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Abstract
The ability of digital storytelling agents to evaluate their
output is important for ensuring high-quality human-
agent interactions. However, evaluating stories remains
an open problem. Past evaluative techniques are either
model-specific— which measure features of the model
but do not evaluate the generated stories —or require
direct human feedback, which is resource-intensive.
We introduce a number of story features that corre-
late with human judgments of stories and present algo-
rithms that can measure these features. We find this ap-
proach results in a proxy for human-subject studies for
researchers evaluating story generation systems.

Introduction
Narrative is an important tool that humans use to convey in-
formation between one another. It allows people to recount
previous experiences, entertain an audience, and describe
the world. If we want digital agents to be able to communi-
cate with humans, it follows that these agents should be able
to tell narratives that are relatable to humans. However, low-
quality stories are not likely to engage human audiences. It
is thus in the best interest of developers of story generators
to estimate how effective these systems actually are.

Researchers commonly apply human-subject studies to
evaluate generator quality. Researchers can take a number
of generated stories and ask humans to judge their features,
e.g. grammaticality or novelty. The judgments reported by
these subjects can be used to estimate the quality of the gen-
erator: if the examined stories are judged as poor, there may
be deficiencies with the generator.

The human-subject study is the gold standard for evalu-
ating narrative generation systems, but such protocols are
costly to run in terms of time, human resources, and partic-
ipant compensation. Because of these constraints, this eval-
uation methodology is not conducive to rapid prototyping
or model calibration. While humans are currently the best-
equipped to evaluate story quality, it would be beneficial for
researchers to also have reliable proxies for human judg-
ments of story quality. Researchers can use these proxies
to rapidly iterate on generation algorithms and save human-
subject studies until necessary. In this work, we define a
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set of quantitative measures that collectively serve as such
a proxy and validate them against human subjective ratings
of story quality.

We describe two main contributions: (1) We describe
four story features—grammaticality, temporal ordering, lo-
cal contextuality, and narrative productivity—that correlate
with human judgments of story quality. (2) We provide
and evaluate quantitative measures—algorithms that can be
run—that correlate with human judgments of the above story
features.

Background and Related Research
Automated Story Generation has been a research prob-
lem with a long history. The most popular techniques
have been symbolic and logical planning (Meehan 1977;
Lebowitz 1987; Cavazza, Charles, and Mead 2002; Pérez y
Pérez and Sharples 2001; Porteous and Cavazza 2009;
Riedl and Young 2010; Farrell and Ware 2016), case-based
and analogical reasoning (Turner 1994; Gervás et al. 2005;
Ontanón and Zhu 2010). Machine learning has been used
to attempt to learn story domain models or to identify seg-
ments of story content available in an existing repository
to assemble stories (Swanson and Gordon 2012; Li et al.
2013). Recurrent neural networks attempt to model story
progression by learning from large-scale textual corpora
(Martin et al. 2018; Khalifa, Barros, and Togelius 2017;
Fan, Lewis, and Dauphin 2018; Roemmele 2018; Clark, Ji,
and Smith 2018). Most story generation systems are capable
of producing stories of only a few sentences to a paragraph.

One of the most commonly used evaluation techniques in
story generation domain is the human-subject study (Lukin,
Reed, and Walker 2017; Li et al. 2013; Zhu and Ontanón
2013). Human-subject studies typically involve the subjects
interacting with the story generation system or with the gen-
erated stories of the system. However, there are numerous
other existing evaluation techniques that do not require di-
rect human involvement.

Previous researchers have used quantitative metrics to
predict the quality of machine learning-based generative
systems, including those for neural machine translation
(Bahdanau, Cho, and Bengio 2014; Cho et al. 2014), story
generation (Lukin, Reed, and Walker 2017; Martin et al.
2018; Fan, Lewis, and Dauphin 2018), and image caption-
ing (Vinyals et al. 2015; Xu et al. 2015). For example, per-
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plexity is a measure of the ability of a probabilistic system
to predict proper output as compared to a gold standard test
dataset (Jelinek et al. 1977). It is often used as a measure of
the quality of generated text, but one major limitation is that
this score does not evaluate the quality of any given output
produced by a generative model: it describes the model as
a whole and its ability to reproduce a given corpus. This is
problematic because it does not consider the possibility that
novel stories can be valuable.

