Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

Modelling Player Understanding of
Non-Player Character Paths

Mengxi Xoey Zhang, Clark Verbrugge
McGill University
Montréal, Canada

xoey.zhang @mail.mcgill.ca, clump@cs.mcgill.ca

Abstract

Modelling a player’s understanding of NPC movements can
be useful for adapting gameplay to different play styles. For
stealth games, what a player knows or suspects of enemy
movements is important to how they will navigate towards
a solution. In this work, we build a uniform abstraction of
potential player path knowledge based on their partial obser-
vations. We use this representation to compute different path
estimates according to different player expectations. We aug-
ment our work with a user study that validates what kinds of
NPC behaviour a player may expect, and develop a tool that
can build and explore appropriate (expected) paths. We find
that players prefer short simple paths over long or complex
paths with looping or backtracking behaviour.

Introduction

The difficulty of a stealth or combat game is strongly af-
fected by player knowledge of enemy movements. Previous
playthroughs, outside knowledge, as well as general gam-
ing experience allow players to make increasingly strong
assumptions about non-player character (NPC) behaviours,
and thus better predict or identify safer or more strategic
movement options in game levels. Modelling player as-
sumptions and expectations of NPC movements provides an
insightful mechanism for understanding how players may
attempt to solve a level, particularly over repeated play. It
also offers potential for adapting game difficulty by dynamic
modifications that either conform to or violate expectation.
In this work we describe an algorithmic approach to esti-
mating and representing player knowledge of NPC move-
ments. We base our design on a uniform representation
of partial observations, applying algorithmic and heuristic
techniques to build different estimations of position and ex-
pected movement. We do not aim at open, unbounded pre-
diction; rather, our focus is on how players may fill the gap
between two observations, reflecting the use of prior, partial
knowledge that provides consistent, but not identical infor-
mation, as may be acquired from repeated playthroughs.
The full extent of individual player knowledge is of course
beyond what can be acquired from simple game logging.
Our approach is aimed at building the core techniques that

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

257

enable an exploration tool to better understand and experi-
ment with what information becomes available to a player,
given specific NPC routes, level geometry, and incomplete
observation. We thus define a baseline system that allows
for exhaustive modelling of possible NPC positions, con-
strained by the gap-time and filtered by knowledge of level
geometry. Players may also attribute movement character-
istics or make assumptions about NPC behaviours as well.
Our design naturally incorporates different constraint mod-
els that reduce pathing possibilities to better represent player
expectation.

Algorithmic and representational design is supported by
a non-trivial experimentation and visualization tool built
into Unity®. This allows for flexible exploration of differ-
ent, constrained models of player expectation given differ-
ent segments of NPC observation. The choice of path con-
straints we offer is further justified by data gathered from a
small user study.

Our work is intended to facilitate design exploration of
NPC movements and geometry, and to provide a tool for
further understanding of how gameplay may be learned and
optimized through repeated player experience. Specific con-
tributions of this work include the following:

e We construct a generic model of player path observations
which accommodates a variety of possible observation
sources and expectation constraints.

e We provide an algorithm for computing an exhaustive rep-
resentation of possible movements, as well as extensions
that either work through our formal representation or in-
corporate simple constraints to reduce the set of possible
behaviours according to different models of player expec-
tation.

e Our approach is implemented and demonstrated in a non-
trivial tool within the open-source Unity® framework.
This allows for flexible visualization and exploration of
expected movement under different constraints.

e Our design approach is supported by a small-scale user
study that shows players generally expect NPC to follow
simple, non-looping paths with minimal backtracking.

Background and Related Work

Stealth is one of many genres of video games that calls for
players to develop and employ strategies to avoid dynamic,

patrolling or static enemy agents. This style of video game
typically requires the player to hide from the non-player en-
emies in order to successfully achieve a goal.

In such games NPCs frequently behave in a predeter-
mined and predictable way. This presents a puzzle context,
where (among other gameplay mechanisms) the player uses
current in-game and previous observations to predict future
NPC movements in order to help evade enemies or hide from
them. This knowledge may come from current, in-game ob-
servations, observations made in previous playthroughs, as
well as from external resources and general player experi-
ence in other, similar games. Accumulation of this knowl-
edge is essential to the strategic decisions made in solving a
stealth level.

