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Abstract

Automated game design has remained a key challenge within
the field of Game Al In this paper, we introduce a method
for recombining existing games to create new games through
a process called conceptual expansion. Prior automated game
design approaches have relied on hand-authored or crowd-
sourced knowledge, which limits the scope and applications
of such systems. Our approach instead relies on machine
learning to learn approximate representations of games. Our
approach recombines knowledge from these learned repre-
sentations to create new games via conceptual expansion. We
evaluate this approach by demonstrating the ability for the
system to recreate existing games. To the best of our knowl-
edge, this represents the first machine learning-based auto-
mated game design system.

Introduction

Game design and development requires a large amount of
expert knowledge, in terms of design and coding skills. This
skill requirement serves as a barrier that restricts those who
might most benefit from the ability to make games. Re-
searchers have touted automated game design as a potential
solution to this issue, in which computational systems build
games without major human intervention. The promise of
automated game design could not only democratize game
design, but allow for educational, scientific, and entertain-
ment applications of games currently infeasible given the
resource requirements of modern game development. How-
ever, up to this point automated game design has relied upon
encoding human design knowledge in terms of authoring pa-
rameterized game design spaces or entire games for a system
to remix. This authoring work requires expert knowledge,
and is time intensive to debug, which limits the applications
of these automated game design approaches.

Procedural content generation (PCG), the automatic gen-
eration of content for games, represents a subset of the prob-
lem of automated game design and parallels it in terms of
a burden of human authoring. PCG via Machine Learning
(PCGML) instead trains models on existing game content to
generate new game content and has been proposed as a solu-
tion to the design burdens of PCG (Summerville et al. 2017),
For example, training a system on representations of Super
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Mario Bros. (SMB) levels to learn a distribution over levels
and then sample from this distribution. However, PCGML
requires a relatively large amount of existing content to build
a distribution. Further, these methods require training data
input that resembles the desired output. For example, one
couldn’t train a machine learning system on SMB levels and
expect to get anything but SMB-like levels as output. That
is, PGCML by itself is incapable of significant novelty.

In this paper we introduce a technique that recombines
representations of games to produce novel games: concep-
tual expansion, a combinational creativity technique. This
allows us to create novel games that contain characteristics
of multiple existing games, based on machine learned rep-
resentations of these games. In this way, our approach can
produce novel output in comparison to its input. To the best
of our knowledge, this represents the first approach for gen-
erating games based upon machine learned models of game
design. Our major contributions are a new component-based
representation of machine learned game design, an adap-
tation of conceptual expansion to this representation, and
an evaluation demonstrating the ability to recreate existing
games with this approach.

Related Work

There exists a large amount of relevant prior work on au-
tomated game design. We can roughly separate this work
into two major categories: (1) work that focuses on the gen-
eration of game stages, levels, and structure, and (2) work
that focuses on the generation of game rules, mechanics, and
dynamics. We note there exists many other components of
games beyond structure and rules, such as visuals (Guzdial
et al. 2017), audio (Lopes, Liapis, and Yannakakis 2015),
and narrative (Li et al. 2014).

Game Structure

Much prior work in procedural content generation (PCG)
has focused on generating game structure in the form of
levels or puzzles for existing games (Hendrikx et al. 2013).
PCG typically requires an authored, general level represen-
tation that can then be optimized by rules, constraints, and/or
heuristics. There has been a great deal of PCG work for plat-
former levels, largely focused on Infinite Mario, a simplified
Super Mario-like game (Karakovskiy and Togelius 2012).



More recently, procedural content generation via machine
learning (PCGML) has arisen as a means of training mod-
els to produce new game content given existing game con-
tent (Summerville et al. 2017). The benefit of PCGML is
that it doesn’t require expert design knowledge. Instead, it
requires a dataset of existing content, and attempts to cre-
ate more output like this input content, which limits novelty.
Snodgrass and Ontandn (2016) applied a transfer approach
to adapt a model trained to generate levels for one game to
another game. Guzdial and Riedl (2016b) made use concept
blending (Fauconnier 2001) to recombine machine learned
models of Super Mario Bros. level design to produce new
models capable of producing level types that do not exist in
the original game.

