
Nested-Greedy Search for Adversarial Real-Time Games

Rubens O. Moraes
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

Julian R. H. Mariño
Inst. de Ciências Matemáticas e Computação

Universidade de São Paulo
São Carlos, São Paulo, Brazil

Levi H. S. Lelis
Departamento de Informática

Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

Abstract
Churchill and Buro (2013) launched a line of research
through Portfolio Greedy Search (PGS), an algorithm for ad-
versarial real-time planning that uses scripts to simplify the
problem’s action space. In this paper we present a problem
in PGS’s search scheme that has hitherto been overlooked.
Namely, even under the strong assumption that PGS is able
to evaluate all actions available to the player, PGS might fail
to return the best action. We then describe an idealized algo-
rithm that is guaranteed to return the best action and present
an approximation of such algorithm, which we call Nested-
Greedy Search (NGS). Empirical results on µRTS show that
NGS is able to outperform PGS as well as state-of-the-art
methods in matches played in small to medium-sized maps.

Real-time strategy (RTS) games are challenging for artifi-
cial intelligence (AI) methods. A chief difficulty faced by AI
methods is the large action space encountered in such games.
Churchill and Buro (2013) launched a line of research for
dealing with a game’s large action space by using expert-
designed scripts. Scripts are designed to play RTS games by
following simple rules such as “do not attack an enemy unit
u if an ally unit will already cause enough damage to elim-
inate u from game”. Instead of playing the game directly
with a script, Churchill and Buro used a set of scripts to de-
fine which actions should be considered during search. This
way, instead of considering all legal actions during search,
Churchill and Buro’s Portfolio Greedy Search (PGS) con-
siders only the actions returned by the set of scripts.

Several researchers were inspired by Churchill and Buro’s
work and developed other search algorithms that use the
same principle of employing a set of scripts to reduce the
action space in RTS games (Justesen et al. 2014; Wang et al.
2016; Lelis 2017; Moraes and Lelis 2018). In this paper we
present a problem in PGS’s search scheme that has hitherto
been overlooked. Namely, even under the strong assumption
that PGS is able to evaluate all actions considered by its set
of scripts, the algorithm is not guaranteed to return the best
available action at a given state. We call this issue the non-
convergence problem. The non-convergence problem is re-
lated to how PGS handles the responses of the player’s op-
ponent and it might cause the algorithm to present patholog-
ical results. That is, the algorithm can produce worse results

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

if allowed more computation time. We show empirically in
the context of µRTS, a minimalist RTS game for research
purposes, that PGS’s pathology is very common in practice.

In this paper we also present a search algorithm called
Nested-Greedy Search (NGS) to overcome PGS’s non-
convergence problem. NGS is similar to PGS, with the only
difference being how the algorithm handles the enemy re-
sponses during search. In contrast with PGS, NGS approx-
imates how the opponent could best respond to different
actions of the player and returns the action that yields the
largest payoff for the player, assuming the opponent will
play an approximated best response. We evaluated NGS in
µRTS matches. Our empirical results show that NGS is able
to outperform not only PGS, but all state-of-the-art methods
tested in matches played in small to medium-sized maps.

In addition to presenting the non-convergence problem as
well as a search algorithm to overcome the problem, another
contribution of this work is to show that PGS and NGS can
be used to play entire RTS matches. This is important be-
cause PGS was developed to control units in combat sce-
narios that arise in RTS games, and not to play entire RTS
matches, which requires one to deal with the economical
side of the game in addition to the military side of the game.
Our work suggests that other researchers should consider
PGS, NGS, and other algorithms derived from PGS as com-
peting methods for their planning systems for RTS games.

Related Work
After PGS, several researchers developed search algorithms
that also used scripts to filter the set of actions considered
during search. Justesen et al. (2014) introduced two varia-
tions of UCT (Kocsis and Szepesvári 2006) for searching in
the action space filtered by scripts. Wang et al. (2016) in-
troduced Portfolio Online Evolution (POE) a local search
algorithm also designed for searching in the script-reduced
action spaces. Lelis (2017) introduced Stratified Strategy
Selection, a greedy algorithm that uses a type system to
search in the action space given by a set of scripts. Moraes
and Lelis (2018) introduced search algorithms that search
in asymmetrically action-abstracted spaces, which were in-
duced by scripts. Moraes et al. (2018) extended combina-
torial multi-armed bandit tree search algorithms (Ontañón
2017) to also search in asymmetrically action-abstracted
spaces induced by scripts. Although all these works built di-

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

67

rectly on the work of Churchill and Buro (2013), they over-
looked PGS’s non-convergence problem.

