Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

Exploring Gameplay with AI Agents

Fernando de Mesentier Silva
New York University
Game Innovation Lab
Brooklyn, NY 11201

Navid Aghdaie
Electronic Arts
209 Redwood Shores Pkwy
Redwood City, CA 94065

Abstract

The process of playtesting a game is subjective, expensive
and incomplete. In this paper, we present a playtesting ap-
proach that explores the game space with automated agents
and collects data to answer questions posed by the design-
ers. Rather than have agents interacting with an actual game
client, this approach recreates the bare bone mechanics of
the game as a separate system. Our agent is able to play in
minutes what would take testers days of organic gameplay.
The analysis of thousands of game simulations exposed im-
balances in game actions, identified inconsequential rewards
and evaluated the effectiveness of optional strategic choices.
Our test case game, The Sims Mobile, was recently released
and the findings shown here influenced design changes that
resulted in improved player experience.

Introduction

Player engagement is a crucial part of any game. Immersing
the players in the game experience not only results in longer
playing sessions, it also keeps them interested in coming
back to the game. In contrast, experiencing inconsistent be-
haviors or an unnatural cycle of actions can result in early
churn from the game.

To ensure the game provides players with the intended ex-
periences, designers conduct playtesting sessions. Playtest-
ing consists of having a group of players experimenting
with the game during development. Through it, designers
not only want to measure the engagement of players, they
also want to understand how interactions reflect in their sys-
tem. One main point of playtesting is to discover elements
and states that result in undesirable outcomes. As a game
goes through the various stages of development, it is essen-
tial to continuously iterate and improve. Relying exclusively
on playtesting conducted by humans can be costly. Em-
ploying automated agents could reduce development costs
through faster play sessions and the thorough exploration of
the game space in much shorter time. These benefits can be-
come even more valuable as a game grows in size, increas-
ing the space of possible actions. Automated agents are also

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Igor Borovikov
Electronic Arts
209 Redwood Shores Pkwy
Redwood City, CA 94065

159

John Kolen
Electronic Arts
209 Redwood Shores Pkwy
Redwood City, CA 94065

Kazi Zaman
Electronic Arts
209 Redwood Shores Pkwy
Redwood City, CA 94065

capable of playing the game trying to mimic the same deci-
sions multiple times in order to generate statistically signifi-
cant results.

Unexpected scenarios are not the only focus of playtests.
During iterating on the game mechanics and looking for
an ideal tunning, playtesting is used to gauge the impact
of changes made to the game. Determining if changes had
the desired impact on the gameplay or comparing progres-
sion over different builds of the game can also be made eas-
ier with the use of Al Agents. Agents can explore different
routes through the game and statistical results can be used to
compare the evolution of gameplay over different iterations.

In this paper, we present our work on using Al agents to
facilitate the process of playtesting a game. In the next sec-
tion, we discuss related work. We then present The Sims
Mobile, the focus of our game testing efforts. After this in-
troduction, we elaborate our approach and the justifications
for choosing it over a simpler, more straight forward, strat-
egy of implementing the agent on the game client. We then
show four use cases that were created following questions
from the designers of the game. We later compare the suc-
cess of our chosen approach in contrast with the game client
approach. Lastly, we discuss our results, present our conclu-
sions, and discuss future work.

Related Work

The concept of using agents to help playtest games has
been previously explored by several researchers. De Mesen-
tier Silva et al. investigated how using agents to automate
playtesting could help designers of contemporary board
games (de Mesentier Silva et al. 2017a; 2017b; 2018a). With
a focus on the game Ticket to Ride, their work presents four
heuristic-driven agents tailor made to play the game. They
present analyses that originate from the data gather by sim-
ulating the game with their agents and could help designers
fine tune the game. The cases shown are interesting and in-
formative, but it is hard to gauge with those were scenarios
raised during development. Our approach was built to an-
swer designer questions.

