Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

Evolving Behaviors for an Interactive Cube-Based Artifact

Victor M. Oliveira,! Hugo A. D. do Nascimento,'
Fabrizzio A. A. M. N. Soares,! Cleomar S. Rocha’
nstituto de Informatica, Universidade Federal de Goids, Goiania, Goids - Brazil
2Faculdade de Artes Visuais & Media Lab, Universidade Federal de Goids, Goiania, Goids - Brazil
{vtrmartin,cleomarrocha} @ gmail.com, {hadn,fabrizzio} @inf.ufg.br

Abstract

In the present paper we explore the idea of combining com-
putation power and the availability of ordinary art spectators
in order to produce new interactive art works. This is inves-
tigated for a particular application, which consists of produc-
ing new behaviors for a programmable art apparatus named
C” Cubes. Given the nature of the problem and some difficult
challenges to be dealt with, an Interactive Evolutionary Com-
putation (IEC) approach was devised. Furthermore, it was
necessary to adopt a surrogate function method for approx-
imating the user’s preferences and to implement a Web-based
virtual simulation environment for speeding up the genera-
tion and the evaluation of C® Cubes projects. The integra-
tion of all these elements is crucial for producing new user-
guided cube projects with interesting behaviors. The main ap-
proaches experimented in this research and the proposed de-
sign solutions are useful to solving similar problems in other
domain areas, for example, in the context of game design.

Introduction

The advances in technology in the last 40 years, such as
the development of new types of sensors and visual dis-
plays as well as of cheaper and yet more powerful process-
ing devices, has made possible the growth and the popu-
larization of technological art. Nowadays, many art events,
museums and even musical and dance shows implement
projects of technological art, attracting and captivating its
spectators. Furthermore, research in Computer Science and
in Engineering involving fields like computer programming,
HCT and computer networking, among other important ones,
paved the way to interactive technological-based art works,
for which humans are not mere spectators but an essential
part (called here interactors) of the art project. Thus, dif-
ferent interactive art projects have been presented by many
artists, demonstrating how creative and effective in produc-
ing human experiences this area can be. For instance, Bet-
ter Hands (Lages, Gobira, and Marinho 2017) is a work in
which the spectators use a device to collect data from their
physical hands. The data is then “transported” to a robot arm
with a brush, that uses it as signal to paint in a tablet. In
Tangible Air (Roggla et al. 2017), Galvanic Skin Response

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

81

sensors are used to assess a person’s reaction when observ-
ing a live event. The data from the sensors are processed and
showed in a live visualization that presents how the specta-
tors were engaged in the event.

The design of an artistic work is, in general, fully made
by its creators. However, in some cases, the artists present
an unfinished work and leave to the spectators the task of
composing the final art by manipulating and combining a
set of predefined elements. The human task can be as dis-
tinct as finishing a painting or building a physical structure
by putting objects together. If computational resources are
employed in the art project, then a myriad of new interactive
approaches and feedback are possible. We have been inter-
ested particularly in studying ways of joining computation
resources and the availability of ordinary spectators in order
to produce new artistic works. The motivation is that spec-
tators, even though they may not know how to design cre-
ative and engaging works of art, are able to experiment an
art project and give a valuable impression about it. Comput-
ers, on the other hand, can explorer and build many different
designs for an artistic project, in a well-defined scope.

We have experimented this idea with the C® Cubes, a
technological apparatus developed by Media Lab of Federal
University of Goids (UFG) for producing artistic and ludic
projects for exhibitions, fairs and events of other natures.
The apparatus consists of three medium size cubes (60 cm
side) that can be programmed to react to interaction. The
cubes communicate among themselves and can be manipu-
lated by one or more people simultaneously. The spectators
can hold, shake, rotate and move the cubes, which results in
feedback in the form of light changes and/or sounds. Each
C3 cube has its own behavior, which is encoded as a state
machine. New behaviors can be programmed by specify-
ing new state machines. The first demonstration of the C3
Cubes was at the “Understanding Visual Music” event held
in Brasilia, Brazil, in 2015. For that event, some words and
symbols were painted on the external cover of the cubes. In
addition, reactions (in the form of lights and sounds) were
programmed to indirectly guide the interactors to place the
cubes close together and with some specific sides facing up.
Because of the large number of internal states and state tran-
sitions that can be combined, it is possible to program com-
plex behaviors in the C® Cubes and thus meeting various
needs, including the development of some games.



In their original proposal of usage, the behaviors for the
C?3 Cubes and the painting of their external covers are often
designed by artists. The behaviors are then programmed and
uploaded to the devices by computer experts. In the present
work, we depart from that approach: instead of manually
designing and coding the state machines, we explorer the
possibility of having a computer creating new, unseen and
potentially interesting behaviors for the C3 Cubes. Unfortu-
nately, there are some challenges in following this approach:

e The definitions of “interesting” and “creative”, when re-
ferring to the C cube behaviors, are subjective, imprecise
and hard, if not impossible, to formalize in a mathemati-
cal/computation way. This means that the human interac-
tor is still important and should be closely involved in the
process of producing new behaviors, for guiding it;

e Evaluating a physical C® Cube project may demand sev-
eral minutes, since it is necessary firstly to upload the be-
haviors to each one of three cubes and then to play with
the apparatus for some time in order to get an proper im-
pression of it. If many projects have to be evaluated, then
a strategy is needed in order to speed up this processing;

The solution for dealing with the first challenge is to em-
ploy Interactive Evolutionary Computation (IEC) for creat-
ing new behaviors for the C* cubes in a semiautomatic way.
We adopt a specific approach in which the computer is re-
sponsible for generating and evolving a population of C?3
Cubes projects (each project consisting of three cubes), and
the users (the interactors) are responsible for evaluating the
projects (the individuals of the population), as commonly
done in other IEC applications (Semet 2002). In addition,
the results of the evaluating processes have to be quantified,
although they may remain subjective.