Other works have used expert-designed scripts differently.
For example, Puppet Search (Barriga, Stanescu, and Buro
2017b) defines a search space over the parameter values of
scripts. Similarly to Puppet Search, Strategy Tactics (STT)
(Barriga, Stanescu, and Buro 2017a) also searches in the
space of parameter values of scripts. However, Strategy Tac-
tics balances the search over the space of parameters with a
search in the actual state space with Naı̈veMCTS (Ontañón
2017). Silva et al. (2018) introduced Strategy Creation via
Voting, a method that uses a set of scripts with a voting sys-
tem to generate novel scripts that can be used to play RTS
games. We show empirically that NGS is able to outperform
these approaches in small to medium-sized maps.

Before the adoption of scripts to guide search algo-
rithms to play RTS games, state-of-the-art methods included
search algorithms that accounted for the entire action space,
such as Monte Carlo (Chung, Buro, and Schaeffer 2005;
Sailer, Buro, and Lanctot 2007; Balla and Fern 2009;
Ontañón 2013) and Alpha-Beta (Churchill, Saffidine, and
Buro 2012). However, in contrast with methods that use
scripts to reduce the action space, Alpha-Beta and Monte
Carlo methods perform well only in very small RTS matches
in which ones controls a small number of units.

Background
Definitions and Notation
An RTS match can be described as a finite zero-sum
two-player simultaneous-move game, and be denoted as
(N ,S, sinit,A,R, T), where,
• N = {i,−i} is the set of players, where i is the player we

control and −i is our opponent.
• S = D∪F is the set of states, where D denotes the set of

non-terminal states and F the set of terminal states. Every
state s ∈ S includes the joint set of units Us = Us

i ∪Us
−i,

for players i and −i, respectively. We write U , Ui, and
U−i whenever the state s is clear from the context.

• sinit ∈ D is the start state of a match.
• A = Ai × A−i is the set of joint player-actions. Ai(s)

is the set of legal player-actions i can perform at state s.
Each player-action a ∈ Ai(s) is denoted by a vector of
n unit-actions (m1, · · · ,mn), where mk ∈ a is the unit-
action of the k-th ready unit of player i. We write “action”
instead of “player-action” or “unit-action” if it is clear
from the context that we are referring to a player-action
or unit-action. A unit u is not ready at s if u is performing
an action (e.g., a worker might be constructing a base and
is unable to perform another action). We denote the set of
ready units of players i and −i at state s as Ur,s

i and Ur,s
−i

and write Ur
i and Ur

−i if the state is clear from the context.
For unit u, we write a[u] to denote the action of u in a.

• Ri : F → R is a utility function withRi(s) = −R−i(s),
for any s ∈ F , as matches are zero-sum games.

• T : S × Ai ×A−i → S is the transition function, which
determines the sucessor of a state s for a set of joint ac-
tions taken at s.

Algorithm 1 PORTFOLIO GREEDY SEARCH (PGS)
Require: state s, ready units Ur

i = {u1i , · · · , u
ni
i } and

Ur
−i = {u1−i, · · · , u

n−i

−i } in s, set of scripts P , evalu-
ation function Ψ, integers I and R, and time limit t.

Ensure: action a for player i’s units.
1: σ̄i ← choose a script from P //see text for details
2: σ̄−i ← choose a script from P //see text for details
3: ai ← {σ̄i(u1i), · · · , σ̄i(uni

i)}
4: a−i ← {σ̄−i(u1−i), · · · , σ̄−i(u

n−i

−i)}
5: ai ← IMPROVE(s, Ur

i , P , ai, a−i,Ψ, I , t)
6: for r ← 0 to R do
7: a−i ←IMPROVE(s, Ur

−i, P , a−i, ai,Ψ, I , t)
8: ai ← IMPROVE(s, Ur

i , P , ai, a−i,Ψ, I , t)
9: return ai

A pure strategy is a function σ : S → Ai for player imap-
ping a state s to an action a. Although in general one might
have to play a mixed strategy to optimize the player’s pay-
offs in simultaneous move games (Gintis 2000), similarly
to other RTS methods (Churchill, Saffidine, and Buro 2012;
Churchill and Buro 2013; Wang et al. 2016; Ontañón 2017;
Barriga, Stanescu, and Buro 2017b; Lelis 2017), we con-
sider only pure strategies in this paper. A script σ̄ is a func-
tion mapping a state s and a unit u in s to an action for u. A
script σ̄ allows one to define a strategy σ by applying σ̄ to
every ready unit in the state. We write σ̄ instead of σ̄(s, u)
whenever s and u are clear from the context. At every state
s, search algorithms such as PGS assign a script σ̄ from a
collection of scripts, denoted P , to every ready unit u in s.
Unit u then performs the action returned by σ̄(s, u).