Existing research in path modelling is primarily focused
on understanding and predicting player motion in order to
control NPC behaviour. This is useful for designing agents
that can interact with users creatively (Singh et al. 2016),
apply basic strategy to intercept enemies (Tastan, Chang,
and Sukthankar 2012), attempt to appear ‘“human-like” in
understanding how and where a player may move (Hladky
and Bulitko 2008), and (going outside of games) as a means
of estimating pedestrian behaviour (Yin et al. 2016). Mod-
els of human motion are often based on learning Al sys-
tems, but may also incorporate other approaches, such as use
of particle systems for estimating occluded position (We-
ber, Mateas, and Jhala 2011), and steering systems (Tas-
tan and Sukthankar 2011) for physically motivated move-
ment constraints. Further, heuristic constraints can be de-
rived based on looking for similarities in observed move-
ment pattern (Aparicio, IV and Caban 2009), as well as
gameplay-specific properties, such as a quantified notion of
the “danger” or “risk” inherent to, and thus affecting differ-
ent path choices (Tremblay, Torres, and Verbrugge 2014).

Modelling the “opposite” perspective, that is what a
player expects of NPC movement, is less common, although
possible with generic planning systems that do not make as-
sumptions about human or Al agency (Geib et al. 2016).
Particle approaches and other techniques that generate prob-
abilistic occupancy maps can also be used for making po-
sition estimates. The stealth game Third Eye Crime (Isla
2013), for example, is well known for incorporating posi-
tive and negative knowledge from an AD’s perceptual sys-
tem (Isla and Blumberg 2002) into the gameplay, although
again in terms of modelling the player. Since players may
also attribute human-like properties to NPC movement (Hei-
der and Simmel 1944; Roemmele et al. 2016), modelling
players and modelling NPCs from a player perspective likely
has some degree of synergy, although stealth NPC move-
ment tends to have predictable, algorithmic properties, de-
signed to fit the game play or a visual objective.

Other, more widely scoped models of player behaviour
have also been performed. Knowledge of a player’s tac-
tics or strategy, for example, allows for a user-specific Al
response, whether the goal is to make a game more com-
petitive or more entertaining (Bakkes, Spronck, and van
Lankveld 2012). This of course extends broadly, motivat-
ing a generic taxonomy (Smith et al. 2011) to help clarify
the many approaches. Our approach is in this terminology a

258

universal, descriptive reaction model, interpreted, although
also grounded in user data.

Path prediction and reconstruction can also be applied to
real-life situations beyond video games. This includes di-
verse contexts, such as security monitoring, using a dynamic
oriented graph to identify moving objects and help pre-
dict abnormal behaviour (Duque, Santos, and Cortez 2007),
as well as in observing individual animal behaviour, us-
ing state—space modelling to study animal movement, bio-
geography and spatial population dynamics (Patterson et al.
2008).

Representing Movement Knowledge

Knowledge of enemy positions and movements can be ac-
quired from various sources. Wikis and strategy guides may
give locations and routes (with widely varying levels of de-
tail), 3rd party game videos provide partial sources, previous
attempts by the player can provide multiple sets of observa-
tions, and even single-game observations of cyclic behaviour
can give multiple data points on the same route.

Representing and combining this information introduces
an initial challenge. Our approach is to use a uniform model
that reduces knowledge of path behaviour to a series of spe-
cific, ordered and time-stamped observations, no matter the
source. We assume (repeated, deterministic) enemy move-
ment is partially captured by segments of prior observation.
This allows us to structure player expectation in relation to
their knowledge as a process of filling in the (unknown) gaps
between (known) segments, for which we can use different
algorithmic solutions. Search for more constrained solutions
within this space is then bounded, and the same formalism
also lets us easily incorporate a variety of constraints that
may heuristically limit the scope of expectation.

In this section we formalize our basic representation,
building a model that incorporates both knowledge and its
absence. The section following then shows how expectation
can be computed, and limited by adding assumed observa-
tions and imposing search constraints.

Segment and Path Abstraction

Our game domain ¥ is a discrete two-dimensional grid, ex-
tended into a continuous, positive time dimension: ¥ C
N2 x R*. NPCs follow polygonal, obstacle-avoiding routes
through the space, and at each point in time they have a de-
fined orientation (field of view). We form observations of
an NPC movement as a series of points that record position,
time, and orientation. We will refer to elements of point p
using the notation p(x), p(y), p(t), and p(6).