Game Rules

Game rule generation has historically existed in the ab-
sence of generated structure, creating new rulesets for ex-
isting level designs. The majority of prior approaches to
game rule generation have relied upon authoring a gen-
eral game rule representation that is then constructed via
grammars (Pell 1992), optimized (Hom and Marks 2007;
Togelius and Schmidhuber 2008; Browne and Maire 2010;
Cook et al. 2013) or constrained (Smith and Mateas 2010;
Zook and Riedl 2014).

The General Video Game Rule Generation track (Khal-
ifa et al. 2017) serves as a competition for ruleset genera-
tors in which generators are given a level and must create
an appropriate ruleset. Khalifa et al. (2017) introduced two
initial generators, a constructive approach based on human-
authored rules and a genetic algorithm approach.

Automated Game Design

Treanor et al. (2012a) introduced Game-o-matic, a system
for automatically designing games to match certain argu-
ments or micro-rhetorics (Treanor et al. 2012b). This pro-
cess created complete, if small, video games based on an
authored procedure for transforming these arguments into
games. Cook et al. produced the ANGELINA system for au-
tomated game design and development (Cook, Colton, and
Gow 2017). There have been a variety of ANGELINA sys-
tems, each typically focusing on a particular game genre, us-
ing grammars and genetic algorithms to create game struc-
ture and rules (Cook et al. 2013).

Nelson and Mateas (2008) introduce a system to swap
rules in and out of game representations to create new ex-
periences. Gow and Corneli (2015) proposed applying con-
ceptual blending to recombine games in the Video Game
Description Language (VGDL) (Schaul 2013). Nielsen et al.
(2015) introduced an approach to mutate existing games ex-
pressed in the VGDL. Nelson et al. (2016) defined a novel
parameterized space of games and randomly alter subsets of
parameters to explore the design space.

More recent work has applied variational autoencoders to
produce noisy replications of existing games, called World
Models or Neural Renderings (Ha and Schmidhuber 2018;
Eslami et al. 2018). By its nature this work does not attempt
to create new games. In addition, it is limited to only small
subsections of existing games.
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The approaches listed thus far in this section rely on
creative recombinations or parameterization of designer-
authored or crowdsourced (Guzdial et al. 2015) repre-
sentations of game knowledge. In this paper we focus
on machine-learned game representations. Osborn et al.
(2017b) propose automated game design learning, an ap-
proach that makes use of emulated games to learn a repre-
sentation of the game’s structure (Osborn, Summerville, and
Mateas 2017a) and rules (Summerville, Osborn, and Mateas
2017). This approach is most similar to our own in terms
of deriving a complete model of game structure and rules.
However, this approach depends upon access to a game em-
ulator and has no existing process for creating novel games.

Approach

Our approach to automated game design recombines ma-
chine learned representations of game design to produce
novel games. The process is as follows: we take as input
gameplay video and a spritesheet. A spritesheet is a collec-
tion of all of the images or sprites in the game, including
all background art, animation frames, and components of
level structure. We run image processing on the video with
the spritesheet to determine where and what sprites occur
in each frame. Then, we learn a model of level design and
a ruleset for the game. We then merge the representations
of level design and game ruleset into what we call a game
graph. A game graph is a graphical representation in which
sprites become nodes and edges represent the level design
and rules of a game. Finally, we apply our conceptual ex-
pansion algorithm on these game graphs to produce a new
graph from which novel games can be constructed.

At a high level, conceptual expansion creates a parame-
terized search space from an arbitrary number of input game
graphs. One can think of each aspect of a game level de-
sign or ruleset design as a dimension in a high-dimensional
space. Changing the value of a single dimension results in a
new game design different from the original in some small
way. A game graph provides a learned schematic for what
dimensions exist and how they relate to each other. With
two or more game graphs, one can describe new games as
interpolations between existing games, extrapolations along
different dimensions, or alterations in complexity. The con-
ceptual expansion algorithm searches this space to optimize
for a particular goal or heuristic, thus creating new games.
From these new game graphs we can reverse engineer level
design models and rulesets to create new, playable games. In
the following subsections we discuss the techniques we use
to learn models of level design and game rulesets, how we
create game graphs from the output of these techniques, and
how we apply conceptual expansion to these game graphs.