Portfolio Greedy Search (PGS)
Algorithm 1 and 2 show the pseudocode of PGS. PGS re-
ceives as input player i’s and −i’s set of ready units for a
given state s, denoted Ur

i and Ur
−i, a set of scripts P , and an

evaluation function Ψ, which receives a state s′ as input and
estimates the end-game utility for player i if the game con-
tinues from s′. PGS also receives as input two integers, R
and I . R controls PGS’s search effort for computing player
−i’s best response to player i’s action and I controls PGS’s
search effort for computing a best response for player −i’s
action. Finally, PGS receives as input a time limit t, which
caps the algorithm’s running time. PGS returns an action
vector a for player i to be executed in s. PGS can be divided
in two steps, the configuration of the seeds of the two players
and an improvement process. Next, we describe these steps.

Configuration of the Seeds PGS starts by selecting the
script σ̄i (resp. σ̄−i) from P that yields the largest Ψ-value
when i (resp.−i) executes a player-action composed of unit-
actions computed with σ̄i (resp. σ̄−i) (see lines 1 and 2 of
Algorithm 1) for all units in Ur

i (resp. Ur
−i). While evaluat-

ing these Ψ values, PGS assumes that player−i (resp. i) per-
forms in s a player-action in which all ready units perform
a unit-action given by a default script from P . Player-action
ai and a−i are initialized with the unit-actions provided by
σ̄i and σ̄−i (lines 3 and 4 of Algorithm 1).

68

Algorithm 2 IMPROVE

Require: state s, ready units Ur
i = {u1i , · · · , u

ni
i } in s, set

of scripts P , action vector ai for player i, action vector
a−i for player −i, evaluation function Ψ, integer I , and
time limit t.

Ensure: action vector ai for player i
1: for j ← 0 to I do
2: if if time elapsed is larger than t then
3: return ai
4: for k ← 1 to |Ur

i | do
5: for each σ̄ ∈ P do
6: a′i ← ai; a′i[k]← σ̄(s, uki)
7: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then
8: ai ← a′i
9: return ai

The Improve Procedure Once ai and a−i have been ini-
tialized, PGS iterates through all units uki in Ur

i and tries to
greedily improve the move assigned to uki in ai, denoted by
ai[k] (see Algorithm 2). PGS evaluates ai while replacing
ai[k] by each possible action for uki , where the actions are
defined by the scripts inP . PGS keeps in ai the action vector
found during search with the largest Ψ-value. Procedure IM-
PROVE approximates a best response for a−i. R determines
how many times PGS alternates between approximating a
best response for i’s action and then −i’s action. The search
procedure is capped by time limit t (line 2 of Algorithm 2).

PGS in Practice Churchill and Buro (2013) and Wang
et al. (2016) used PGS with R = 0 in their experiments.
In addition to using R = 0, Lelis (2017) and Moraes
and Lelis (2018) removed parameter I and their PGS vari-
ant runs its IMPROVE procedure while the time elapsed is
smaller than the limit t. In practice, by having R = 0, PGS
is used to compute a best response to a fixed opponent, the
one defined in the seeding process. As we show below, PGS
tends to encounter weaker strategies if R > 0.

Non-Convergence Problem
The process of alternating between improving the actions
of players i and −i, as described in Algorithms 1 and 2,
might fail to retrieve the best action amongst those eval-
uated. Figure 1 shows a hypothetical game that highlights
this problem, which we call the non-convergence prob-
lem. In this example player i and −i can choose from ac-
tions a, b and c, and e and f , respectively. In a simul-
taneous move game, player −i would not be able to dis-
tinguish the three states at the second level of tree (i.e.,
−i would not know which action i will play). However,
as was done in previous works (Kovarsky and Buro 2005;
Churchill, Saffidine, and Buro 2012), we simplify the game
and assume throughout this paper that one player acts after
the other; in this example −i acts after i. The squared nodes
in the tree represent terminal states, with the numbers inside
the squares representing player i’s payoffs. Here, i is trying
to maximize their payoff, while −i is trying to minimize it.