Generally, an observation is continuous over a span of
time, implying an infinite set of data points. We are, how-
ever, mainly interested in points where the observed tar-
get changes their behaviour. We thus structure path obser-
vation into segments, assuming constant motion or rotation
between two points, and creating new segments when be-
haviour changes. Observation is not assumed to be complete,
and thus a series of observed segments will have gaps, start-
ing when the player loses track of their target and ending
when they regain sight of the same target.

Figure 1: Example of a partial path with different ways to
fill in unknown gap segments

Definition 1 A segment s is a pair of points (pa, py) Where
Pa(t) < po(t).

Segments are meant to describe ordered pieces of a path, and
the condition ensures the start of the segment precedes the
end of the segment. We generally refer to p, as start(s) and
pp as end(s), i.e. the beginning and end of the segment s
respectively.

Segments may occur in two forms, indicating either
straight-line fragments of a path (path segment), or the gaps
between such fragments (gap segment). The former con-
stitute subsets of continuous observation, and for simplic-
ity assume that either (p,(z),p.(y)) = (pu(x), pp(y)), or
pa(0) = pp(0)—i.e., either position changes or orientation
changes, but not both. (Neither changes for a waiting agent,
but time must increment.) Gap segments represent a period
of missing observation that may include multiple, arbitrary
motions, and are thus only constrained by advancing time.

The duration of a segment is important to understanding
potential movements. In this work, we will commonly refer
to the time elapsed between start(s) and end(s) as At(s),
or just At if s is implied. The length of a path segment is
given by as length(s), and we refer to At (s) (or At) as
the minimum time required to get from szart(s) to end(s), at
maximum speed.

Segments can be composed into valid paths by forming
ordered sequences.

Definition 2 A valid path is an ordered list of n > 1 con-
secutive path segments S = {sg,$1, " ,Sn—1}, such that
end(s;) = start(s;y1), Vi < n — 1. A valid path may be
cyclic if end(s,—1) = start(sg), assuming modulo time.

A given valid path may form a complete path, in which
case all segments are path segments. We are of course more
interested in partial paths, which contain gaps.

Definition 3 A partial path is a valid path including at least
one gap segment, starting with a path segment, and without
consecutive gap segments. The final segment may only be a
gap segment in the case of cyclic paths.

We require gap segments to be bracketed by path segments
in order to bound the scope of non-observation. Note as well
that the condition on consecutive gaps is a simplification,
not a constraint, since adjacent gap segments can be trivially
merged and reduced to a single gap segment.

Figure 1 shows two (cyclic) partial paths, each with two
gap segments t1,t5. The dotted lines show possible be-
haviours that may have occurred during the gaps. The idea
is that, although the path segments of the two partial paths
are identical, the gap segments can be filled in with different
potential path segments.

259

NPC Movements Our design rests on the idea of knowl-
edge being acquired incrementally, building expectation up
based on past observation. This reflects the origin of our in-
terest in stealth and combat games, where in order to present
a solvable puzzle enemy NPCs often behave in a predictable
way that forms a repeated pattern of movement. Even within
this, however, different movement models can be used. We
assume a simple model: NPCs can only either move forward
at a fixed speed, rotate while standing at a single spot, or
wait. Actual movement follows a simple Manhattan move-
ment model, making discrete steps to adjacent tiles in the
grid space. More complex movement models with variable
speed, combining rotation and moving, and so forth are left
for future work.

Expectation: Filling in the Gaps

Once we have a valid partial path, we can build models that
estimate NPC position, filling in gap segments with possible
path segments. Below we discuss different approaches, as
well as a tool we built to visualize the results.

Conservative Approach Our baseline approach gives a
full representation of every position the NPC could have oc-
cupied. We iterate through each gap segment g; in the par-
tial path. Given that the amount of time elapsed At(g;), and
naively assuming that the NPC did not vary in displacement
speed, we can calculate all potential positions the guard may
have occupied between, and for how long.

Our method associates each position with labels, one rep-
resenting the earliest time an NPC may arrive at that location
having departed from the start of the gap segment, and one
for the latest time they must leave it in order to reach the end
point of the gap segment.

The labelling algorithm is essentially a BFS performed on
both the beginning and end points separately. We flood out
from the starting point start(g;), computing for each tile a
value [, as the minimum time the tile could be entered. Then
we perform the same procedure from end(g;), computing I,
as the minimum time required to reach the end. For a given
tile 7, we can define w, = At(g;)—(I,+1p), which gives the
maximum time an NPC can possibly wait at that position be-
fore continuing if they must reach end(g;) within At(g;). By
sorting the tiles by their w, value and colour-coding them,
we can see a heat-map effect. Figure 2 shows an example.