While we propose to use agents as a tool to help design-
ers, other approaches to algorithmically address balance ex-
ist in the literature. Hom et al. presented Al techniques to

optimize balance in abstract board games (Hom and Marks
2007). Using a genetic algorithm, rules were searched in or-
der to optimize for balance, represented by the number of
draws and the advantage of going of going first. Krucher
in turn looked to balance a collectible card game (Krucher
2015). By rating and modifying cards, Al agents would de-
cide actions to take. Cards would be automatically modi-
fied following gameplay. Jaffe et al. analyze the contribu-
tion of several features in the game (Jaffe et al. 2012). These
features are automatically measured and tracked on a edu-
cational card game. Dormans evaluates the economy of a
game and its impact on strategy (Dormans 2011). With the
use of a framework designed to track the flow of resources
enabling simulation and balance of games before they are
built. Mahlmann et al. focuses on the card game Dominion,
discussing how to achieve a balanced card set (Mahlmann,
Togelius, and Yannakakis 2012). By playing the game with
three different agents, intersections were found in the win-
ning sets of different agents. These cards were deemed to
be part of a set that contributed to a more balanced game,
regardless of strategy. This work successfully demonstrates
agent-based game balance evaluation.

Another dimension of research focuses on investigating
approaches where Al and Machine Learning can play the
role of a co-designer, making suggestions during develop-
ment. This effort is called mixed initiative design (Yan-
nakakis, Liapis, and Alexopoulos 2014). Liapis et al. pre-
sented a tool for creating real time strategy game maps (Li-
apis, Yannakakis, and Togelius 2013). The tool, called Sen-
tient Sketchbook, would make suggestions on how to change
the proposed map design in order to optimize for a number
of different features. Smith et al. presents a 2D platformer
level designing framework (Smith, Whitehead, and Mateas
2010). Users can create and manipulate key elements in the
level and an algorithm proceeds to complete the level, guar-
anteeing its playability. Shaker et al. discusses Ropossum, a
level design tool for the Cut the Rope game (Shaker, Shaker,
and Togelius 2013). The work can address level playability,
finish a level with incomplete design or generate a new one.

Other approaches have also touched on the contributions
Al can make for the game design process. Browne et al.
generates entirely new abstract games by means of evolu-
tionary algorithms (Browne and Maire 2010). Games gen-
erated are measured in terms of predefined features of qual-
ity (Browne 2008). The most interesting designs generated
were later then published. Salge et al. relates a games’ de-
sign to the concept of relevant information with the use of
an adaptive Al (Salge and Mahlmann 2010). Smith et al.
addresses the behavior emanating from a design by hav-
ing an engine capable of recording play traces (Smith, Nel-
son, and Mateas 2010). Nelson discusses alternate strate-
gies to gather information from games, other than empir-
ical playtesting (Nelson 2011). Nielsen et al. relates qual-
ity in a game to the performance of multiple general game
playing algorithms (Nielsen et al. 2015). Isaksen automates
playtesting, but with the goal of exploring the space of possi-
ble games represented from the concept of the game Flappy
Bird. Variants with different game feel and difficulty are
deemed interested and further explored (Isaksen et al. 2015;

160

Isaksen, Gopstein, and Nealen 2015). De Mesentier Silva
et al. searches the space of possible strategies for simple
and effective introductory heuristics for playing blackjack
and HULHE Poker (de Mesentier Silva et al. 2016; 2018b;
2018c).

The Sims Mobile

The Sims Mobile is a mobile entry from the very popular
game franchise The Sims. Gameplay focuses on “emulat-
ing life”: players create avatars, called Sims, and conduct
them through everyday activities. Common Sims actions can
take range from cooking meals to going on dates with other
avatars. The Sims Mobile is a “sandbox” game, where there
is not a predetermined goal to achieve and instead players
craft their own experience.

An important game mechanic revolves around managing
your resource pool. Resources are required to perform ac-
tions. Each Sim has their own pool of resources. In addition
to resources, actions also require time to be performed. Af-
ter selecting an action for their avatar, such Sim is locked
for the duration of it. Actions have a cool down restriction,
meaning the same Sim can only repeat this action after such
cool down is over. Lastly, resources are both recovered over
time, as well as through the execution of specific actions.

Another core gameplay elements are events. To improve
their relationships Sims have to complete specific in-game
events. During an event, players have a set amount of time
to complete specific actions in order to succeed. Each ac-
tion rewards event experience (event XP) and the total XP
acquired by the end measures the success of the Sim.