Level Design Learning

We use the technique from Guzdial and Riedl (2016a) to
learn a generative model of level design. At a high level this
technique learns a hierarchical graphical model or bayesian
network that represents probabilities over level structure. We
visualize the abstract model and two base components in
Figure 1. There are a total of five types of nodes in the
learned network:



Figure 1: A visualization of the model (left) and basic build-
ing blocks from a subsection of the NES game Mega Man.
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Figure 2: A visualization of two pairs of frames and an as-
sociated engine modification.

e (3: Distribution over geometric shapes of sprite type t. In
Figure 1 each box contains a G node value.

e D: Distribution over relative positions of sprite type ¢. In
Figure 1 all the purple lines represent a D node value.

e N: Distribution of numbers of sprite types in a particu-
lar level chunk. For example in Figure 1 there are eleven
spikes, three bars, one flying shell, etc.

e S: The first hidden value, on which G and D nodes de-
pend. S is the distribution of sprite styles for sprite type ¢,
in terms of the distribution of geometric shapes and rela-
tive positions. That is, categories of sprites. For example,
in Figure 1 there are three bars, but they all have the same
S node value.

e [L: Distribution over level chunks.

L nodes are learned by a process of parsing gameplay video
and iterative, hierarchical clustering. An ordering of L nodes
is learned to generate full levels. For further detail please
see (Guzdial and Riedl 2016a). Guzdial and Riedl (2016a)
also describe how to generate new level content from the
model, and determine that the model’s evaluation strongly
correlates with human rankings of level design style.

Ruleset Learning

We adapt the game engine learning work from Guzdial et al.
(2017) to learn rulesets for individual games. This technique
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takes as input gameplay video and represents each frame as
a list of conditional facts that are true in that frame. Whereas
content modeling assumes the game is already known, this
approach does not make this assumption. The fact types
from the original paper are as follows:

e Animation: Each animation fact tracks a particular
sprite seen in a frame by its name, width, and height.

e Spatial: Spatial facts track spatial information, the = and
y locations of sprites on the screen.

o RelationshipX/RelationshipY: The RelationshipX
and RelationshipY facts track the relative positions of
sprites to one another in their respective dimensions.

e VelocityX/VelocityY: The VelocityX and VelocityY
facts track the velocity of entities in their respective di-
mensions.

e CameraX: Tracks the camera’s x position.

The algorithm iterates through pairs of frames, using its cur-
rent (initially empty) ruleset to attempt to predict the next
frame. When a prediction fails it begins a process of itera-
tively updating the ruleset by adding, removing, and modify-
ing rules to minimize the distance between the predicted and
actual next frame. The rules are constructed with conditions
and effects, where conditions are a set of facts that must exist
in one frame and effects are a pair of facts where the second
fact replaces the first when the rule fires. We visualize two
examples of this process in Figure 2. In the top row the dif-
ference of the goomba being squished or not is accounted
for with a new goomba squishing rule that adds as a condi-
tion all facts from the first frame. Later when another pair of
frames is encountered, that initial rule is modified to be more
general. This occurs as the search heuristic prefers smaller,
less complex rulesets. For further information on the ruleset
learning process please see (Guzdial, Li, and Riedl 2017).
The end result of this process is a sequence of rules that
allows one to forward simulate the entire game state. In ex-
periments, this learned ruleset allows a game playing agent
to learn to play the game as well as the true ruleset.

We modify this technique by including two extra fact
types. These are:

e CameraY: Tracks the position of the camera in the y di-
mension. We added this to cover games in which scrolling
occurs in both = and y dimensions.

e Random: Stand-in for a random variable (the original pa-
per didn’t account for random enemy behavior).

We introduced the Random fact as we parsed certain games
in which enemy behavior depended on in-engine random
variables. Thus, we added a possible modification to an ex-
isting rule to make it depend upon a random variable, which
introduced a Random fact to the conditions of a rule. If we
did not include this, the final ruleset would include many
rules where some random action (e.g. an enemy moving left
or right) would be conditioned on extraneous detail in the
frame (e.g. a relative distance to a background element) in-
stead of a random variable.



Figure 3: A subset of the game graph for one Waddle Doo
enemy sprite from Kirby’s Adventure and a relevant game-
play frame.