This representation has the advantage of compactly repre-
senting reachable locations, while still enabling us to recover
the (exponential) set of feasible paths by conducting a search
from start to end of the gap segment, entering a neighbour-
ing tile 7 only if it satisfies At —t. — I, > 0, where ¢, is the
time taken on the path so far. Note that this computes mini-
mal paths when At = At,,,;,,. Figure 3 shows an example of
the search space for different At, using the 3rd dimension as
time. We used blue blocks to show the additional reachable
tiles when incrementing At.

Conforming to Expectations In most games, stealth
games in particular, NPCs move in constrained, structured
ways. Guards, for example, are expected to patrol an area,
moving efficiently between locations, perhaps with pauses

e

[52] : Observed path segment

@ Start of gap segment
@ End of gap segment

D Obstacle

D Long time (>4)
"7l Medium time (2-4)

Short time (<2)

Unreachable tile

Figure 2: End result of the labelling algorithm showing each
tile labelled with [[,,l]. Colouring of each tile is based on
At = 7 and shows the maximum amount of time the char-
acter can wait on that tile.

P New reachable tile compared to 4t - 1
(P Already reachable tile at 4¢- 1

& Obstacle
»

Figure 3: Resulting search space based on increasing the
amount of time elapsed without changing the position of
start or end of a gap segment.

to look around, but with limited backtracking. The set of
paths and positions a player may expect an NPC to traverse
is thus less than the set of reachable positions computed
in the baseline conservative approach. We want to narrow
down the possibilities to paths that are more likely, based on
how a player may expect an NPC to actually move.

There are a number of different factors that can affect a
player’s expectation of possible NPC movement. Optimality
is an obvious criterion—given two points, a rational expec-
tation is that the NPC followed a minimal path. When the At
exceeds At,,;,, however, the extra time must be (presumed
to be) spent waiting, in detours or loops, or both. Other fac-
tors, such as number of turns, proximity to obstacles, may
also be considerations.

Figure 4 shows a small example. In this scenario, the two
blue paths follow minimal routes and must incorporate some
amount of waiting, with the dark blue path also including
more rotations. The red path follows a more circuitous route,
trading an assumption of waiting for sub-optimal routing.

To better predict the path taken by a NPC, we want to look
at a selection of possible paths. As seen in the conservative
approach, the larger the difference between At and At,pin,
the more paths there are to choose from, since for every unit
of time added, more possibilities emerge. Ideally, we can
search the solution space for paths that are simple first, with
a baseline assumption that players expect NPC movements
are unlikely to be sporadic, irregular or random.

Simple paths The ideal simple path does not involve dou-
bling back or revisiting tiles multiple times while minimiz-
ing number of turns. We augment minimal distance with

260

Start of gap segment
End of gap segment
Minimal segment with wait

-+ Unfavourable indirect segment

Figure 4: Example of a gap with At = 8. The two blue paths
are equally minimal in length (4), but imply the NPC paused
at some point to make up the 4 extra time units. The dotted,
red path may or be less favourable in being indirect, even
if it implies continous movement. Turning here is assumed
instantaneous.

a requirement for a minimal number of turns as well—
“straight” paths are intuitively simpler. The definition of
straight of course depends on the movement model. In our
Manhattan-based model, we have many equivalent paths in
terms of distance, that may nevertheless be seen as more or
less simple depending on how jagged, or turn-intensive they
are.

This gives us two properties we can use to reduce the
set of expected paths (and thus positions), either minimiz-
ing distance, or number of segments of constant movement.
Our interpretation of (ideal) simple paths combines these,
as the subset of minimal distance paths that are also con-
structed from as few path segments as possible. As previ-
ously mentioned, the set of minimal distance paths is easy
to compute in our representation by assuming At = At,,.
For reasonable gap sizes and obstacle density, reducing that
set to minimize segments is also straightforward.

Waiting Other constraints on expected pathing behaviour
can be based on similar properties. Pausing or waiting is
a potential movement behaviour, common in many stealth
contexts. Player expectation may thus also be informed by
the existence or distribution of excess travel time. If NPCs
do not generally pause (or vary speed), then a gap seg-
ment must be assumed to include detours of some form, and
overly quick paths will be excluded from the expectation set.
Path search in this context cannot terminate unless the time
used matches the gap time: ¢, = At.