We conducted the reported work on development builds
before public release. The game received numerous updates
since then, until it reached the current published product.

Approach

In order to playtest using Al agents, we need a model of the
game mechanics. We originally attempted to implement Al
agents controlling the actual game client. A series of lim-
itations impeded this approach. First, the game mechanics
could only be driven as fast as the client allowed. Since hu-
man gameplay was the only use case, it was built to fast
enough to respond to human finger tapping, but no faster.
Second, neither graphics nor animation could be turned off,
skipped, or otherwise bypassed. Rendering animations and
user interface elements for our agent wasted computation
time. Finally, the in-games menus could not be turned off as
well, so the agents had to navigate them as part of their logic.
It was also impossible to fast forward the time spent waiting
for actions to be performed. These reasons, combined with
having to rewrite the agent every time a new build of the
game is released, forced us to search for a new approach.
The Sims Mobile uses a collection of JSON files to store
game parameters subject to tuning. With the tunning files,
we decided to re-implement the game mechanics as an appli-
cation separate from the game client. This approach brought
several advantages: complete control over the game state,
graphics and UI avoidance, and the ability to advance the
game clock when necessary. With the simulation of game

mechanics, due to all the advantages listed above, gameplay
runs at a much faster speed. The increase in speed is roughly
thousand fold for executing in-game actions. Despite hav-
ing to re-implement the mechanics, we only need a slice of
the game. Starting with the core system, we added more me-
chanics as needed for the analysis in question.

Fast simulation allowed for the application of search-
based Al techniques. The system runs about a thousand ac-
tions every second, making it suited for future lookahead
techniques such as A*. Given that all the agents in this pa-
per are solving shortest path problems, A* would provide
the globally optimal solution (and we exclude sub-optimal
human-like behavior). This approach proved to be a more
powerful technique than what we could explore by driving
the game client. In the results section, we look further into
the comparison between the two approaches.

Using the A* Algorithm

Our experiments were agreed upon in consultation with the
game designers with whom we identified clear goals for the
agents. Requirements to reach these goals are explicit and
the rewards for each action usually have some direct impact
on reaching the conditions. For this reason, we decided to
use the A* algorithm to play the game. The challenge is then
to build a heuristic that can target the gameplay style that we
are looking for in an experiment.

Although the elements that influence the goal are clear,
building a heuristic from them is not. Weighting the different
components to achieve the desired outcome is not simple.
The parts have to be managed delicately and minor changes
can result in different strategies.

The experiment guides the heuristic function construc-
tion. We selected the experiments after meeting with the
game testing team. They propose questions about the game
tuning, such as imbalance or possible exploits. We then
write a heuristic aimed at exploring the issues raised. This
means heuristics are frequently changed or re-written. These
heuristics target different in-game activities, and for each
case, various elements are used to create effective functions.

Our experiments can require thousands of actions to be
completed. To reduce the amount of time the agent spends
to pick an action, we limit the amount of nodes A* can
search. For our experiments, we limit the search to 2000
nodes for every action. Consequently A* might not find the
optimal action to take. However, from testing we concluded
that searching 2000 nodes achieved the desired results in all
experiments, and had fast computational speed, with each
decision taking at most one second.

Some actions in the game have extremely similar rewards.
Difference in actions might be only in the cool down time.
When applying the heuristic, we could have multiple game
states with the same evaluation. When nodes have the same
priority, we randomly choose which one to evaluate.

Use Cases

In this session, we detail four different use cases that were
assessed by having an A* agent playtest the game. First, we
state the question raised by the designers. Then we proceed

161

to give a detailed description of the in-game representation
of the use case. Finally, we present the results and discuss
how they influenced design decisions.

Use Case: Relationship imbalance

Question: Is there a significant imbalance when comparing
different relationship categories?