Action c is the best action for player i as i is guaranteed a

a

b

c

e f

e f

e f

2-2

-22

11

Figure 1: A hypothetical game where player i acts first by
playing actions a, b, or c; player −i acts second by playing
actions e or f . Squared nodes are terminal states where the
numbers represent the utility values for player i.

utility of 1, independently of player −i’s action. Next, con-
sider the following possible run of PGS for the game shown
in Figure 1. Let us suppose that in its seeding process PGS
chooses action a for player i, hoping to reach the terminal
state with utility of 2, and action e for player −i, hoping to
reach the terminal state with utility of -2. In its improvement
step for player i, PGS chooses action b, as b maximizes i’s
payoff given that −i plays action e. After that, PGS’s im-
provement for player −i chooses action f , as f minimizes
i’s payoff given player i’s action. Notice that PGS indefi-
nitely alternates between actions a and b for player i and
between actions e and f for player −i, thus failing to return
the best action c. This example shows that, even if IMPROVE
performed a systematic search in which all legal actions for
both players were evaluated, PGS could still fail to return
the best action—in the example action c is not returned by
PGS even if it is evaluated in every call to IMPROVE for i.

The non-convergence problem poses a serious limitation
to the applicability of PGS. This is because, in practice, as
we show below, PGS with R > 0 tends to be outperformed
by PGS with R = 0. Thus, the practitioner has to define
a priori an opponent strategy for which PGS will compute
a best response (if R = 0, then a−i is fixed throughout
PGS execution, making PGS approximate a best response
to a−i). Wang et al. (2016), Lelis (2017), and Moraes and
Lelis (2018) fixed σ̄−i of PGS (see line 2 of Algorithm 1) to
a strategy called NOKAV. However, NOKAV is specialized
for combats and is unable to play an RTS match. It is unclear
which strategy to use in other domains such as µRTS.

Another negative consequence of using R = 0 is that the
player controlled by PGS might become highly exploitable.
This is because the strategy derived by PGS considers that
the opponent plays a pre-defined strategy, while in reality
the opponent could be playing a different strategy.

An obvious solution to the non-convergence problem ex-
plained above is to run a minimax search to retrieve an op-
timal action. However, a minimax search might require one
to visit a large number of states before finding an optimal
solution, which is not feasible due to the games’ real-time
constraints. Next, we introduce NGS, a novel search algo-
rithm that uses a procedure that is similar to PGS’s greedy
search to approximate the minimax value of the game.

Nested-Greedy Search (NGS)

69

Algorithm 3 Nested-Greedy Search (NGS)
Require: state s, ready units Ur

i = {u1i , · · · , u
ni
i } and

Ur
−i = {u1−i, · · · , u

n−i

−i } in s, set of scripts P , evalu-
ation function Ψ, and time limit t.

Ensure: action a for player i’s units.
1: σ̄i ← choose a script from P
2: σ̄−i ← choose a script from P
3: ai ← {σ̄i(u1i), · · · , σ̄i(uni

i)}
4: a−i ← {σ̄−i(u1−i), · · · , σ̄−i(u

n−i

−i)}
5: while time elapsed is not larger than t do
6: for k ← 1 to |Ur

i | do
7: for each σ̄ ∈ P do
8: a′i ← ai; a′i[k]← σ̄(s, uki)
9: if GS(s, a−i, a

′
i,Ψ) > GS(s, a−i, ai,Ψ) then

10: ai ← a′i
11: if time elapsed is larger than t then
12: return ai
13: return ai

Similarly to PGS, NGS uses a greedy search to decide
which actions ai will be evaluated during search. Each ai
considered by NGS’s greedy procedure is evaluated by an-
other greedy search that approximates the opponent’s best
response to ai. This is in contrast with PGS, which evaluates
each ai as a best response to the opponent’s current action
a−i. NGS returns the action ai evaluated during search with
highest estimated payoff. The name “nested greedy” comes
from the fact that NGS uses a greedy search to evaluate each
action ai considered by the algorithm’s main greedy search.

Algorithm 3 shows NGS’s pseudocode. NGS receives as
input the sets of ready units for state s, denoted Ur

i and Ur
−i,

a set of scripts P , an evaluation function Ψ, and a time limit
t. NGS returns an action vector a for player i to be executed
in s. NGS also starts by setting seeds for both players (see
lines 1–4), exactly as is done by PGS. Similarly to PGS,
NGS evaluates a set of actions ai as defined by the set of
scripts P (lines 6–8). NGS evaluates each ai according to
the approximated best response of player −i to ai, as com-
puted by a greedy search (GS), shown in Algorithm 4. GS
iterates through all units uk−i in Ur

−i while greedily improv-
ing the action assignment to uk−i in a−i, denoted by a−i[k]
(see lines 2 and 3), while assuming i’s action to be ai. GS
approximates the players’ payoffs while−i best responds to
ai. Note that i tries to maximize its payoff by changing the
assignment of ai only if that results in a larger value returned
by GS (lines 9 and 10 in Algorithm 3), and player −i tries
to minimize i’s payoff by changing a−i only if that results
in a reduction in i’s payoff (lines 5 and 6 of Algorithm 4).