Alternatively, if waiting is a possibility, the distribution of
pauses becomes a factor—a character that repeatedly stops
and starts is less likely than one that waits less frequently.
Tiles that can be part of paths with a single waiting event of
total duration w are trivially found as ones for which w =
At — (I, + 1p), and since (maximum) waiting time is part of
our representation we can also easily incorporate different
allocations of waiting into a path search.

Interesting Sites A further source of expectation exists in
geometric, or content-driven properties of the game space.
An NPC guard in a museum may be expected to pass by
specific artwork, or frequently return to a chair or guard
station. Interest points are clearly game-dependent, and are
best manually identified. In our implementation, when no
interest point is defined the algorithm assigns corners and

@ End of gap segment

EELRN
EE ENEE R
OO0 M0

ai=9

Figure 5: Example of two possible paths to fill the gap seg-
ment between observed path segments p; and p, without
wait time.

tiles around obstacles to be points of interest, as heuristi-
cally important occlusion and observation points in a stealth
context. To calculate a path that favours interest points,
we first calculate all reachable interest point tiles 7; with
At — (I + 1) > 0, then we simply consider paths that
include interest points where this value is largest, therefore
using up time most efficiently.

Interest points may also be incorporated by introducing
an artificial path segment, locating the NPC at an interesting
site at some time within the gap segment. The time values
(and orientation) are less determined, but can be bounded,
since for a given tile in the interesting area arrival and de-
parture must be between [, and At — [, respectively.

In the example shown in figure 5, we try to fill in a plausi-
ble path for the gap between observed path segments p; and
P2, with a duration of At = 9 in this case. Because t,,;, = 3
and is significantly smaller than At, if waiting has not been
previously observed then a shortest path may not be plausi-
ble, and we would expect a player to consider longer paths
that do not require wait time. The paths shown in cases A
and B both fulfill this requirement. The latter, however, both
explores more interesting area (the lone obstacle), and has
fewer turns, arguably making it more probable.

By analyzing previously seen path segments, we can de-
termine whether a player may have observed that an NPC
has tendency to take simple paths, interesting paths, or wait,
etc. This allows us to focus on specific properties when gen-
erating segments used to fill in gap segments.

Geometry A player’s awareness of obstacles also of
course affects their expectation of pathing possibilities. This
is easily incorporated into our approach by relaxing the base
level representation—gaps in geometric knowledge reduce
path constraints, expanding the underlying conservative set
of (expected possible) reachable positions.

Path Segment Generation Tool

The geometry, set of guard motions, and expected player en-
try and observation points affects how a player will approach
a game puzzle. In order to understand the effects of different
observations we created a tool in Unity®, which allows us to
construct simple game levels and visualize the conservative
results. This also allows us to filter and generate example
paths segments that respect our various constraints.

Figure 6 shows a screenshot of the interface. The tool
expects a discretized level as input, indicating which tiles

261

[SETTINGS]
Minimum time step is 18

Steps/Time: Walk Speed: Tl
. = 25x

27.
Tile:(9,10) has labels 1, B:-1]

[Controls & Shortcuts]
Click on tile in top-down view to toggle floor/obstacle
Hold 1+ Click tile to set START of gap seg

Hold 2 + Click tile to set END of gap seg

'R'to regenerate paths

Hover over tile to see info and tile labels A & B

Hold 'M' to set path segments

Figure 6: A screenshot of the tool built to analyze gap seg-
ments.

Figure 7: Two separate views: top-down and 3D-rotating
side view of paths generated using our tool for the gap seg-
ment indicated by the green and blue squares.

represent pathable space and which represent obstacles; for
easy experimentation tile designations can also be interac-
tively modified. Within this space one can specify a gap
segment by selecting specific start and end tiles, with At
for the gap adjusted using a slider. This dynamically fills in
and colours tiles reachable using the base conservative algo-
rithm, forming a heatmap of possible positions according to
maximum waiting time. This can be better viewed in a 3D
rotating view, where the user can visualize the length and
wait time possible at every tile as a column in the time di-
mension rendered above the level space.