For two Sims to develop a relationship, they need to pur-
sue one of three mutually exclusive categories: Friendship,
Romance, and Rivalry. Each relationship type requires com-
pletion of five events in a specific order, e.g., Friendship pro-
gresses through Friends, Close Friends, Great Friends, Best
Friends, and finally, BFFs. An imbalance between categories
implies that players need to put significantly more effort to
pursue one category compared to another. The metric for this
difference is the number of the actions required to complete
all the events for the relationship category.

Our experiment measures how many actions are needed
to complete the events in each category. Our objective is to
compare the number of events between categories consid-
ering their order, e.g., compare the first events of category
A with the first event of B and C. For this experiment, our
heuristic rewards the agent for acquiring relationship expe-
rience points and for successfully completing relationship
events. Our simulation stopped when the Sim completed the
fifth, and last, event of any relationship category.

There are aspects that make exploring relationships
unique compared to other experiments. The players do not
select their relationship category by navigating a menu, like
they do for careers and hobbies. Instead, the category of the
first event chosen leads the relationship to that category. An-
other feature unique to relationships are actions with delayed
effect dependent on the category. We do not include those in
our heuristic for this experiment, causing the A* to reach lo-
cal optimum depending on the randomization. To overcome
such, we run the experiment 1000 times and take the aver-
age of those runs. Repeated sampling allowed the use of the
same heuristic to explore all categories of relationship. Since
the first event for all categories are very similar in require-
ments, whichever is first on the list of actions is selected.
This randomization guarantees that we have a significant
amount of samples for each category after 1000 runs.

Figure 1 shows the result of the experiment. While the
agent achieved Friendship and Rivalry events with only
three or four appointments, the second event of the Romantic
category, required thirteen appointments. This outlier show-
cases that more effort was needed to progress in Roman-
tic relationships. Following this find, designers analyzed the
tuning data for the second event of each category and dis-
covered the second event for the Romantic relationship to
require about two times more experience than any other sec-
ond event. The game team adjusted the number of appoint-
ments for this event over the next iterations of the game.

Use Case: Time needed to progress in a career

Question: How many actions are needed to progress in the
careers?

Players can pick one career for each of their Sims. Char-
acters progress in their career by completing events specific

214 Friendly
e 1 B Rivalry
= Romantic
(=]
8 10
©
[T
o 8
5 ° !
K] 5
g © -
S 4 4 4 4 4
w : 3 3 3 3
= .
g 2
>
I

& o 2 & = & g5 g% o 2 K 5 o s 5

?;'\e“‘a' Q{\z“ﬁ ?{\e“é Q{\e‘f‘d o< @\l""‘\ o0 030""3 waﬁe 6@"‘3 (\.‘_at‘?f’ ,\;\g'»"{'" aet | gu® \ e
;}e .a_‘.- 6.-‘:"’ @ o < ‘W "‘53 AL \ GE.L .i‘\}g o
A0 @ o€ . q.lot PSL"Z‘ ,a(\'(- S

?‘_'O

Relationship Events in order of progression

Figure 1: Bar chart showing the average number of actions (appointments) needed to complete each event. Events are color
coded to reflect the relationship category they belong to. The number on the top of the bar shows the rounded value of each
average. The black lines on top of the bars represent the variance. The Sweet Hearts (the second event of the Romantic category)
appears as an outlier, requiring twice as many actions as any other event. This turned out not to be the tuning the game designers

desired and was changed over the next iterations of the game.

400

300
200

347
208 315
- I I
I

100
Barista Culinary Fashion Medical

Average number of appointments

Figure 2: A bar chart comparing the number of actions (ap-
pointments) required to reach the goal in each career. Barista
is much smaller because it can only go up to level 5, while
the others are going up to level 10.

to that profession. Each career has several levels to repre-
sent the progress made and the actions of the events reward
career experience points that are used to reach higher lev-
els. Each career has a maximum level to reach and may have
different experience point requirements for their levels.
Answering this question would provide guidance to the
game team on the relative balance of different careers. To
perform this experiment, we examine the first four careers
that are available to the players: Barista, Culinary, Fashion,

162

and Medical. While the maximum level for Barista is 5, the
others can reach level 20. For our experiment, we stopped
when reaching the maximum level for Barista or level 10 on
the others. We capped these careers as it provided sufficient
data to establish the speed of progression in the early game.