Another common machine learning metric is the BLEU
score (Papineni et al. 2002) that evaluates generated text
based on the word overlap with a ground truth sequence.
Like perplexity, it assumes an a priori known correct an-
swer, which does not factor in the possibility of correct
but novel generation. This evaluative method also is not
grounded in human judgment: a high-scoring story can still
be of poor quality depending on the ground-truth used.

Numerous methods of writing evaluation exist in linguis-
tics that rely on formulas using statistical properties of the
words and sentences of passages. These methods include
reading ease and lexical complexity. Reading ease describes
how difficult it is to read a passage and is commonly ex-
pressed as the minimum education level needed to read
the passage (Flesch 1948) (Kincaid et al. 1975). Lexical
complexity measures the breadth of language in a passage
(Richards 1987). Automated essay scoring systems incorpo-
rate lexical complexity and reading ease with additional met-
rics to grade student writing. These metrics include gram-
maticality and essay structure (Attali and Burstein 2004).
Machine learning models learn to predict scores from the se-
lected measurements (Alikaniotis, Yannakoudakis, and Rei
2016). While these metrics are useful in specific domains,
little research has been done to see if these techniques can
be adapted to predict story quality.

Selecting and Quantifying Story Features
The previously described methods either do not directly
evaluate generated stories or did so in ways that are not
grounded in human judgment. To overcome this shortcom-
ing, we built an evaluative methodology that more closely
mirrors human practice. To bridge the gap between ma-
chine evaluation and human intuition, we identified specific
features that we hypothesized would correlate with actual
human judgments of story quality: grammaticality, tempo-
ral ordering, narrative productivity (reading ease and lexical
complexity combined), and local contextuality. We describe
these features and their quantitative instantiations below.

Grammaticality

Grammaticality indicates how well language in the story
adheres to rules of grammar. We evaluate grammatical-
ity using a grammar rating system, borrowing methodol-
ogy from Heilman et al. (2014). Specifically, we use ridge-
regression train a grammar model from spelling and n-gram
features using the “Grammatical versus Ungrammatical”
(GUG) dataset. The features we isolate to train this gram-
mar model are:

• The number and proportion of misspelled words in the
sentence

• The max-log and min-log probabilities of the count of
n-grams in the sentence, according to English Gigaword
(fifth edition), for n ∈ [1, 3]

The GUG dataset provides English-language learner sen-
tences and human grammaticality judgment labels. For ex-
ample, a sentence like ”He is only a little boy do not ev-
erything clearly?” is annotated with the lowest ordinal value
of 1 (”Incomprehensible”), while the sentence ”I stayed in
a dorm when I went to college” is annotated with the high-
est ordinal value of 4 (”Perfect”). The model trained on this
dataset using the above features is used to predict human or-
dinal judgments of grammaticality on a [1, 4] ordinal scale.
This prediction is what we label as the ”grammaticality”
story feature.

Narrative Productivity
We define narrative productivity as a general measure of lan-
guage complexity. Narrative productivity is measured with
a variety of metrics directly taken from linguistics research
in evaluating writing, which we group under two umbrel-
las: reading ease and lexical complexity. We measure lexi-
cal complexity with (a) type token ratio and (b) corrected
type token ratio (Richards 1987) (Hess, Sefton, and Landry
1986). We measure reading ease with Flesch Reading Ease
(Flesch 1948), Flesch-Kincaid Grade Level (Kincaid et al.
1975), and SMOG Index (Mc Laughlin 1969). We collect a
number of features separately here in order to capture mul-
tiple dimensions of language complexity simultaneously.

Local Contextuality
Local contextuality measures the semantic relevance of sen-
tences in the context of their neighboring sentences. Stories
build upon previous ideas by introducing new concepts that
sensibly further the plot. Sometimes, though, random events
and concepts can confuse readers. Consider a brief romance
story about two high-school friends reunited after a long sep-
aration. We can imagine two different endings for this story:
(1) “Slowly, they start to fall in love,” or (2) “Slowly, they
develop a gambling addiction.”