Individual constraints can then be selected using check-
boxes, and a path respecting each resulting property is gen-
erated as example routes. Following the properties described
earlier, this shows shortest paths, no-waiting paths, and in-
teresting paths. Figure 7 shows examples of three different
generated paths for the same gap segment (green for short-
est, blue for no-waiting, and red for interesting). The colour-
ing of the vertical columns in the 3D view indicates when
the character can enter the tile beneath it, while the height
of each is calculated by At — (7.0, + 7.0). Although the
algorithm computes all optimal paths, the program only dis-
plays one random path when multiple equivalent ones exist
for each selected constraint.

Figure 8 shows a slightly larger example with three gen-
erated paths, following different constraints. Within the vi-
sualization we can also animate characters following each
path, allowing us to see relative differences in movement.
We used this visualization as a basis for the different exam-
ples shown to users in our human study, below.

B Start of gap segment

B Endof gap segment

Generated paths:
Shortest simple path
Interesting path
Exact steps path

Manually defined:
Known Segment(s)

Figure 8: Example of shortest simple path, exact steps and
interesting paths generated by our tool on a larger map, with
At = 26, manually defined segments and a hidden heatmap.

User Study

We validate our choice of constraints on path expectation
through a simple user study. Using the tool that we built,
we generated different paths with different features in var-
ious level setups and created video recordings to simulate
an NPC taking these generated paths. We removed the NPC
from view during gap segments and asked survey partici-
pants to choose which path the NPC had likely taken during
those segments. Letting respondents draw their own paths
was not feasible due to the complexity of imposing path and
time constraints for each gap segment.

Our survey consisted of 10 questions. Each question pre-
sented an option between two generated paths that could
have filled the gap segment presented. These paths had
a combination of different characteristics: short/long, sim-
ple/complex, interesting, with cycles, with backtracking,
with or without obstacles, etc. Through a Reddit post, we
gathered a total of 104 responses and conducted the study
under the hypothesis that players have a preference between
different pathing behaviours. The survey was designed to
verify whether players preferred certain movement patterns
over others, and it is available online for inspection (Zhang
and Verbrugge 2018).

Results Table 1 summarizes data from the survey results.
As expected, players anticipate NPC movement to be more
simple than complex. 75.0% and 68.3% of those surveyed
viewed the simple paths as more likely when presented in
levels with and without obstacles respectively, given a sim-
ple path and a complex path of equal length (p < .005). Af-
ter introducing waiting, the majority still expected the NPC
to take the simpler and shorter path, preferring waiting be-
haviour to more elaborate pathing: 67.7% over long or inter-
esting paths, and 61.8% over paths with loops (p < .025).
We also found that 72.1% of respondents were consistent
with their preference when picking the most probable path
taken, possibly based on their preconceptions of how NPCs
should move or behave, whether it is simple or complex.
Interestingly, if we show the player a longer path segment
before the gap segment where the NPC engages in waiting
behaviour, 58.7% picked the path that includes waiting to fill
in the gap. When shown a NPC engaging on a longer, more
interesting path before the gap, 67.3% chose the longer path
to fill in the gap instead (p < .005). This indicates that play-
ers take into consideration previous observations and what

262

they know does influence their expectations, and we can re-
ject the null hypothesis of players not having a preference in
NPC movement.

Table 1: Partial Summary of Survey Results

Preference
[Features Obstacle | No Obstacle [With Waiting
Simple/Short | 75.00% 68.27% 67.31% | 61.54%
Complex 25.00% 31.73% - -
Interesting - - 32.69% -
Looping - - - 38.46%

When participants are given relatively short path seg-
ments to observe before the gap segment, those who chose
a path with a loop over one with backtracking consists of
55.8% of those surveyed, which does not indicate an obvious
preference (p > .05). There was also no significant prefer-
ence between long interesting paths and patrolling back-and-
forth behaviour (51.92% to 48.08%). In these cases, there is
not enough evidence to reject the null hypothesis.

Although 67.3% of respondents claim to play video
games often, they were not asked the genre of games
they play. Due to the nature of our study, previous video
game knowledge likely influenced subject responses. Other
confounding factors in our study may include the non-
randomized ordering of the questions, as well as priming
the participants by introducing the idea of waiting within
the survey, although this was necessary to avoid confusion.
More data in more contexts would help clarify these is-
sues. Our overall conclusion is that players generally expect
shorter and simpler (“ideal”) paths, and otherwise adapt their
expectations to reflect what they have previously observed.

