to a direction switch
Be able to link semaphores to signals Player links a semaphore to a signal
Understand the use of semaphores
Understand that arrows move at unpredictable rates Player doesn’t place multiple semaphores along one track without connecting to any-

thing or doesn’t move semaphore significantly.
Understand that events happen in different orders
Use diverters
Prevent starvation
Block critical sections Player places semaphore and signals in the proper positions to block critical section
Synchronized multiple arrows Player places semaphores and signals alternately on the tracks of the different arrows (a

signal in arrow A’s path is linked to the semaphore in arrow B’s path, and vice-versa).
Alternating access with semaphores and signals
Testing before submitting Player tests before submitting
Understand specific delivery points Packages are delivered correctly without losing any
Understand exchange points Packages are transferred at delivery points
Deliver packages with multiple synchronized arrows

Table 1: Rules used to detect successful application of each of the skills required to master Parallel.

Time Interval (sec) (τ ) AdaBoost Bagging Bayes Net J48 Multilayer Perceptron Naive Bayes Random Forest Average
10 0.477 0.4246 0.459 0.4393 0.3754 0.3361 0.423 0.4192
20 0.5299 0.4602 0.4343 0.4299 0.4502 0.3361 0.494 0.4478
30 0.5356 0.5057 0.5563 0.4044 0.4575 0.3287 0.5011 0.4699

Table 2: Experiment 1: Classification Accuracy for Predicting Problem Solving Strategies (Dataset A)

numbers between 0 and 1, we used the Mean-Squared Error
(MSE) as a measure of error (lower is better).
Experiments 4: We slightly modified PFA to effectively
compare against our approach. Normally, we would estimate
the parameters βj , γj and ρj for some skill j using logis-
tic regression classification. In our case, we assumed βj re-
mains constant (a common assumption in later PFA work),
and learn the parameters γj and ρj . We also compute perfor-
mance for each skill. Thus, Equation 1 becomes:

mj(u,KC, c, n) =
∑
j∈KC

(γjcu,j + ρjnu,j)

We note that training data must be binary for training PFA
(via logistic regression). We used the ground truth from
Dataset A because much of the ground truth values were
binary. Any ground truth that was not binary was discarded
during training. We also note that cu,j and nu,j were com-
puted using the binary values from the ground truth of
Dataset A. Thus, notice that performance reported for PFA
assumes ideal conditions were this information is available
(it is not available in realistic conditions in our domain), and
thus performance reported for PFA should be taken as an
upper bound on the performance we can expect to achieve.

Results
Experiment 1: Table 2 provides accuracy measures for dif-
ferent classifiers over different time intervals. Overall, we
see that larger time intervals achieve better results (seen in

the average column on the right-hand side). The best perfor-
mance was achieved using a Bayes Net with τ = 30 seconds
(55.63%). Notice this is a 3-way classification problem, so,
baseline classification accuracy of a random predictor would
be 33%. Thus, there is definitely a signal in our dataset that
can be used for player modeling.
Experiment 2: Table 3 provides the MSE over all skills for
Dataset B for machine learning only (ML), rules only (R),
and with machine learning with our rules (ML+R). We note
that the random baseline has an MSE of 0.25, and the “al-
ways predict 1” baseline has an MSE of 0.1383. Most of
the classifiers (except Multilayer Perceptron using a 30 sec-
ond time interval) were able to beat the baselines. We see
that AdaBoost and Bayes Net’s MSE was constant for all
time intervals for ML, R, and ML+R. This was due to both
classifiers predicting each skill in a student’s skill vector as
1.0. We also note that MSE for R remained constant over all
time intervals, implying that the time interval doesn’t influ-
ence our rules. This makes sense because skills are detected
from the telemetry information. The lowest MSE for ML
and ML+R was J48 with a 30 second time interval (0.0917
for ML and 0.0811 for ML+R), beating R with an MSE of
0.1244. Looking closer at the MSE for each skill, we notice
that the largest difference between ML and ML+R over each
skill was 0.04 for “Place objects on the track.” With fine tun-
ing of our rules, we can expect better performance.
Experiment 3: Table 4 provides the MSE over all skills for
Dataset A for ML, R, and ML+R. The lowest MSE for ML
was AdaBoost with 0.1098, for ML+R was AdaBoost with
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Machine Learning Rules
Time Interval (sec) (τ ) AdaBoost Bagging Bayes Net J48 Multilayer Perceptron Naive Bayes Random Forest -

