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Abstract

Analysis of interactive narrative is a complex undertaking,
requiring understanding of the narrative’s design, its affor-
dances, and its impact on players. Analysis is often performed
by an expert, but this is expensive and difficult for com-
plex interactive narratives. Automated analysis of structure,
the organization of interaction elements, could help augment
an expert’s analysis. For this purpose we developed a model
consisting of a set of metrics to analyze interactive narrative
structure, enabled by a novel multi-graph representation. We
implemented this model for an interactive scenario authoring
tool called StudyCrafter and analyzed 20 student-designed
scenarios. We show that the model illuminates the structures
and groupings of the scenarios. This work provides insight
for manual analysis of attributes of interactive narratives and
a starting point for automated design assistance.

1 Introduction
The study of interactive narrative, in which players choose
actions in the context of a story, combines insights from nar-
rative theory, theater, psychology, and other fields (Murray
1997; Mateas 2000; Seif El-Nasr 2007, e.g.). Understanding
how best to design an interactive narrative, balancing autho-
rial burden, authorial intent, and player experiences, is still
an open research problem (Roth and Koenitz 2017). Narra-
tive analysis, extracting detailed meaning from and describ-
ing the possibility space of the narrative, can aid in under-
standing potential player experiences and design consider-
ations. However, this analysis is most often done by hand,
by a knowledgeable expert. While manual analysis is valu-
able, interactive or generative narratives often include many
branching possibilities that render it prohibitively compli-
cated, especially for a large corpus.

Deep analysis of the content and meaning of interactive
narrative remains exceedingly difficult for a computer, re-
quiring knowledge of context, language, culture, authorial
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style, and more. Though a truly comprehensive analysis re-
quires studying content, it can begin with a simpler approach
targeting one aspect of narrative: structure. In the context
of this work, we conceptualize structure as the organiza-
tion, flow, choices, interactions, and other elements that do
not rely on a deep understanding of the culturally-informed
meaning of the text. By focusing on attributes specific to
the structure of interactive narrative, automated systems can
augment and complement an expert’s understanding of the
plot, characters, dramatic arc, and other content.

A step towards building such computational techniques is
to define and operationalize metrics for structural analysis.
Metrics provide a concrete set of measurements to quantify
and simplify interactive narrative structure. However, this
subject has not been widely researched. In fact, the authors
know of very few examples of clearly defined structural met-
rics or automated analyses for interactive narratives. One
such example is the work of Szilas and Ilea (2014), who
defined a small set of metrics focused on player interaction
and performed a preliminary user study, finding correlations
with player experiences of flow states and positive emotions.
Our work incorporates and extends these metrics.

The primary contribution of this paper is to propose a
set of metrics designed to quantify the following factors:
narrative structure complexity, measuring graph structure
and size (Bondy and Murty 1976); interactive affordances,
measuring the scenario’s structures of interaction and feed-
back as explained by Carstensdottir et. al. (2017); and ac-
tion space, measuring the potential space of play and choice
available in the scenario and related to “theoretical agency”
as defined by Thue et. al. (2010) to be the real potential for
the player’s actions to change a story. These factors are com-
plex, just as narrative itself is complex. We do not claim
that our metrics are perfectly comprehensive in illuminat-
ing these factors, nor that they have a particular correlation
with subjective player experience. However, we show that
they successfully capture aspects of scenario design.

In order to derive these metrics, we developed a graph-
based representation of an interactive narrative scenario,
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comprising multiple graphs designed to describe various as-
pects of its structure. Our model consists of four types of
graphs: the scene flow map, layout graph, script graph, and
interaction map. The metrics are computed by two methods:
a static graph analysis and a randomized playthrough explo-
ration of the scenarios’ interactive possibilities, as abstracted
by the interaction map.

We implemented this model for StudyCrafter,1 a tool for
building 2D scenarios that often employ interactive narra-
tive (Harteveld et al. 2016). To evaluate the model, we an-
alyzed student-created scenarios from a university research
methods class.2 We performed three analyses: a manual in-
dividual scenario analysis, an expressive range analysis, and
K-Medoids clusterings of the scenarios. For the latter, the
clusters are based on subsets of the metrics related to the
three aforementioned factors. We show that the metrics suc-
cessfully illuminate the structure and groupings of the sce-
narios, providing insight for manual analysis and a starting
point for automated design assistance. This work has future
applications in areas of mixed-initiative content creation, au-
tomated playtesting, and player experience modeling.