Both of these are valid English sentences and can occur
in certain stories. In this story, however, the gambling ad-
diction ending is a non sequitur, and humans can recognize
this. In contrast, computer generated stories often include
disparate terms that lack meaningful relationships between
them, like those in the latter version. A digital story genera-
tor that wishes to tell convincing stories should be able to tell
when the stories it is producing maintain local contextuality.

To measure local contextuality procedurally, we use one-
dimensional sentence embeddings obtained from a Sent2Vec
(Pagliardini, Gupta, and Jaggi 2018) model trained on
the CMU Plot Summary corpus (Bamman, O’Connor, and
Smith 2014). For each sentence, the Sent2Vec embedding
process determines the word embeddings of each constituent
unigram as well as source embeddings of its n-grams and
obtains the sentence embedding via averaging. We procedu-
rally compare the semantic contents of two input sentences
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by computing the cosine similarity between their Sent2Vec
embeddings, x and y. A cosine similarity score of 1.0 in-
dicates complete similarity, while a score of 0.0 indicates
no similarity. To compute the local contextuality score of a
story, we take the average of the cosine similarities of every
adjacent pair of sentences in the story.

Temporal Ordering
While local context is about whether two adjacent sentences
preserve context, temporal ordering looks at the plausibil-
ity that one sentence should follow another. These sentences
can be adjacent or separated by some number of other sen-
tences. For example, consider a story that contains the fol-
lowing sentences: (1) “Jane ordered food,” (2) “Jane texted
her friend,” and (3) “Jane ate her meal.” It is plausible that
sentence 1 precedes sentence 3 even though not adjacent,
but the opposite ordering is less plausible. Events in stories
have causal relations (Trabasso and van den Broek 1985;
Graesser, Singer, and Trabasso 1994). However, how to au-
tomatically identify causal relations in arbitrary texts is an
open question. An alternative we employ is to learn highly
probable temporal patterns of behavior of story characters
(e.g., the probable order of events in a restaurant scenario)
and measure the occurrence of these patterns with the as-
sumption that patterns of behavior correlate with causal re-
lations.

We take a number of steps to identify temporal order-
ing in stories. Following the work of Martin et al. (Martin
et al. 2018), who found that the accuracy of neural story
generation systems can be improved by abstracting sen-
tences to tuples, we convert natural-language sentences into
a tuple representation (called an event), a tuple 〈s, v, o,m〉
where v is the root verb of the sentence, s is the verb’s
subject, o is the verb’s direct object, and m is a modifier
term (typically a preposition). For example, the sentence
“John quickly locked the gold in the bank vault” would
be 〈johh, lock, gold, vault〉. First, a sequence of events is
extracted from a story with the Stanford CoreNLP toolkit
(Manning et al. 2014). To account for the fact that a pattern
of meaningful events may be dispersed across a story (i.e.,
not only occurring in adjacent sentences), we use a skip-
ping recurrent neural network over the sequence of gener-
ated events to select the most important sentences.

Skipping recurrent neural networks (SRNNs) (Sigurds-
son, Chen, and Gupta 2016), which were first applied to
photo album summarization, select a subset of k elements
from a sequence that preserve the information of the whole
sequence as much as possible. The network is referred to
as “skipping” because the selected entities do not need to
be adjacent to each other in the input sequence. We use an
adaptation of the SRNN architecture that operates on stories
for the task of story summarization (Harrison, Purdy, and
Riedl 2017). Instead of training the SRNN on pixels, im-
ages, and albums we train on words, sentences, and stories
from the CMU Plot Summary corpus (Bamman, O’Connor,
and Smith 2014).

SRNNs, in the context of temporal ordering measures for
stories, extract the pivotal events of a story based on patterns
of events shared across many stories. These events reflect the

general structure of the story it summarizes. In the case of
romance stories, a recurring structure is ”boy and girl meet”
and then ”boy and girl fall in love.” The SRNN, after having
seen many stories with this pervasive formula, learns that
these events are integral to the story together in this order.
Other embellishing details, such as ”boy and girl live in San
Diego”, are discarded.