Non-Convergence Example Revisited
If NGS evaluates all actions for player i in the hypothetical
game shown in Figure 1 and GS is able to correctly compute
the best response for each ai, then NGS will return action c
for player i. This is because when evaluating action a, GS
returns the value of -2, as −i is able to best respond with e;
GS returns -2 for b and 1 to c, which is returned by NGS.

Note that, in general, NGS is not guaranteed to find the

Algorithm 4 GREEDY SEARCH (GS)
Require: state s, ready units Ur

−i = {u1−i, · · · , u
n−i

−i } in s,
set of scripts P , action vector a−i for player −i, action
vector ai for player i, and evaluation function Ψ.

Ensure: the best action value by player −i in response a
action ai.

1: B ← ∞
2: for k ← 1 to |Ur

−i| do
3: for each σ̄ ∈ P do
4: a′−i ← a−i; a′−i[k]← σ̄(s, uk−i)
5: if Ψ(T (s, ai, a

′
−i)) < B then

6: a−i ← a′−i ; B ← Ψ(T (s, ai, a
′
−i))

7: return B

best legal action amongst those considered by the set of
scripts P . This is because NGS uses a greedy search to
decided which actions ai will be evaluated during search,
which may leave legal actions without being evaluated, and
it uses another greedy search to approximate the best re-
sponse of the opponent. However, in contrast with PGS, if
the greedy search used to evaluate the opponent’s best re-
sponse is exact, NGS is guaranteed to return the best action
for player i amongst the set of actions evaluated in search.

Another source of error for NGS is its inability to eval-
uate a large number of actions due to its time complexity.
The number of calls of Ψ grows linearly with the size of
P and with the number of units for PGS. By contrast, the
number of calls of Ψ grows quadratically with the size of
P and with the number of units for NGS. Specifically, each
iteration of the outer for loop of PGS (see Algorithm 2) per-
forms O(|Ur

i | × |P|) calls of Ψ. By contrast, each iteration
of the outer while loop of NGS (see Algorithm 3) performs
O(|Ur

i |× |Ur
−i|× |P|2) calls of Ψ. Due to the real-time con-

straints, in scenarios with a large set of scripts and/or with
many units, PGS might be able to evaluate a much larger
number of actions, which could outweigh NGS’s advantage
of approximating a best response to the player’s action.

Finally, another source of error for both PGS and NGS is
an imperfect function Ψ. An imperfect Ψ can make NGS’s
GS compute the wrong best response a−i. Due to all these
factors, we evaluate empirically in the domain of µRTS if
NGS can be more effective than PGS’s search procedure.

Empirical Evaluation
Our empirical evaluation of NGS is divided into two parts. In
the first part we show the results of PGS with I = 1 andR =
0, PGS with I = 1 andR = 1 (PGSR), and NGS. In the first
part we do not limit the running time of the algorithms and
allow PGS and PGSR complete their iterations as defined
by the values of I and R. NGS is allowed to run a complete
iteration of the outer while loop shown in Algorithm 3. The
goal of this first experiment is to show that even if allowed
“more search”, likely due to the non-convergence problem,
PGSR can be outperformed by PGS. We also intend to show
NGS performance if not limited by running time constraints.

In the second part we test PGS, PGSR, and NGS against
state-of-the-art search methods for RTS games. Namely,

70

Map 8× 8

PGS PGSR NGS Avg.
PGS - 75.0 43.8 59.4
PGSR 25.0 - 12.5 18.8
NGS 56.2 87.5 - 71.9

Map 12× 12

PGS PGSR NGS Avg.
PGS - 87.5 46.2 66.9
PGSR 12.5 - 3.8 8.1
NGS 53.8 96.2 - 75.0

Map 16× 16

PGS PGSR NGS Avg.
PGS - 78.7 32.5 55.6
PGSR 21.3 - 12.5 16.9
NGS 67.5 87.5 - 77.5

Map 24× 24

PGS PGSR NGS Avg.
PGS - 73.8 47.5 60.6
PGSR 26.3 - 3 18.8
NGS 52.5 88.8 - 70.6

Table 1: Results of PGS, PGSR, and NGS without running time constraints. Entries in bold indicate pathological cases in which
PGSR performs on average worse than PGS (see column “Avg.”).