2 Related Work
Early work by Propp (1968) defined a framework for an-
alyzing folktales. However, the functions he proposed are
primarily content-oriented and are not directly related to in-
teractivity. Valls-Vargas et al. (2017) developed a computa-
tional system, building on Propp’s work, to extract character
roles, domain knowledge, and other details from folktales.
Whereas these works study and systematize the content of
traditional narrative, we focus on interaction and structure.

Within the field of interactive narrative, much research fo-
cuses on the unique qualities and challenges of their content
and effects on player experience, with few studies on com-
putational analysis, and particularly structural analysis. Szi-
las and Ilea (2014) developed metrics for player interaction
and choice and studied their correlations with player expe-
rience. They developed survey instruments to measure emo-
tional responses, such as experiences of enjoyment, curios-
ity, and suspense (Vermeulen et al. 2010), which are related
to narrative theory (Roth and Koenitz 2016). Using these
metrics, Szilas and Ilea (2014) found a few significant corre-
lations to player experience. Our work focuses on narrative
structure, exploring factors of action space, interactive affor-
dances, and narrative structure complexity. While the action
space factor overlaps with the metrics defined by Szilas and
Ilea, they did not explore the other two factors.

In terms of work on structure, Bernstein (1998) defined
and described several patterns exhibited by interactive hy-
pertext stories, a process since continued by others (Mil-
lard et al. 2013; Short 2016). Lindley (2005) suggested us-
ing graph-based models to more clearly define and detect
such structures. Our work employs such an approach, and
thus its graph-based representation can be thought of as an

1https://studycrafter.com
2The projects are available in the Northeastern University Dig-

ital Repository at: http://hdl.handle.net/2047/D20291320

implementation of this basic idea. To our knowledge, these
structural theories have not previously been operationalized.

As part of the evaluation of our model, we employ ex-
pressive range, which was designed to visualize the breadth
of possibilities for a generative system’s output (Smith and
Whitehead 2010). It has previously been used to describe
procedurally generated content (Horn et al. 2014). We per-
form similar analysis in the work presented here, but to visu-
alize and evaluate the diversity of hand-designed scenarios.

3 Methods
To approach automated interactive narrative analysis, we de-
veloped a model composed of four related graph represen-
tations, each designed to enable measurement of particu-
lar metrics. These metrics are grouped into the aforemen-
tioned factors: narrative structure complexity, interactive af-
fordances, and action space, defined and described below.

We chose a graph-based representation because it enables
searching, enumeration, and relationship analysis between
the elements of the scenario. The process begins with load-
ing the scenario data, structured as files, one per scene, con-
taining unordered dictionaries of metadata, script informa-
tion, and visual layout data. We build a scene flow map by
examining how each scene transitions to others, then trans-
form each scene’s script into a script graph and its layout
into a layout graph. Finally, we build an interaction map
from each script graph.3

3.1 Representation
In StudyCrafter, a “scene” is a single visual setting. Design-
ers are free to break up their scenario into many scenes or to
work within a single scene, modifying it with animation and
scripting. The scene flow map contains the metadata about
each scene in its vertices, and its edges represent the possible
transitions between scenes. In addition to the scene meta-
data, each vertex holds identifiers for the associated script
and layout graphs, which store most of the scenario data.

The layout graph represents the spatial arrangement of
objects in the scene. Each visual object is a vertex, con-
nected by edges annotated with the offset vector between
them when the scene begins, similar to D-nodes by Guzdial
and Reidl (2016). However, the layout graph alone cannot
explain how these objects are used or changed during the
scenario’s operation. For that, we need the script graph.

StudyCrafter provides a visual, node-based scripting lan-
guage to control its scenarios, visualized in a graph-like
structure for editing. We create our script graph by recon-
structing this structure in a more explicit, unified graph form.
We represent each script node, such as a “dialogue” or a
“branch,” as a bag of typed properties. For instance, a dia-
logue node contains a “StringExpression” property for the
text to be spoken and a “LayoutObject” property for the
speaking character. The definition for each script node is
data-driven, enabling easy expansion or modification. Edges

3Example visualizations of selected script graphs and interac-
tion maps are stored with the projects in the Northeastern Univer-
sity Digital Repository.
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Metric Details
Narrative Structure Complexity