Conclusion and Future Work

Games are frequently attempted more than once, and under-
standing the learning curve is an important direction in im-
proving design. Our work defines an approach to modelling
observation-based knowledge of NPC movements that offers
ample flexibility to represent different kinds of player expec-
tation, and can be used within a tool for exploring how level
design and prior knowledge may interact. A user study con-
firms players have constrained expectation of NPC move-
ments, also affected by prior experience.

A number of interesting future directions are possible
from our work. Actual game integration with player tracking
data would of course be useful, and would let us validate that
our computed expectations correlate with player behaviours.
We are also interested in incorporating ambiguity into the
model, reflecting imprecision and lossiness in player obser-
vation. Introducing negative path segment knowledge would
also be interesting, as knowing where a NPC is not at dif-
ferent time frames also contributes to accurately modelling
what a player knows, what they will predict, and thus how
they will behave.

Acknowledgments

This work supported in part by NSERC grant 249902, and
by the COHESA project, through NSERC Strategic Net-

works grant number NETGP485577-15.

References

Aparicio, IV, M., and Caban, D. R. 2009. Distance-based
spatial representation and prediction systems, methods and
computer program products for associative memories. US
Patent 7,574,416.

Bakkes, S. C.; Spronck, P. H.; and van Lankveld, G. 2012.
Player behavioural modelling for video games. Entertain-
ment Computing 3(3):71-79.

Duque, D.; Santos, H.; and Cortez, P. 2007. Prediction of
abnormal behaviors for intelligent video surveillance sys-
tems. In 2007 IEEE Symposium on Computational Intel-
ligence and Data Mining.

Geib, C.; Weerasinghe, J.; Matskevich, S.; Kantharaju, P.;
Craenen, B.; and Petrick, R. 2016. Building helpful vir-
tual agents using plan recognition and planning. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.

Heider, F., and Simmel, M. 1944. An experimental study
of apparent behavior. The American Journal of Psychology
57(2):243-259.

Hladky, S., and Bulitko, V. 2008. An evaluation of mod-
els for predicting opponent positions in first-person shooter
video games. In IEEE Symposium On Computational Intel-
ligence and Game, 39—46.

Isla, D. A., and Blumberg, B. M. 2002. Object persistence
for synthetic creatures. In Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multia-

gent Systems: Part 3, AAMAS °02, 1356-1363. ACM.

Isla, D. 2013. Third Eye Crime: Building a stealth game
around occupancy maps. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Patterson, T. A.; Thomas, L.; Wilcox, C.; Ovaskainen, O.;
and Matthiopoulos, J. 2008. State—space models of indi-
vidual animal movement. Trends in Ecology & Evolution
23(2):87-94.

Roemmele, M.; Morgens, S.-M.; Gordon, A. S.; and
Morency, L.-P. 2016. Recognizing human actions in the
motion trajectories of shapes. In Proceedings of the 21st In-
ternational Conference on Intelligent User Interfaces, 271—
281.

Singh, K. Y.; Davis, N.; Hsiao, C.-P.; Jacob, M.; Patel, K.;
and Magerko, B. 2016. Recognizing actions in motion tra-
jectories using deep neural networks. In Twelfth Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.

Smith, A. M.; Lewis, C.; Hullet, K.; Smith, G.; and Sullivan,
A. 2011. An inclusive view of player modeling. In Proceed-
ings of the 6th International Conference on Foundations of
Digital Games, 301-303.

Tastan, B., and Sukthankar, G. 2011. Leveraging human be-
havior models to predict paths in indoor environments. Per-
vasive and Mobile Computing 7(3):319-330.

Tastan, B.; Chang, Y.; and Sukthankar, G. 2012. Learn-
ing to intercept opponents in first person shooter games. In

263

IEEE Conference on Computational Intelligence and Games
(CIG), 100-107.

Tremblay, J.; Torres, P. A.; and Verbrugge, C. 2014. Mea-
suring risk in stealth games. In Proceedings of the 9th Inter-
national Conference on the Foundations of Digital Games.

Weber, B.; Mateas, M.; and Jhala, A. 2011. A particle model
for state estimation in real-time strategy games. In AAA[
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 103-108.

Yin, Q.; Yue, S.; Zha, Y.; and Jiao, P. 2016. A semi-Markov
decision model for recognizing the destination of a maneu-
vering agent in real time strategy games. Mathematical
Problems in Engineering 2016. Article ID 1907971.

Zhang, M. X., and Verbrugge, C. 2018. Path prediction
study. https://goo.gl/forms/9KbNednVIZvxyHGs2.