The heuristic to progress in careers is similar to the re-
lationship heuristic. Career level, career experience points
and completing career events are direct rewards we look for.
The Barista and Culinary careers also have a small extra me-
chanic: Sims need to perform an action to generate an object,
such as coffee and tea for Barista and cooked dishes for Culi-
nary, which then enable them to perform a second action that
rewards experience points. For that reason we factor those
objects into our heuristic as well.

Unlike relationships, players do not execute a character
action to choose their career. They instead select from a
menu, an action requiring none of the Sim’s resources. We
run separate experiments for each career, by assigning our
desired career directly to the Sim at the start of the simula-
tion. The same heuristic was used across all careers.

Figure 2 shows the results of our experiment. Barista has
less than a third of the actions required to complete the ca-
reer, but it only goes up to level 5. Meanwhile, Culinary,
Fashion and Medical all go up to level 10, but have a dif-
ference in number of necessary actions. The game team de-
cided that these values represented their original design in-
tentions and choose not to make any changes.

Incorrect tuning discovered When running experiments
for the Barista career, we noticed that agents made unex-

Career XP Rewarded

0
0.0

7.5 10.0 125 150 175

Event XP Required

2.5 5.0

Figure 3: Line plot showing the relation between the amount
of experience required to achieve each step of the event and
the amount of career experience it rewards for reaching it.
Each step in the event is marked by a red star. This plot evi-
dences that reaching the second step takes more than double
the effort of the first one for the exact same reward.

Career | Actions Reduction (%) | p/ Action Save
Barista 5% 56.7
Culinary 26% 45.8
Fashion 20% 52.6

Table 1: Table showing how objects affect career progres-
sion. Here, p denotes in-game resources available to all play-
ers. The “Actions Reduction (%)” column shows the per-
centage of fewer actions required to achieve level threshold.
The “p / Action Save” column shows the ratio between the
amount of resources used, for all objects affecting that ca-
reer, and how many actions less they would need to take.
The Medical career objects are not availabe below level 10.

pected decisions in the case of one specific event. Usually
the agent would progress the event until it was completed.
For this specific event, however, it decided to do a hand-
ful of actions and then fast-forward the game time until
the event timed out. Instead of receiving full reward for the
event, it did only enough actions to receive the smallest re-
ward the event could give. When investigating the tuning of
such event, we pinpointed the cause of this behavior. Fig-
ure 3 shows the cost-reward relation of this event. Reaching
the second step of the event would have the agent do at least
twice as many actions when compared to stopping at the first
step, but it would still generate the same reward. When pre-
sented with this novel strategy, the game team traced it to an
error in the tuning parameters and fixed it.

Use Case: Effect of objects on careers

Question: How does object acquisition impact career
progress?
When progressing through a career, players can acquire

163

Career Evt Actions | Tot. Actions | Sessions
Barista A 75 82 2
Barista B 347 381 24

Culinary A 298 327 8
Culinary B 1506 1643 94

Table 2: Table showing the comparison of the number of ac-
tions and sessions needed for Barista and Culinary careers
on build A and build B. The Evt Actions column refers to
how many event related actions were taken. The Tot. Ac-
tions column shows the total number of actions taken during
the experiment. The Sessions column shows the number of
sessions necessary to finish the experiment.

objects specific to that career. These objects unlock object-
specific new event actions that have higher utility for faster
progression than the regular actions. The objects become
available as the Sim progresses through the career levels.

For this experiment, we wanted to gauge the impact of ob-
jects in the career progress. While we used the same heuris-
tic for exploring careers, the simulation would now award
objects to the agent the moment they were available without
an exchange of resources. We then compared it to the num-
ber of actions needed to complete the same career goals we
set out before, with no objects to use.

Table 1 shows the results of the experiment. Objects
made a bigger impact on the Fashion and Culinary careers,
while having little impact on the Barista. The Medical career
shows no impact, since objects are only available past level
10. We also displayed the ratio of the amount of resources
the players would have to exchange to acquire the objects
by the amount of actions they would save. Designers ana-
lyzed the findings and changed the tuning of the object’s to
increase their impact and make them more accessible.