Game Graph

The output of the level design model learning process is
a probabilistic graphical model. The output of the ruleset
learning process is a sequence of formal-logic rules. We
combine both of these into a single representation we call a
game graph. The construction of the game graph is straight-
forward. Each sprite in our original spritesheet becomes a
node in an initially unconnected graph. Then, we add all
the information from the level design model and ruleset rep-
resentations as edges on this graph. There are five distinct
types of edges with distinct types of values or weights:

e G: Stores the value of a G node from the level design
model, represented as the x and y positions of the shape of
sprites, the shape of sprites (represented as a matrix), and
a unique identifier for the S and L node that this G node
value depends on. This edge is cyclic, pointing to the same
component it originated from. We note one might instead
store this information as a value on the node itself, but
treating it as an edge allows us to compare this and other
cyclic edges to edges pointing between nodes.

e D: Stores the value of a D node connection, represented
as a vector with the relative position, the probability, and
a unique identifier for the S and L node that this D node
value depends on. This edge points to the equivalent node
for the sprite this D node connection connected to.

e N: Stores the value of an /N node, which is a value rep-
resenting a particular number of this component that can
co-exist in the same level chunk and a unique Identifier
for its L node. This edge is cyclic.

e Rule condition: Stores the value of a particular rule con-
dition, which includes the information discussed for each
fact type above and a unique identifier for the rule it is
part of. This edge can be cyclic or can point to another
component (as with Relationship facts).

o Rule effect: Stores the value of a particular rule effect,
which includes the information for both the pre and post
facts and a unique identifier for the rule it is part of. This
edge can be cyclic or can point to another component.

We visualize a small subsection of a final game graph for
the Waddle Doo enemy from Kirby’s Adventure in Figure
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3. The cyclic arrows in blue with arrows represent rule ef-
fects that impact velocity (we do not include the full rule for
visibility). The orange dotted arrows represent rule effects
that impact animation state. The dashed purple arrows rep-
resent D node connection edges. We note that this is a very
large graph, with dozens of nodes and thousands of edges. It
contains all information from the learned level design model
and game rulesets. That is, a game can be reconstructed from
this graph. Further, the graph structure can be manipulated
in order to create new games by adding, deleting, or altering
the values on edges.

Conceptual Expansion over Game Graphs

The size, complexity, and lack of uniformity of our game
graph representation makes them ill-suited to generation ap-
proaches like machine learning or rule-based systems. Con-
ceptual expansion is an approach from a class of algo-
rithms that combine concepts (Guzdial et al. 2018), extended
to work on noisy, machine-learned knowledge representa-
tions. This makes it ideal for creating combinations of game
graphs. We represent the conceptual expansion function as:

CEX(F,A) = a1 * fi + ag * fo...an * [ (1)

Where F' = {f1...f,} is the set of all mapped features and
A = {ay,...a,} is a filter representing what of and what
amount of mapped feature f; should be represented in the
final conceptual expansion. X is the concept that we are at-
tempting to represent with the conceptual expansion. The
exact shape of a; depends upon the feature representation.
If features are symbolic, a; can have values of either 0 or 1
(including the mapped feature or not), or vary from O to 1
if features are numeric or ordinal. Note that for numeric or
ordinal values one may choose a different range (e.g. -1to 1)
dependent on the domain. In our case the f values are indi-
vidual nodes along with their incoming and outgoing edges,
where «a is then a set of variables equal in size to the total
number of the values on the incoming and outgoing edges.
Thus, applying equation 1, C EX is a final node in the new
game graph, f1, fs... f,, are existing nodes from our knowl-
edge base, and aj, as... a, are the filters on these nodes. A
particular a,; determines what edges from f; are added to the
final expanded node C EX and how those edges are altered
from the original edge in f;. In this particular implementa-
tion we fix the number of final goal nodes, but this is not a
requirement of the approach. Our new game graph is thus
the set of conceptual expansions (CEX) of each node (X)
of that new graph. Essentially, each node of our new graph
represents a combination of an arbitrary number of nodes
from the existing graphs.

As an example, imagine that we do not have Goombas
(the Mario enemy in Figure 2 as part of our knowledge
base. A conceptual expansion for Goomba (CEC°ombe)
might want to include many of the edges from the Waddle
Doo node, such as the velocity rule effect to move left and
fall (fwaddledool)a but not the ab]hty to Jump (fwaddled002)~
One can encode this with a a.,qddiedoo that filters out jump
(Gwaddiedoo = [1,0...]). We can alter a.qddiedoo t0 further
specify we want the Goomba to move half as fast as the
Waddle Doo. We might imagine other f and corresponding



a values to incorporate other information from other game
graph nodes for a final C E€°°™%( [, A) that reasonably ap-
proximates a true Goomba node.