Number of Scenes Number of vertices in the scene graph
Total Layout Nodes Number of vertices in each layout graph
Average Layout Nodes Total layout nodes divided by number of scenes
Total Script Nodes Number of vertices in each script graph
Average Script Nodes Total script nodes divided by number of scenes
Average Edges Traversed Average number of steps taken across all interaction maps, over all playthroughs
Edges Traversed Variance Variance (average squared deviation from the mean) of Average Edges Traversed
Connected Components In script, number of separate cliques of nodes all reachable from each other (Tarjan 1972)
Text Per Dialogue Number of characters per dialogue node in the script
Average Outdegree Average number of edges leaving the nodes in the script graphs (Bondy and Murty 1976)

Action Space
Average Number of Choices Number of choice edges in the interaction maps, averaged over all maps
Intra-Playthrough Diversity Number of unique player actions, averaged over all playthroughs (IDIV)
Global Diversity Total number of unique player actions found across all playthroughs (GDIV)
Renewal Rate Inverse of intra-playthrough diversity divided by global diversity (RENEW)
Choice Range Average number of choices presented to the player at each interaction point (CR)
Choice Frequency Percentage of actions taken by the player, versus by the system, on average (DCFREQ)
Choice Variability Percentage of unique versus repeated choices during the playthrough, on average (CVAR)

Interactive Affordances
Average Interaction Points Average number of interaction point nodes in the interaction map per scene
Choices Per Interaction Point Average number of choice edges out of each interaction point
Feedback Per Interaction Unit Number of feedback nodes divided by the number of interaction nodes
Feedback Per Choice Number of feedback nodes divided by the number of choice edges
Feedback Per Event Number of feedback nodes divided by the number of event nodes
Average Actions Taken Average number of player actions taken during a playthrough, over all playthroughs
Variance of Actions Taken Variance (average squared deviation from the mean) of Average Actions Taken

Table 1: The metrics for each of the three factors: narrative structure complexity, action space, and interactive affordances. The
metrics based on Szilas and Ilea (2014) note their corresponding label in parentheses.

connect the script nodes to their possible run-time succes-
sors. Note that, if we were not already working with a visual,
node-based scripting language, we could still build a similar
graph from the “parse tree” of a program, or by other static
analysis techniques. Using the script graph, we can develop
a simplified graph, which we call an interaction map.

The interaction map is based on work by Carstensdottir
and Seif El-Nasr (2018), which enables us to abstract the
interaction from the scenario. It consists of three types of
vertices: events, which happen without any player interac-
tion; interaction points, which are opportunities for player
choice or action; and feedback, which is any perceptible re-
sponse to player actions. There are also special start and end
nodes. Edges represent potential transitions and influences
between the vertices, with three types: direct edges, for ex-
plicit movement from one event/feedback node to another, or
to an interaction point; indirect edges, for implicit causes or
influences; and options, for the possible transitions a player
may choose from an interaction point. The feedback nodes
influenced by a particular interaction point are part of its “in-
teraction unit,” and they are tagged as such. Thus, an interac-
tion unit is defined as a single interaction point, the choices
available there, and the feedback from that interaction.

Now that we have a clear picture of the representation, we
can complete the description of the model by enumerating
and explaining the metrics.

3.2 Metrics
The metrics, by factor, are summarized in Table 1. Each
factor has a separate focus. Narrative structure complexity
measures the size and scope of the scenario’s narrative el-
ements. Not limited to counting nodes, it measures the de-
gree to which the script branches and loops and the average
length of traversals through it. These measures are based on
standard graph theory algorithms and concepts (Bondy and
Murty 1976; Tarjan 1972). They are intended to represent
design complexity, not necessarily “difficulty” of the experi-
ence for a player, nor sophistication of the narrative content.

Understanding the overall complexity of a scenario is dif-
ferent from understanding how it enables interaction and re-
sponds with feedback. These are the purview of the inter-
active affordances factor, based on the theory of interaction
structure and feedback by Carstensdottir et. al. (2017). This
factor deals primarily with the interaction map.

Separately from interaction and feedback, we can mea-
sure the possibility space of player choices and their ef-
fect on narrative progression. This is the action space fac-
tor, based on previous work on theoretical agency (Wardrip-
Fruin et al. 2009; Thue et al. 2010). Theoretical agency is
related to the actual effects of the player’s actions, but it
does not measure their subjective experience of agency. The
latter is additionally affected by perceived affordances and
by individual differences between players, neither of which
we can fully measure with the current metrics. Most met-
rics in this factor are based on Szilas and Ilea’s playthrough-
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Figure 1: Box-and-whisker plots of each metric (normalized
between 0 and 1). Metrics associated with a single factor
are bordered. From the top, the factors are: interactive af-
fordances, action space, and narrative structure complexity.
Additionally, the solid (red) points represent the individual
metrics from ”Deserted Island: Cabinet Mystery.”

metrics (2014). However, instead of using playtraces, we use
simulated playthroughs of the scenario, which adds scalabil-
ity to the approach. These are randomized walks through the
interaction map, simulating a randomly-acting player in a
simplified approximation of possible interactions. We aver-
age the results of many such random traversals.