For each story in the CMU Plot Summary Corpus, we use
the SRNN to select the two most important sentences from
that story and then select the root verbs, v1 and v2. If v1
occurs before v2, we infer the temporal relation, v1 → v2.
We use the set of temporal relations to construct a directed
graph. These inferred relations are transitive; if we observe
v1 → v2 and v2 → v3, we infer that v1 → v3 is also a
legal relation. Furthermore, if we observe both v1 → v2 and
v2 → v3, then both relations are legal.

We refer to this as a temporal order model. We show a
simplified model for visualization purposes in Figure 1.

To measure the temporal ordering of an input story, we
examine each pair of sentences in that story, extract the root
verbs, and check to see if they are connected in the tem-
poral relation model graph. If both verbs are present in the
graph, connected by a temporal relation, and occur in the
same order that the directed relation designates, then the sen-
tences are deemed as properly ordered. The temporal order-
ing score for the story is the number of properly ordered
pairs divided by the total number of pairs for which both
verbs appear in the graph.

Evaluation
To create a set of measures that can act as proxies for human-
subject studies, we pose two hypotheses:

H1. The selected story features correlate with human judg-
ments of story quality.

H2. Our measures correlate with the selected story features.

To test these hypotheses, we prepared a corpus of short sto-
ries, controlling for grammar, local contextuality, temporal
ordering and narrative productivity. We conducted a human-
subject study in which participants read short, six-sentence
stories and provided qualitative feedback about the features
as well as overall quality and enjoyment. Finally, we ran
our automated measures on the same corpus of stories and
compared the scores from our algorithms against human-
reported scores.

Corpus Preparation
We randomly sampled three stories from the CMU Plot
Summary corpus (Bamman, O’Connor, and Smith 2014).
We ensured that each of these stories had six sentences to
control for story length as well as matched the target length
of many existing story generation techniques. We selected
six-sentence stories to reflect the current state of story gen-
eration research focusing on short text segments and also to
account for cognitive load during the human-subject study.

For each of these base stories, we applied changes of dif-
ferent magnitude to create isolated deviations to our target
features. This resulted in nine categories of stories:
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Figure 1: A simple temporal ordering network. Each node represents an event and each directed edge represents a temporal
ordering.

1. Three base stories, each with six sentences.

Grammatical interventions:
2. The three stories from (1), each with with a small num-

ber of grammatical errors (typos and deleted grammatical
tokens).

3. The three stories from (1), each with a high number of
grammatical errors (typos and deleted grammatical to-
kens).

Temporal Ordering interventions:
4. The three stories from (1), each with two events randomly

shuffled.
5. The three stories from (1), each with multiple events ran-

domly shuffled.
Local Contextuality interventions:

6. The three stories from (1), each with a small number of
noun substitutions (e.g. replacing ”store” with ”volcano”)

7. The three stories from (1), each with a large number of
noun substitutions (e.g. replacing ”store” with ”volcano”)

Narrative Productivity interventions:
8. The three stories from (1), each with a small number of

clause simplifications and redundant clauses added
9. The three stories from (1), each with a large number of

clause simplifications and redundant clauses added.
We introduced different magnitudes of interventions in order
to ensure that our predictive measures could apply to stories
of different qualities. For example, if we only looked at sto-
ries with bad grammar, we would have no idea how well
our measures could predict the quality of stories with only a
handful of mistakes. When we apply multiple degrees of in-
tervention for each intervention type, we increase the gener-
alizability of our findings. We examined a total of 27 stories,
given we make use of three for each of the nine groups.

Methodology
We recruited 500 participants from Amazon’s Mechanical
Turk crowdsourcing platform. Each participant was asked to

Table 1: The correlation coefficients from each of the story
features compared against story quality.

Story Feature ρ correlation
Grammaticality 0.405
Temporal Ordering 0.431
Local Contextuality 0.552
Repetition 0.112
Interesting Language 0.532

read a single story from our corpus. Each participant was
asked to state their level of agreement with the following
statements on a scale from 1 to 5 (with a score of ”5” in-
dicating complete agreement and a score of ”1” indicating
complete disagreement):

• This story exhibits CORRECT GRAMMAR.