The conceptual expansion algorithm has two steps. First,
a mapping is determined, which gives us the initial a and
f values for each expanded node. This is accomplished by
determining the best n nodes in our knowledge base accord-
ing to some heuristic h. For this paper we make use n = 10
as an arbitrary starting point. We then fill in all the values
of a according to a normalized mapping in which the best
mapped component has a values of 1.0, and the a values of
the rest follow based upon their percentile.

Given a mapping that determines the initial conceptual ex-
pansion, we optimize all of our expanded components ac-
cording to the same heuristic h. For this implementation we
make use of greedy hill-climbing, where we search for ten
neighboring conceptual expansions and either select the best
neighbor according to h or return the current expansion if it
has the best value in terms of h. To find a neighbor the sys-
tem takes one of the following actions at random: (1) add a
node to a particular component as an additional f value with
random a values, (2) remove a random f and a pair, (3) for
a particular expanded node change all values of a by a ran-
dom value [-2,2], and (4) alter a random value of a random a
value by multiplying it with a number uniformly chosen be-
tween [-2,2]. We chose [-2,2] as it the smallest whole num-
ber pair in which, with iterative alterations, we can get from
any one value to any other value.

Evaluation

Our ultimate goal for this automated game designer is for it
to reduce the burden of game design and allow for the cre-
ation of novel games. This evaluation speaks to this goal,
representing two hypothetical use-cases for a human de-
signer and developer partner for the system. For evaluation
purposes, we present a scenario where the system learns
about two games and must try to construct a third, closely re-
lated game. To allow for comparative errors, the third game
is a previously extant game that is unknown to the system.
While this is not ideal, it serves to give an initial sense of the
performance of this approach.

We began by parsing two gameplay videos of the first
level of three games: (1) Super Mario Bros., (2) Kirby’s Ad-
venture, and (3) Mega Man. We chose these three games
as they are platformers for the Nintendo Entertainment Sys-
tem and they vary in terms of mechanics and design. For
example, Mega Man’s levels move along the y-axis and in-
clude enemies with more complex behavior, impacting rules
and level design. Kirby’s Adventure devotes a fourth of its
screen to the game’s Ul, which also impacts the rules and
level design. We only parsed the first level to reduce the size
of the final game graph, given the runtime of some of our
baselines.

For this evaluation we make use of a heuristic of distance
from a partially specified goal game graph to some current
game graph. We calculate the average of the distance from
each component of the goal graph to the closest component
in the current graph, normalized between [0,1]. For com-
ponent to component distance we match the closest edges

of the two components, where if two edges are of different
types they will have a distance of 1.0, where otherwise the
distance will vary from [0,1] depending on the number of
matching values. We note that this heuristic is asymmetri-
cal. This allows the system to measure fully defined game
graphs in terms of partially defined game graphs. This dis-
tance function can be understood as an asymmetric Chamfer
distance between game graphs.

We ran two distinct experiments. For the first we simu-
lated the experience of a designer working with the system.
We give the system game graphs for its initial two games,
and the above heuristic with the goal of a third game graph
with only the level design model knowledge. This represents
the hypothetical situation in which a designer on some game
wanted to create the full game but only had a level design
defined. Our approach and the baselines then attempt to use
feedback from the heuristic to create an entire game that
matches both the goal level design model and completely
unseen rules. We quantify the quality of the final game in
terms of the distance from the indirectly accessible design
model-only goal graph and the withheld rules-only graph.
These can be understood as training and test error, respec-
tively. For the second experiment we run the reverse, given
only a rules-only game graph recreate an entire game that
matches both rules and level design knowledge. For exam-
ple, given Super Mario Bros. and Kirby’s Adventure game
graphs, and with a heuristic that gives indirect feedback on
how close a candidate game graph is to the rules of Mega
Man, to what extent can our approach and baselines recreate
the entirety of Mega Man.