NGS STT NAV SCV PGS AHT PS PGSR

Total 866 735 560 546 493 475 339 331

Table 2: Total number of victories of each approach; maxi-
mum possible number of victories is 1,120.

we test the following algorithms: Adversarial Hierarchical
Task Network (AHT) (Ontañón and Buro 2015), an algo-
rithm that uses Monte Carlo tree search and HTN planning;
Naı̈veMCTS (Ontañón 2017) (henceforth referred as NAV),
an algorithm based on combinatorial multi-armed bandit al-
gorithm; the MCTS version of Puppet Search (PS) (Barriga,
Stanescu, and Buro 2017b) and Strategy Tactics (STT) (Bar-
riga, Stanescu, and Buro 2017a). In these experiments all
algorithms are allowed 100 milliseconds of planning time.

All our experiments are run on µRTS, a minimalist
RTS game developed for adversarial real-time planning re-
search (Ontañón 2013). µRTS allows one to test algorithms
without having to deal with engineering problems normally
encountered in commercial video games. Moreover, there is
an active community using µRTS as research testbed, with
competitions being organized (Ontañón et al. 2018), which
helps organizing all methods in a single codebase.1

We use maps of size x × x with x ∈ {8, 12, 16, 24}. Ev-
ery match is limited by a number of game cycles and the
match is considered a draw once the limit is reached. We
present the percentage of matches won by each algorithm,
the matches finishing in draws are counted as 0.5 for both
sides. The maximum number of game cycles is map depen-
dent. We use the limits defined by Barriga et al. (2017b):
3000, 4000, 4000, 5000 game cycles for maps of size 8, 12,
16, and 24. Each tested algorithm plays against every other
algorithm 40 times in each map tested. To ensure fairness,
the players switch their starting location on the map an even
number of times. For example, if method 1 starts in location
X with method 2 starting in location Y for 20 matches; we
switch the starting positions for the remaining 20 matches.

The Ψ function we use for PGS, PGSR, and NGS is a
random play-out of 100 game cycles of length (approxi-
mately 10 actions for each player in the game). The random
play-out evaluates state s by simulating the game forward
from s for 100 game cycles with both players choosing ran-
dom actions, until reaching a state s′. Then, we have that
Ψ(s) = Φ(s′), where Φ is µRTS’s evaluation function in-
troduced by Ontañón (Ontañón 2017). Φ computes a score

1https://github.com/santiontanon/microrts

for each player—score(i) and score(−i)—by summing up
the cost in resources required to train each unit controlled
by the player weighted by the square root of the unit’s hit
points. The Φ value of a state is given by player i’s score
minus player −i’s score. Φ is then normalized to a value in
[−1, 1] through the following formula 2∗score(i)

score(−i)+score(i)−1.
The set of scripts we use with PGS, PGSR, and NGS

is composed by Worker rush (WR) (Stanescu et al. 2016),
NOKAV, and Kiter (Churchill and Buro 2013). WR trains a
large number of workers which are immediately sent to at-
tack the enemy; NOKAV chooses an attack action that will
not cause more damage than that required to eliminate the
enemy unit from the match; Kiter allows the units to move
back in combat. Although traditionally used with units that
can attack from far, Kiter may still give units that have to
be near the enemy to be able to attack a strategic advantage
by allowing them to move away from the enemy. The de-
fault script we use in the seeding process of PGS, PGSR, and
NGS is WR. All experiments were run on 2.1 GHz CPUs.

First Experiment: No Time Limit
Table 1 presents the results for PGS, PGSR, and NGS. Each
entry of the table shows the percentage of wins of the row
approach against the column approach (out of 40 matches).
We highlight in bold the pathological results, i.e., the cases
in which PGSR or NGS win fewer matches than PGS (see
column “Avg.”, which shows the average results). We call it
pathological because PGSR and NGS are expected to defeat
PGS for being granted more “search time” than PGS. Recall
that PGSR performs one improve for the player, one for the
opponent, and finally, a last improvement for the player. By
contrast, PGS performs a single improvement for the player.
PGSR presented pathological results in all maps tested. For
example, PGS wins on average 60.6% of the matches played
in the 24×24 map, while PGSR wins only 18.8%. Overall,
NGS outperforms both PGS and PGSR. For example, NGS
wins on average 77.5% of the matches played in the 16×16
map, while PGS wins 55.6%.