• This story’s events occur in a PLAUSIBLE ORDER.

• This story’s sentences MAKE SENSE given sentences be-
fore and after them.

• This story AVOIDS REPETITION.

• This story uses INTERESTING LANGUAGE.

• This story is ENJOYABLE.

• This story is of HIGH QUALITY.

The first three questions correspond to grammaticality, tem-
poral ordering, and local contextuality, respectively. Since
the term “narrative productivity” is not easy to ask about in
a single question, we have two questions that deal with indi-
vidual facets of narrative productivity: repetition and inter-
esting language. Participants were paid $5.00 for completion
of the task, which took on average 15 minutes.

Results
We ran two separate analyses, each answering one of our
hypotheses. All values reported are statistically significant
at p < 0.05.
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Table 2: The correlation coefficients from each of the story
features compared against story enjoyment.

Story Feature ρ correlation
Grammaticality 0.249
Temporal Ordering 0.446
Local Contextuality 0.490
Repetition 0.105
Interesting Language 0.430

Relationship between Features and Story Quality
To test our first hypothesis—that the story features corre-
late with perceptions of story quality—we compared the re-
sponses to each of the first five questions of the survey with
the responses to the story quality question. We used Spear-
man’s rank-order correlation test to determine the strength
and correlation between perceived story quality and all of
our proposed story features. The correlation coefficient for
this test, ρ, is bounded in the range [−1, 1], with a value of 1
corresponding to perfect positive correlation, a value of −1
corresponding to perfect negative correlation, and a value
of 0 corresponding to no correlation. The correlation coef-
ficients for each of these tests can be seen in Table 1. We
also ran the same procedure comparing the selected story
features against story enjoyability, the results of which are
reflected in Table 2.

Local contextuality and interesting language are found to
be strongly correlated (in Spearman’s rank-order tests, a ρ
of 0.5 is generally considered strong correlation) with per-
ceived story quality and enjoyability. Grammaticality and
plausible temporal ordering slightly less strongly correlated
with story quality. Repetition appears to be weakly corre-
lated with story quality, but this may be due to the overall
short lengths of the presented stories; repetition in a story of
only six sentences may be less detrimental than repetition in
a story of 600 sentences. Overall, we find the results provide
evidence that measuring these features is worthwhile for the
sake of generating stories.

Automated Measures
To test our second hypothesis—that our automated measures
correlate with human judgments—we compare the scores
our algorithms produce to the scores from the human-subject
study. Specifically, we look at rank-order of human scores
and algorithmically generated scores. We expect that when
stories are ranked using numerical scores produced by hu-
mans, the same ranking appears when using algorithmically
produced scores.

Grammaticality Using story categories 1, 2, and 3 as a
testing set, we ran the Spearman’s rank-order correlation test
between the predicted scores from our grammar model and
“grammaticality” results from the survey. There was moder-
ate correlation between the two groups, with a ρ correlation
of 0.386. This shows that, with a grammar model trained
on more features, we can build an evaluator with judgments
closer to human intuition of grammaticality of stories.

Table 3: The correlation coefficients from natural language
metrics compared against language interestingness.

Measure ρ correlation
Type-token ratio 0.237
Corrected type-token ratio 0.271
Flesch Readability -0.325
Flesch-Kincaid 0.334
SMOG Index 0.305

Narrative Productivity Using story categories 1, 8, and 9
as a testing set, we ran the Spearman’s rank-order correlation
test between numerous lexical complexity and reading ease
measures and the “interesting language” and “avoiding rep-
etition” questions from the survey. These results are shown
in Tables 3 and 4.

The lexical complexity and readability formulae we im-
plemented have moderate correlation to the survey results
for the “avoiding repetition” and “interesting language”
questions. Researchers should consider each of these when
examining grammaticality. It is likely that more complex
language measures will be required in order to capture the
messiness of perceived narrative productivity.

Local Contextuality Using story categories 1, 6, and 7 as
a testing set, we ran the Spearman’s rank-order correlation
test between the Sent2Vec cosine similarity scores and “lo-
cal contextuality” results from the survey. The ρ correlation
was 0.490. This indicates that the Sent2Vec measure is a
good way to capture differences in context between adjacent
sentences. Specifically, as the average cosine similarity of
the Sent2Vec measure increases, the reader’s perception of
the local contextuality also increases.