4 Results
To explore the capabilities of our model, we investigated
twenty interactive narrative scenarios from a university
course. In the course, students used StudyCrafter to con-
struct scenarios of their own design, following a prompt to
create short social science experiments. StudyCrafter sup-
ports scenarios with 2D visuals, limited animation, and di-
alogue choices. It also provides a few extra game features,
such as key-press and time-based events and visual object
selection. In this way, it is approximately comparable to
other tools, such as Twine, for visual scripting of choice-
based interactive narrative.

The prompt imposed some constraints, such as random-
ized experimental conditions, but otherwise left significant
freedom for design. Most scenarios used simple choice-
based interaction, while a few used the event-based game-
play capabilities of StudyCrafter. In the below sections, we
present several forms of analysis to illustrate potential uses
of the metrics by different audiences. The analyses increase
in scope from individual to cluster-level scenario analysis.4

4.1 Descriptive Statistics
Descriptive statistics reveal that the metrics are mostly not
normally distributed in these scenarios, showing mostly pos-
itive skew. The only normally-distributed metrics are the av-
erage outdegree, text characters per dialogue, and renewal
rate. We visualize the normalized box-and-whisker plots in

4The full metrics and clustering results are also stored in the
DRS collection at: http://hdl.handle.net/2047/D20291320

Figure 2: Screenshots from the scenario “Deserted Island:
Cabinet Mystery.” From top left to bottom right: introducing
the player to the situation, selecting an item, the response to
selecting the item, and asking a demographics question.

Figure 1. A few show significant outliers, especially in vari-
ance of actions and edges traversed. The outlier scenarios
in these cases had infinite potential for looping back to the
content, enabling randomized playthroughs of highly vari-
able length. Note, however, that these metrics are not actu-
ally zero for most of the other scenarios; they are simply
crushed to near-zero in the box plots by the outliers.

The visualization in Figure 1 is also useful for compar-
ing an individual scenario’s metrics to a larger corpus. For
example, we overlay the points for the scenario ”Deserted
Island: Cabinet Mystery” (described and analyzed below).
Because the plots are grouped by factor, we can see how the
scenario compares for each factor and for individual metrics.

4.2 Individual Scenario Analysis
To be useful for a designer, it is important for our metrics to
illuminate the properties of a single scenario. Therefore, we
present an example manual analysis, of the sort that might
be automated in the future. Here, we compare with the other
student scenarios; in the future and with more data, we could
determine more robust ranges for the metrics. We analyze
“Deserted Island: Cabinet Mystery,” a scenario in which the
player selects between pairs of items that magically appear
from a cabinet on a deserted island, as shown in Figure 2.
The scenario contains a short briefing about the experiment
and a brief narrative to set the scene. Each choice between
two items is accompanied by a particular drawer opening,
and the drawer locks after the player makes a selection. The
scenario ends with a short debriefing, as well as a final ques-
tion asking whether the player is color blind.

This scenario has no connected components and a choice
variability of 1.0, meaning that it has no looping or repe-
tition of choices. It also has no variance in the number of
actions taken per playthrough nor the edges traversed; all
playthroughs are exactly the same length. The action space
metrics are middling: choice range is fairly high (3.5), mean-
ing that it offers multiple options at each choice point, but re-
newal rate is 0.46, which means that the majority of actions
are the same in all playthroughs. This is likely a scenario
that will feel somewhat similar every time.

In terms of interactive affordances, the scenario is high-
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est among this data set in its average number of interac-
tion points per scene (8), and its other metrics are mid-
dling to high. Several of the metrics for complexity are very
high: the scenario has the most script nodes (633), and script
nodes per scene (211). Since this scenario already has high
complexity, a creativity support tool might note the lack of
playthrough variety and suggest reducing the overall length
and number of options, but adding clearly differentiated
branches of feedback for each of the player’s choices.

4.3 Expressive Range
We performed an expressive range analysis on the scenarios
by selected metrics, normalized between 0 and 1 in cases
where the true range is unknown. An example of this is
shown in Figure 3, which depicts the expressive range in
terms of two metrics: choice range (factor: action space) and
feedback per choice (interactive affordances). We selected
this particular pair of metrics because they depict design
trade-offs between two factors. This sort of analysis could,
for instance, enable instructors to visualize the differing de-
sign choices between projects and determine how best to
guide students. Designers could use expressive range analy-
sis to compare their scenario to others on particular metrics.