Second Experiment: Against State-of-the-Art
Table 2 presents the number of matches won by each ap-
proach tested in all 4 maps; matches finishing in draws are
not included in these results. The maximum possible number
of victories is 1,120. Overall, NGS wins more matches than
any approach tested, suggesting that NGS’s search scheme
is able to find good actions by accounting for the opponent’s
possible response. PGS also performs well, being competi-
tive with NAV and SCV and outperforming AHT, PS, and

71

Map 8 × 8

PS AHT STT NAV SCV PGSR PGS NGS Avg.
PS - 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.7

AHT 100.0 - 25.0 12.5 2.5 57.5 33.8 25.0 36.6
STT 95.0 75.0 - 46.3 21.3 92.5 91.3 26.3 63.9
NAV 100.0 87.5 53.8 - 35.0 97.5 96.3 20.0 70.0
SCV 100.0 97.5 78.8 65.0 - 92.5 68.8 12.5 73.6

PGSR 100.0 42.5 7.5 2.5 7.5 - 63.8 10.0 33.4
PGS 100.0 66.3 8.8 3.8 31.3 36.3 - 25.0 38.8
NGS 100.0 75.0 73.8 80.0 87.5 90.0 75.0 - 83.0

Map 12 × 12

PS AHT STT NAV SCV PGSR PGS NGS Avg.
PS - 0.0 2.5 70.0 40.0 7.5 0.0 0.0 17.1

AHT 100.0 - 23.8 10.0 81.3 78.8 46.3 50.0 55.7
STT 97.5 76.3 - 45.0 100.0 100.0 100.0 53.8 81.8
NAV 30.0 90.0 55.0 - 57.5 82.5 72.5 60.0 63.9
SCV 60.0 18.8 0.0 42.5 - 5.0 0.0 0.0 18.0

PGSR 92.5 21.3 0.0 17.5 95.0 - 21.3 0.0 35.4
PGS 100.0 53.8 0.0 27.5 100.0 78.8 - 17.5 53.9
NGS 100.0 50.0 46.3 40.0 100.0 100.0 82.5 - 74.1

Map 16 × 16

PS AHT STT NAV SCV PGSR PGS NGS Avg.
PS - 0.0 65.0 100.0 0.0 12.5 0.0 0.0 25.4

AHT 100.0 - 45.0 0.0 60.0 75.0 70.0 12.5 51.8
STT 35.0 55.0 - 76.3 48.8 65.0 65.0 31.3 53.8
NAV 0.0 100.0 23.8 - 25.0 82.5 53.8 17.5 43.2
SCV 100.0 40.0 51.3 75.0 - 77.5 62.5 0.0 58.0

PGSR 87.5 25.0 35.0 17.5 22.5 - 17.5 0.0 29.3
PGS 100.0 30.0 35.0 46.3 37.5 82.5 - 5.0 48.0
NGS 100.0 87.5 68.8 82.5 100.0 100.0 95.0 - 90.5

Map 24 × 24

PS AHT STT NAV SCV PGSR PGS NGS Avg.
PS - 27.5 52.5 100.0 100.0 85.0 87.5 92.5 77.9

AHT 72.5 - 0.0 5.0 16.3 62.5 50.0 0.0 29.5
STT 47.5 100.0 - 81.3 67.5 86.3 77.5 45.0 72.1
NAV 0.0 95.0 18.8 - 2.5 52.5 40.0 30.0 34.1
SCV 0.0 83.8 32.5 97.5 - 55.0 43.8 50.0 51.8

PGSR 15.0 37.5 13.8 47.5 45.0 - 20.0 0.0 25.5
PGS 12.5 50.0 22.5 60.0 56.3 80.0 - 8.8 41.4
NGS 7.5 100.0 55.0 70.0 50.0 100.0 91.3 - 67.7

Table 3: Percentage winning rate of all methods tested; draws are counted as 0.5 to both sides before the percentage is computed.

PGSR. PGS is only outperformed by NGS and STT. The
difference between PGS and PGSR helps explaining why
researchers use PGS with R = 0 in their experiments.

Table 3 shows the results of our experiments for each map.
Each cell shows the percentage of wins of the row method
against the column method; the numbers are truncated to one
decimal place. We highlight the background of cells showing
the percentage of wins of PGS, PGSR, or NGS if that was
greater or equal to 50%. We also highlight the cell with the
highest average percentage of wins (column “Avg.”).

By comparing the lines of PGS and PGSR one can see
that the latter is never better than the former, but often sub-
stantially worse. For example, while PGS wins 53.8% of the
matches played in a 12 × 12 map against NAV, PGSR wins
only 21.3% of the matches against the same opponent. Over-
all, NGS not only performs better than PGS and PGSR, but
it also performs better than most of the state-of-the-art ap-
proaches tested. For example, NGS only does not directly
outperform all approaches in the map of size 12 × 12—this
can be observed by the highlighted cells across NGS’s rows.