Use Case: Comparing the off-time between builds

Question: Did gameplay change between builds?

With major changes between game iterations, significant
impact on the gameplay can be felt. The question “how
much impact did the changes have” is on everyone’s mind.
Using our Al agent to play both builds of the game, we can
create metrics for comparison. Since we are not simulating
the full game experience, our approach can only make punc-
tual statements, but those can point to the impact of changes.

For our experiment, we compare progression through the
Barista and Culinary careers between two significantly dif-
ferent builds named A and B for simplicity. The resource
management system is the key change between these builds,
as a consequence we expect a big impact in the gameplay
and the goals our agents want to achieve.

Table 2 shows the results of our experiments. The dif-
ference in the number of actions performed between builds
A and B is evident. For both careers, build B requires over
four times as many actions to reach the target goals. We also
compared builds in terms of sessions. A session is a period
that starts when players log into the game and ends when no
more actions are available. We saw a significant increase in

5
=

347

Simulation approach
mmm Game Client approach

279

338

329 329

&
S

208 31

NoW W
(S
S ©

=
w o o
S S o
~
&

Average number of appointments
g
S

=}

Barista Culinary Fashion Medical

Figure 4: Bar chart comparing career progress in each ap-
proach. Numbers are the average amount of actions (ap-
pointments) to reach the goal. Our approach finds a path
closer to optimal play in all but one career.

the number of sessions from the build A to B, but the length
of the session also changed. While in build A, players had
to wait in average six hours between sessions, in build B
the average wait time drops to about 45 minutes. This way,
playing build A allows faster progression, but build B incen-
tivizes players to keep checking the game throughout the day
to steadily improve their progress. The two different builds
provide very different experiences. It is up to the designers
to decide which experience they prefer.

Comparing Approaches

Earlier, we identified some of the limitations of running an
agent on the game client. We now compare the results of the
two different approaches, simulation based and game client
based, using the career experiment as the basis of our com-
parison. We are looking to compare how many actions each
approach needs to achieve the career goal. The agents of
each approach use different algorithms: while the simulation
uses A*, the game client approach uses Softmax.!

Figure 4 shows the comparison between the two ap-
proaches. The simulation based approach reaches a style of
gameplay closer to optimal in all but one case. Optimal in
this case would be using the minimum amount of actions.
The Barista stands out for the large difference. For the med-
ical career, the 2000 node A* cutoff could be moving the
algorithm into a local optimal, while the game client Soft-
max was closer to optimal play.

We can also compare the number of simulations needed
for significant results. We ran 2000 simulations for each ap-
proach, and the conclusion is obvious. The simulation with
A* agent achieves a deterministic playstyle, having no vari-
ance. In contrast, the game client Softmax agent has high
variance requiring numerous simulations for convergence.
Figure 5 compares the variance between the two approaches.
A single run of A* already achieves our goals, which bal-
ances the time spent re-implementing the mechanics.

1Namely, we used Softmax over utility of valid actions, trained
with stochastic gradient ascent to optimize linear weights of the
action parameters. During the model execution, lower temperature
reduced the variance of the results.

164

Simulation approach:
6 can stop after 1 simulation

Game Client approach:
reguires hundreds simulations

Variance average # of appointments

500 1000 1500 2000

Number of simulations

Figure 5: Comparing the variance between the two ap-
proaches. While A* on the simulation approach achieves
deterministic play and has no variance, the Softmax game
client approach has high variance and needs a considerable
number of simulations to converge.

Discussion and Conclusion

We illustrated the advantages of Al-based playtesting in
game development and how it can help designers to val-
idate their work. We have shown the limitations of trying
to implement an AI agent on the game client and proposed
the approach of building a simulator of the game mechan-
ics. Our approach gives us full control over the experiments
and avoids the difficulties of coupling with an instrumented
game client. We have also highlighted the power of this tech-
nique with four use cases proposed by the game team and
which results were later presented to the designers, inform-
ing decisions they took to make changes.