In the figure, the “Christmas Shopping” scenario is shown
to have the highest choice range, but very limited feedback.
It presents many informational options to the player simul-
taneously, so that the player may choose an item to pur-
chase. However, the actual feedback from selecting an item,
or from making the final choice to buy it, is very limited;
the scenario simply moves on without acknowledging the
player’s decision.

Conversely, “An Unusual Situation” is shown to have low
choice range and high feedback. In it, the player makes only
a single meaningful choice with two options: to punch or not
punch a rude former “friend.” However, the decision causes
the narrative to diverge for some time (though it eventually
returns to a linear plot). This scenario provides meaningful
feedback for the player’s choices.

As shown in the figure, none of the scenarios had both
high feedback and high choice range. A manual analysis re-
veals that very few provide significant branching or feed-
back based on player choices, and that those with more
choices are less likely to meaningfully differentiate them.

4.4 K-Medoids Clustering
In addition to the expressive range analysis, we performed
a K-Medoids clustering on the scenarios, based on each of
the three factors. This sort of clustering could aid a manual
or automated analysis in categorizing a scenario, or in find-
ing similar scenarios. We chose the number of clusters, K,
based on highest silhouette width, but we required at least
three clusters; two clusters do not sufficiently separate the
scenarios to enable analysis.

For narrative structure complexity we chose four clusters,
with a silhouette width of 0.42. The scenarios in Cluster A
have a moderate amount of narration, but mostly linear pro-
gression, with few loops. For instance, “An Unusual Situa-
tion” is in this cluster. The scenarios in Cluster B are even
more linear, with little to no variance in traversal length and

Figure 3: An expressive range analysis of the scenarios in
terms of the feedback per choice and choice range metrics
(normalized).

less text. Those in Cluster C are distinguished by frequent
use of loops and repetition. One scenario that usually does
not loop, “Clean Up the Profile Mess,” is included. However,
it prompts the player for input, and invalid responses cause it
to repeat a question. Cluster D is less cohesive than the oth-
ers, but its scenarios generally use large numbers of layout
or script nodes. One fairly simple scenario, “WormHaven,”
is a bit of a surprise inclusion, but it is complicated by sev-
eral possible paths due to initial randomization.

The interactive affordances factor’s silhouette width is
0.40, for five clusters. Cluster A is the largest, and it contains
a variety of moderately-interactive scenarios. It is perhaps
best defined by contrasts to the extremes in other clusters. It
is surprising that “Spider Lab,” a scenario with rudimentary
movement and combat mechanics, is included here, given
that it requires by far the most actions to complete. Clus-
ter B contains scenarios such as “Deserted Island: Cabinet
Mystery” that contain the most interaction points. Cluster
C’s scenarios have very few interactions and little feedback.
It includes two very similar scenarios where the player sim-
ply selects from a list of courses. Cluster D contains scenar-
ios with a high number of interactions per playthrough, as in
the informational popup selection in “Christmas Shopping”
or the limited puzzle-like looping of “The Research Riddle,”
but that give little feedback. Finally, Cluster E contains sce-
narios with the most feedback for the player’s choices.

Action space has silhouette width of 0.42, for three clus-
ters. The clusters are somewhat unbalanced, with most sce-
narios in Cluster A. These have the least branching or loop-
ing. They offer only superficial choice, and their story is
mostly linear. The scenarios in Cluster B contain more op-
tions for each choice, though their overall narrative is almost
as linear as those in A. These include “Subway Experience”
and “Deserted Island Cabinet Mystery,” in which the player
must repeatedly choose between various presented options.
Cluster C’s scenarios have the most complex gameplay and
include loops, reducing their choice variability. These in-
clude, for instance, “Spider Lab” and “The Research Rid-
dle,” the latter requiring a puzzle-like search through several
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options, repeatedly returning to a hub for the next choice.

5 Discussion and Conclusion
The above analyses show how this work’s model can be
used for several purposes and by several audiences. Design-
ers of individual scenarios, instructors assisting students, or
mixed-initiative design tools could compare and examine in-
dividual metrics as in the example analysis. When analyzing
a collection of scenarios, as in a review or class, a reviewer
might cluster those scenarios based on the metrics, or vi-
sualize their relative positions by expressive range analyses.
Such analyses might also be employed by automated tools to
contextualize a scenario, find where it fits in an existing col-
lection of artifacts of various styles, and provide suggestions
based on that context.