10 0.1383 0.1124 0.1383 0.1016 0.1383 0.2146 0.1010 0.1244
20 0.1383 0.1346 0.1383 0.3800 0.1377 0.2043 0.1064 0.1244
30 0.1383 0.1321 0.1383 0.0917 0.5883 0.1195 0.1136 0.1244

Machine Learning + Rules
Time Interval (sec) (τ ) AdaBoost Bagging Bayes Net J48 Multilayer Perceptron Naive Bayes Random Forest

10 0.1383 0.1137 0.1383 0.0928 0.1383 0.1833 0.1025
20 0.1383 0.1349 0.1383 0.2972 0.1378 0.1624 0.1086
30 0.1383 0.1328 0.1383 0.0811 0.4244 0.0981 0.1162

Table 3: Experiment 2: MSE for Estimating Student Skill (Dataset B)

Machine Learning Rules
Time Interval (sec) (τ ) AdaBoost Bagging Bayes Net J48 Multilayer Perceptron Naive Bayes Random Forest -

10 0.1098 0.2121 0.2109 0.1597 0.1975 0.2856 0.2199 0.1138
20 0.1098 0.1766 0.2271 0.1439 0.1803 0.3037 0.1882 0.1138
30 0.1098 0.1900 0.2156 0.1559 0.1814 0.1920 0.1567 0.1138

Machine Learning + Rules
Time Interval (sec) (τ ) AdaBoost Bagging Bayes Net J48 Multilayer Perceptron Naive Bayes Random Forest

10 0.0938 0.1572 0.1556 0.1101 0.1434 0.1954 0.1598
20 0.0938 0.1245 0.1619 0.1033 0.1264 0.1967 0.1340
30 0.0938 0.1396 0.1550 0.1078 0.1193 0.1284 0.1079

Table 4: Experiment 3: MSE for Estimating Student Skill (Dataset A)

0.0938, and R with 0.1138. We see that every classifier for
ML+R and most of the classifiers for ML outperformed the
random baseline. However, in this dataset, none of the clas-
sifiers for ML outperformed the “always predict 1” baseline,
which was 0.0895 for this dataset. For ML+R, AdaBoost
was the only classifier that was close to this baseline with
an MSE of 0.0938. This suggests that, for this dataset, it is
better to just always predict that a student knows all the skills
with likelihood 1.0. The ground truth annotations were pro-
vided by hand by researchers in our team, and only those
annotations for which two separate researchers were confi-
dent were kept. Because of this, most annotations are for
1.0 values (in our game it’s easier to assess that a student
knows something than the opposite). This makes this dataset
skewed, and results on it concerning student skill predic-
tion not very meaningful, compared to those from Dataset
B where the ground truth was annotated directly by the stu-
dents. However, we included them for completeness.

Experiment 4: We use the values from ML+R in Table 4 to
compare against PFA. PFA could not issue predictions for
all the skills, since for some of them there was no ground
truth that was either 0 or 1, and thus we could not train the
model using logistic regression. Assuming baseline 0.5 pre-
dictions for those skills, PFA achieves an error of 0.0655,
lower than the best results we obtained (0.0938). Over the
skills in which it could make predictions, PFA achieved an
MSE of just 0.0450. Recall that in order to make PFA appli-
cable, we feed part of the ground truth as part of its input,
which would not be available in realistic conditions. Thus,
this gives us a lower bound on the MSE that we can expect to
achieve if our approach perfectly identified all instances of
successful and unsuccessful skill application. An immediate
line of future work is to replace Equation 3 in our approach
by PFA, which we expect will significantly improve results.

Discussion: Our experimental evaluation shows that our
proposed approach outperforms the baselines in extracting
information that is useful for knowledge tracing via the
combination of machine learning to predict problem solving
strategy and domain knowledge rules (which performs bet-
ter than either of the two approaches in isolation). We notice
that different machine learning techniques provide better re-
sults under different time intervals. This might be due to the
difference in feature vectors at the given time intervals.

Conclusions
This paper presents an approach to player knowledge trac-
ing for an educational game. Our approach is based on inte-
grating machine learning and domain knowledge rules that
indicate when players successfully or unsuccessfully apply
skills, and using those predictions to perform knowledge
tracing. Our empirical analysis with data from real users
shows that we can predict a student’s understanding of skills
with relatively low Mean-Squared Error: much lower than
the baselines, and very close that achieved by PFA in an ide-
alized situation were ground truth of the successful or un-
successful application of skills was available. As part of our
future work, we would like to expand our domain knowl-
edge rules and connect this knowledge tracing model with
the PCG approach developed in our previous work (Valls-
Vargas, Zhu, and Ontañón 2017).
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