Because most games keep their data in a standard format,
it is becoming easier to write a simulation outside of the
game client. These tools may come in existence even before
a playable game client is built, even as the game is being de-
signed. Al can then have an even bigger impact in playtest-
ing, assisting from early stages in the game development,
helping speed up the production cycle, saving time and ef-
forts while achieving more balanced gameplay.

We have shown that our approach produces overall
stronger results by empowering search-based algorithms. A
basic algorithm such as A* achieves more precise results
than agents running within the limitations of the game client.

A* delivered convincing results, but for the price of de-
veloping and tuning the heuristic function. The Monte Carlo
Tree Search algorithm could be a viable alternative elimi-
nating this overhead of making a new heuristic in favor of
a custom win condition for each experiment. MCTS Agents
were proven successful at gameplaying, and we believe it
would be no different for a game such as The Sims Mobile.

References

Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and Al in
Games 2(1):1-16.

Browne, C. 2008. Automatic generation and evaluation of
recombination games. Phd thesis, Queensland University of
Technology.

de Mesentier Silva, F.; Isaksen, A.; Togelius, J.; and Nealen,
A. 2016. Generating heuristics for novice players.
2016 IEEE Conference on Computational Intelligence and
Games.

de Mesentier Silva, F;; Lee, S.; Togelius, J.; and Nealen, A.
2017a. Ai as evaluator: Search driven playtesting of modern
board games. In AAAI 2017 Workshop on What’s Next for
Al in Games.

de Mesentier Silva, F.; Lee, S.; Togelius, J.; and Nealen, A.
2017b. Ai-based playtesting of contemporary board games.
In Foundations of Digital Games 2017. ACM.

de Mesentier Silva, F.; Lee, S.; Togelius, J.; and Nealen, A.
2018a. Evolving maps and decks for ticket to ride. The
9th Workshop on Procedural Content Generation at Foun-
dations of Digital Games.

de Mesentier Silva, F.; Togelius, J.; Lantz, F.; and Nealen,
A. 2018b. Generating beginner heuristics for simple texas
hold’em. The Genetic and Evolutionary Computation Con-
ference (GECCO,).

de Mesentier Silva, F.; Togelius, J.; Lantz, F.; and Nealen, A.
2018c. Generating novice heuristics for post-flop poker. In
Computational Intelligence and Games (CIG), 2018 IEEE
Conference on, 1-8. IEEE.

Dormans, J. 2011. Simulating mechanics to study emer-
gence in games. Artificial Intelligence in the Game Design
Process 2(6.2):5-2.

Hom, V., and Marks, J. 2007. Automatic design of balanced
board games. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 25-30.

Isaksen, A.; Gopstein, D.; Togelius, J.; and Nealen, A. 2015.
Discovering unique game variants. In Computational Cre-
ativity and Games Workshop at the 2015 International Con-
ference on Computational Creativity.

Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. Foundations of Digital
Games (FDG).

Jaffe, A.; Miller, A.; Andersen, E.; Liu, Y.-E.; Karlin, A.;
and Popovic, Z. 2012. Evaluating competitive game balance
with restricted play. In Artificial Intelligence and Interactive
Digital Entertainment (AIIDE).

Krucher, J. 2015. Algorithmically balancing a collectible
card game. Bachelor’s thesis, ETH Zurich.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
Foundations of Digital Games (FDG), 213-220.

Mahlmann, T.; Togelius, J.; and Yannakakis, G. N. 2012.
Evolving card sets towards balancing dominion. In Evolu-
tionary Computation (CEC), 2012 IEEE Congress on, 1-8.
IEEE.

Nelson, M. J. 2011. Game metrics without players: Strate-

gies for understanding game artifacts. In Proceedings of the
First Workshop on Al in the Game-Design Process, 14-18.

165

Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. General video game evaluation using relative algo-
rithm performance profiles. In European Conference on
the Applications of Evolutionary Computation, 369-380.
Springer.

Salge, C., and Mahlmann, T. 2010. Relevant information
as a formalised approach to evaluate game mechanics. In
Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on, 281-288. IEEE.

Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In Artificial Intelligence and Interactive Dig-
ital Entertainment (AIIDE).

Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Lu-
docore: A logical game engine for modeling videogames.
In Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games, 91-98. 1EEE.

Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209-216. ACM.

Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.