Though this model has only been tested in StudyCrafter,
we theorize its applicability to other similar interactive nar-
rative creation tools, such as Twine and Ren’Py. The script
graph can be adapted by defining property and script node
types to fit the available operations. The interaction map is
generically defined, though its implementation might need
adjustment to match each platform’s affordances. For text-
only interactive narratives, the scene and layout graphs
might still represent the designer’s imagined environment.
StudyCrafter is not designed for building parser-based inter-
active fiction, which may require further adaptation, espe-
cially in terms of mapping all possible interactions.

Some limitations remain, however, especially due to the
small number of scenarios in this data set. For instance, the
action space factor was not as clearly capable of separat-
ing the scenarios. This may be because none of the scenar-
ios contained significant branching based on player choices.
Additional refinement of the factors and metrics may better
separate scenarios with similar attributes.

Moreover, this model may not always capture the nu-
ances of scenarios that employ complex programming tech-
niques. For instance, the scenarios with significant looping
and branching, such as “Spider Lab,” showed up as outliers
in playthrough-length metrics. This is a limitation of our ran-
domized automated playthroughs. Currently, the interaction
map does not fully capture variable changes and conditional
branches, leading to cases where random playthroughs do
not perfectly simulate the scenario’s real operation. Other
unusual uses of the tool may also cause imperfect measure-
ments. This can lead to, for instance, low variability for
scenarios that modify and loop back to some content, e.g.
in “Colors and Shapes,” where the metrics detect repetition
even though it varies its color and shape combinations.

There are other opportunities for short-term improvement.
The factors and metrics can be expanded to explore addi-
tional attributes of interactive narrative. We could also move
beyond numeric metrics calculated on the entire scenario to
detect particular areas with certain structures or attributes.

Additionally, this model unlocks many opportunities for
future work. A good first step would be a user study to val-
idate the metrics and expand them to incorporate player ex-
perience. Using our playthrough approach, we can develop
automated playtesting tools for interactive narrative, per-
haps by adding procedural personas (Holmgård et al. 2018).

Moreover, this work leads towards mixed-initiative creativ-
ity support, as has been explored for visual level design
in games (Liapis, Smith, and Shaker 2016; Baldwin et al.
2017). Expanding co-creativity to the domain of interactive
narrative requires metrics and programmatic analyses.

Mixed-initiative content creation is particularly exciting
because it can combine the strengths of human designers
with those of computational systems. People are good at
noticing patterns, situating artifacts within a cultural context,
and creating cohesive, meaningful work with a vision. These
are all extremely difficult problems for computers. People
are not, however, always good at managing complexity, vi-
sualizing structures, or envisioning how other people might
experience and react to their work. Metrics, such as those
proposed here, can support human designers by presenting
several simplified impressions of an interactive narrative fo-
cused on specific criteria, showing the scenario to the de-
signer in a new light. By abstracting the structure, using a
representation such as ours, they can give designers oppor-
tunities to discover new insights, especially when correlated
with player experience. Their value lies precisely in the con-
trast between the ways in which a machine can analyze a
scenario and the ways in which a human designer would
customarily evaluate it.

The danger of metrics, however, is also in their simplicity.
By hiding complexity, and by quantifying abstract concepts,
metrics can inadvertently lead to a myopic view of the arti-
fact. Metrics can be seductive, giving a false impression of
objectivity. This is exacerbated if they are unreliable, lack
context, or fail to provide a sufficient variety of viewpoints.
When developing and promoting metrics for interactive nar-
rative, we should avoid encouraging over-reliance on them.
In this work, for instance, our analyses included qualitative
discussion of the scenarios, rather than pure reliance on met-
rics. In future work, we should ensure that the metrics are
accompanied by other visualizations that encourage qualita-
tive analysis, reflection, and pattern-spotting.

In conclusion, we have described how the model’s graph-
based representation enables metric calculation along three
factors. These factors, narrative structure complexity, inter-
active affordances, and action space, separate and categorize
scenarios by relevant and varied traits. By operationalizing
these metrics and exploring their capabilities, through a sin-
gle scenario analysis as well as broader analysis of several
interactive narratives, we have formed a foundation to sup-
port computational interactive narrative analysis. This work
represents a first step towards many applications, such as au-
tomated playtesting and creativity support, which were not
possible with prior analysis tools for interactive narrative.
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