We constructed three baselines. They are as follows:

e Blend: We developed a conceptual blending version of
our approach, given its history in other automated game
design systems. This can be understood as a subset of the
search space explored by conceptual expansions.

e KNN: K-nearest neighbors represents one of the few ma-
chine learning approaches that can perform with such a
small dataset. This approach returns whichever of the two
game graphs is closest to the goal.

e GA: We constructed a genetic algorithm baseline given
its application to other automated game design systems.
We make use of a population of size 10, initially made
up of the original two game game graphs and four mu-
tations of each. Our mutate function changes a random
edge value to another value in the graph (e.g. sprite name
to another sprite name, numeric value to another numeric
value). Our crossover function creates a new graph by ran-
domly selecting half of the nodes of each parent graph.
We make use of the same heuristic/evaluation function as
our system. This baseline was by far the slowest, taking
between five and twenty times as long as our approach
with a cap of one-hundred generations.

Results

We present the results for our designer-experiments (given
level design heuristic, create level design and rules) in Ta-
ble 1 and our developer-experiments in Table 2 (given rules



Mario Kirby Mega Man
baseline design error rules error | design error rules error | design error rules error
(train) (test) (train) (test) (train) (test)
Blend 0.394 0.404 0.609 0.130 0.422 0.413
KNN 0.285 0.180 0.645 0.270 0.456 0.148
GA 0.285 0.180 0.645 0.134 0.454 0.163
Expansion 0.282 0.110 0.531 0.126 0.396 0.189

Table 1: Errors for given level design evaluation. The systems were given a level design and tasked with creating a game with

a matching level design and appropriate rules.

Mario Kirby Mega Man
baseline rules error  design error | rules error design error | rules error  design error
(train) (test) (train) (test) (train) (test)
Blend 0.152 0.623 0.09 0.664 0.127 0.727
KNN 0.180 0.400 0.105 0.638 0.148 0.525
GA 0.143 0.537 0.103 0.672 0.143 0.592
Expansion 0.134 0.345 0.08 0.536 0.118 0.502

Table 2: Errors for the given rules evaluation. The systems were given a ruleset and tasked with creating a game with a matching

ruleset and appropriate rules.

heuristic, create rules and level design). Our approach out-
performed the baselines in all but one case.

The developer-experiments appear significantly more
challenging for all of the approaches. This matches our intu-
ition that there could be many possible level designs for the
same ruleset (e.g. there are multiple levels in a single game),
while a particular level design model limits the kinds of rule-
sets that can successfully navigate the levels. For example,
jump distances determine valid sizes of gaps.

For the designer experiment with Mega Man as the goal
the KNN baseline outperformed all approaches in terms of
the rules (test) error. We anticipate the issue was that Mega
Man’s level design is not as tightly related to its rules, given
that our approach and the GA baseline outperformed the
KNN in terms of design (training) error. This follows from
the fact that Mega Man receives a number of powerups that
alter how he can move through the level.

Discussion

Our results demonstrate that our system can create games
that more closely match a desired game given a distance
to a partial specification of that game. Our system does not
need a goal and could work with any appropriate heuristic.
Thus one could create new games by optimizing for surprise,
playability, or anything else one might consider.

For the sake of a quantitative evaluation, this paper fo-
cused on recreating existing games from a partial specifi-
cation. However, the system can be used to create entirely
novel games given a different heuristic. We anticipate that a
full human subject study of generated games from our sys-
tem will be required to investigate its value as a designer.

While the three games we chose as a dataset for this game
differ from one another, they are all three platformer games
originally published on the Nintendo Entertainment System,
with two coming from the same company. Thus, we antici-
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pate a need for a more complete study with multiple games
from multiple eras of game design. In particular, we antic-
ipate the need for new computer vision approaches for de-
termining level geometry from video for 3D games and new
fact types for games with significant mechanic variation (e.g.
large amounts of menus, hidden information, etc.).

Conclusions

Automated game design has been restricted by the ability of
its developers to find and encode high-quality design knowl-
edge. We present an approach that generates new games
by running conceptual expansion over a knowledge base of
machine-learned representations of game designs. We eval-
uate our system in a simulated interaction with designers
and developers on three classic games, and find that it out-
performs state-of-the-art baselines on this task. To the best
of our knowledge this represents the first machine learning-
based automated game designer.
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