Temporal Ordering Using story categories 1, 4, and 5 as
a testing set, we ran the Spearman’s rank-order correlation
test between the temporal ordering Bayesian estimate and
“temporal ordering” results from the survey. The ρ corre-
lation was 0.103. This is interpreted as a weak correlation.
While there is some indication that our temporal ordering
algorithm is able to predict when humans also agree with
temporal orderings to some degree, this automated measure
is much more noisy.

There are a number of potential causes for this. It could
be symptomatic of the nature of story ordering; swapping
random events in a story does not necessarily invalidate the
story. The error rate in our SRNN may be too high. This is
difficult to assess since there is no ground-truth for the sum-
marizations it produces. Our simplifying assumption of only
looking at verb orderings may introduce error as well. While
a low correlation is still a positive result, it indicates a need
for further research into algorithms capable of predicting the
quality of temporal ordering.

Discussion
We have identified and justified specific story features that
correlate with human judgments of story quality. The list of
features is not exhaustive; the methodology presented in this
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Table 4: The correlation coefficients from natural language
metrics compared against absence of narrative repetition.

Metric ρ correlation
Type-token ratio 0.474
Corrected type-token ratio 0.307
Flesch Readability -0.326
Flesch-Kincaid 0.376
SMOG Index 0.362

paper also provides a template for us and others to add to the
list of proxy measures.

Furthermore, we have quantified each of these story mea-
sures so that researchers can isolate specific strengths or
weaknesses of their story generators without having to rely
exclusively on human-subject studies. No automated mea-
sures cannot perfectly predict human judgments of story
quality or enjoyment, but these automated proxies can pro-
vide a useful tool during the development of story generation
systems. A question that often arises during development is
whether a modification to a story generation algorithm has
improved the performance of the system or not. The appro-
priate use of the automated measures is to compare two ver-
sions of the same story generation approach.

Story generation systems that rely on heuristics or scoring
functions of their own output can also incorporate these met-
rics into their generation loop. This can be especially useful
for story generation systems that treat the story generation
problem as a planning and/or optimization problem.

By reporting on four different features, the automated
metrics give a more fine-grained analysis of a story gen-
eration system’s outputs, helping researchers understand
the trade-offs between the different metrics. One may also
choose to sum them together or to look at only the features
that are most relevant to their system.

Identifying whether a story has a plausible temporal or-
dering or whether the events in a story support common
causal relations is a hard, open research problem. Recent
experiments (anonymized, under review) show neural net-
works are only able to reconstruct the correct ordering of
randomized story sentences∼ 20% of the time. Thus is it not
surprising that the temporal ordering metric had the lowest
correlation with human rankings. However, since story gen-
eration systems are often capable of generating many thou-
sands of stories (especially in the case of machine learning
generators), one may construct experiments evaluating large
numbers of outputs of two story generation systems where
the law of large numbers overcomes the fact that temporal
ordering scores rankings are only weakly correlated with hu-
man rankings.

Conclusions
The gold standard for the evaluation of story generation sys-
tems will always be some form of human subject study.
However, human subject studies are costly and thus cannot
be conducted frequently. This presents a bottleneck to AI
research on story generation where one may want to make

incremental adjustments to an algorithm but cannot know
whether those adjustments improve the system. Most auto-
mated evaluation methods may indicate certain properties of
a model or algorithm without any known correlation to hu-
man judgments.

We have shown that grammaticality, local contextuality,
temporal ordering, and narrative productivity features cor-
respond to human judgments of narrative quality and en-
joyment. We have further developed algorithms for scoring
each of these features and shown that the correlate with hu-
man judgments of these features. These results in conjunc-
tion suggest that we can use our metrics as a proxy for ex-
pensive and time-consuming human-subject studies of nar-
rative generation systems. One may further be able to in-
corporate the metrics directly into the generation loop of
story generation systems. The implications are that we can
more rapidly iterate on story generation systems, scaling and
speeding up research.
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