One notices a decrease in the performance of NGS against
some of the methods as the size of the map increases. For ex-
ample, against SCV, NGS wins 80%, 100%, and 100% of the
matches played in maps of size 8, 12, and 16, respectively.
However, NGS wins only 50% of matches played in a map
of size 24 against the same opponent. This happens likely
because NGS’s time complexity grows quadratically with
the number of units. Thus, other approaches might be pre-
ferred in matches played in larger maps. In addition to RTS
games played in small to medium-sized maps, NGS might
be a valuable option for games such Prismata (Churchill and
Buro 2015), which also impose time constraints, but the con-
straints are on the order of seconds instead of milliseconds.

Another interesting observation from the positive results

shown in Tables 2 and 3 is the fact that PGS and NGS can
be used to effectively play full RTS games. PGS was de-
veloped to predict the results of combat scenarios that arise
in RTS matches, and not to play RTS matches. Our results
suggest that researchers should consider PGS and NGS, as
well as all other algorithms based on the same ideas such as
POE (Wang et al. 2016) and SSS (Lelis 2017), as competing
schemes for search-based systems for RTS games.

Conclusions
In this paper we have presented a problem with PGS’s search
scheme. Namely, even under the strong assumption that PGS
is able to evaluate all actions available to the player at a
given state, the algorithm might fail to return the best action.
We showed empirically in µRTS matches that this problem
might cause PGS to present pathological results, i.e., PGS
performs worse if allowed more planning time. We then in-
troduced NGS, a search algorithm to overcome PGS’s prob-
lem. Empirical results in µRTS matches played in small to
medium-sized maps showed that NGS is able to outperform
not only PGS but all state-of-the-art algorithms tested. A
secondary contribution of our work was to show that, de-
spite PGS being developed to control units in RTS combats,
PGS and NGS can be used to effectively play entire RTS
matches. Thus, other researchers should also consider PGS
and the algorithms that followed PGS as competing schemes
for search-based systems for RTS games.

Acknowledgements
This research was supported by FAPEMIG, CNPq and
CAPES, Brazil. The authors thank the great suggestions pro-
vided by the anonymous reviewers.

72

References
Balla, R.-K., and Fern, A. 2009. Uct for tactical assault
planning in real-time strategy games. In Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, 40–45.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017a. Combin-
ing strategic learning and tactical search in real-time strategy
games. Thirteenth Annual AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment (AIIDE).
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017b. Game
tree search based on non-deterministic action scripts in real-
time strategy games. IEEE Transactions on Computational
Intelligence and AI in Games.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
planning in RTS games. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1–8. IEEE.
Churchill, D., and Buro, M. 2015. Hierarchical portfo-
lio search: Prismata’s robust AI architecture for games with
large search spaces. In AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, 16–22.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment.
Gintis, H. 2000. Game Theory Evolving: A Problem-
centered Introduction to Modeling Strategic Behavior. Eco-
nomics / Princeton University Press. Princeton University
Press.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In IEEE Con-
ference on Computational Intelligence and Games, 1–8.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the European Conference
on Machine Learning, 282–293. Springer-Verlag.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Advances in Artificial Intel-
ligence: Conference of the Canadian Society for Computa-
tional Studies of Intelligence, 66–78. Springer.
Lelis, L. H. S. 2017. Stratified strategy selection for unit
control in real-time strategy games. In International Joint
Conference on Artificial Intelligence, 3735–3741.
Moraes, R. O., and Lelis, L. H. S. 2018. Asymmetric ac-
tion abstractions for multi-unit control in adversarial real-
time scenarios. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence. AAAI.
Moraes, R. O.; no, J. R. H. M.; Lelis, L. H. S.; and Nasci-
mento, M. A. 2018. Action abstractions for combinatorial
multi-armed bandit tree search. AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-

ceedings of the International Joint Conference on Artificial
Intelligence, 1652–1658.
Ontañón, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. 2018. The first microrts artificial intelligence
competition. AI Magazine 39(1).
Ontañón, S. 2013. The combinatorial multi-armed ban-
dit problem and its application to real-time strategy games.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 58–64.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversar-
ial planning through strategy simulation. In Proceedings
of the IEEE Symposium on Computational Intelligence and
Games, 80–87.
Silva, C. R.; Moraes, R. O.; Lelis, L. H. S.; and Gal, K. 2018.
Strategy generation for multi-unit real-time games via vot-
ing. IEEE Transactions on Gamges.
Stanescu, M.; Barriga, N. A.; Hess, A.; and Buro, M. 2016.
Evaluating real-time strategy game states using convolu-
tional neural networks. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, 1–7. IEEE.
Wang, C.; Chen, P.; Li, Y.; Holmgård, C.; and Togelius, J.
2016. Portfolio online evolution in StarCraft. In Proceedings
of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, 114–120.

73