The simple use of IEC, on the other hand, as it is the case
for most population-based optimization method, implies in
many C3 Cubes projects to be evaluated. This causes a con-
siderable fatigue if done by just one interactor. To address
this issue, and also the second challenge listed above, two
approaches were devised: (1) in some iterations of the IEC
method, the user evaluation task is replaced by a surrogate
function that tries to model the user’s preferences '; (2) a
virtual environment for simulating a C® Cubes project, in-
tegrated with the computational evolutionary process and
available on the Web, is employed. By using this Web appli-
cation, several users can simultaneously and more quickly
experiment with the C® cubes and evaluates their behaviors.

The remainder of this paper explains the details of our
approach. In the Background Section, we present a brief de-
scription of the c3 Project and an overview of IEC; Next, we
introduce our evolutionary approach and describe the virtual
environment with the Web application developed for evolv-
ing C? projects; We then describe some experiments con-
ducted with the evolutionary approach and discuss the ob-

'A surrogate is an approximation model that mimics a desired
objective function, but with a lower computational cost (Kim et al.
2014). It is employed when the original objective function is too
costly to be evaluated many times or when it is a black-box, that is,
the original function is unknown.

82

Figure 1: C® Cubes Project. From left to right: the physical
structure of a cube without its Lycra cloth; the control box in
the center of a cube; the complete set of cubes in exhibition.

tained results; At last, we draw our main conclusions and
point to new ideas for continuing improving this work.

Background
The C? Project

An illustration of the C® Cubes Project can be seen in Fig-
ure 1. The C? cubes have three main parts:

External/physical structure Each cube is an hexahedron
with 60 cm of side made, currently, of PVC pipes. Two cen-
tral PVC axis creates a place for laying a box with electronic
devices. A white Lycra cloth is used for covering the cubes’
surface. Symbols, words and drawings can be painted on the
cloth, thus extending the meaning of the cube.

Electronic part A box in the inner part of the cube holds
the electronic devices responsible for sensing the user in-
teraction, generating audio and visual feedback, and for
communicating with the other cubes. At the moment, the
electronic components are an Arduino board, a accelerom-
eter/gyroscope, a radio frequency emitter/receiver, a buzzer,
a RGB LED tape, and other auxiliary components like bat-
teries, cables and connectors.

Controlling software Each cube is controlled by a piece
of software loaded into its Arduino. The software imple-
ments a state machine (composed of states and transitions)
which is responsible for the cubes’ behaviors. A state spec-
ifies none, one or more predetermined actions, such as
switching on or off the light of the LED tape, changing its
color or making a sound. Some actions have parameters like
the RGB color for the LED lights and the frequency and the
duration of a sound beep. All actions defined in a state must
be executed when that state is reached. Transitions connect
pairs of states in an orientated way and have one or more
conditions. Examples of conditions are: if a certain amount
of seconds has elapsed; if a given face (from 1 to 6) of
the current cube is up; if the current cube is being held or
shaken; if one of the other cubes is nearby; or if the current
cube is in a certain state. The transitions that leave the cur-
rent state are continuously verified in the software. If one of
those transitions has all its conditions verified as true, then
the machine swaps to the state indicated by that transition.
We then say that the transition was friggered.

IEC

In Evolutionary Computing (EC), the fitness functions are
often mathematically well-defined. Thus, for more subjec-
tive problems such as those in the arts and design fields,



EC becomes counterproductive. An alternative approach in
this case is to adopt Interactive Evolutionary Computation
(IEC), in which the human takes part in the evolutionary pro-
cess, usually evaluating computer-generated solutions (Tak-
agi 2001). Through IEC, it is possible to address subjec-
tiveness and to incorporate some of the objectives and con-
straints that exists only in the mind of the spectator. Nev-
ertheless, the use of human beings in an evolutionary pro-
cesses also encounters challenges. In particular, the human
fatigue makes it impossible for the population to evolve
over many generations. Therefore, IEC is in general used
with a small population and involves only a few generations
(between ten and twenty generations). Certain mechanisms
such as elitism and a proper choice of the evolutionary pa-
rameters help to accelerate the convergence of the evolution-
ary process, compensating for such disadvantages. As men-
tioned before, in the introduction section, we focus here on
the use of a surrogate function for achieving this goal.

Despite the inherent limitations of IEC, it has been used
successfully in several projects. For example, Hastings et
al. (Hastings, Guha, and Stanley 2009) employed IEC in the
evolution of elements of a computer game, with the aim of
making it more interesting. Romero and Machado (Romero
and Machado 2007) surveyed several cases of IEC for arts
and aesthetics, concerned with the creation of images, mu-
sic, and architectural designs, among other elements. Karl
Sims (Sims 1991) and Draves (Draves 2005) applied IEC to
generate images. Madera et al. (Madera et al. 2016) adopted
IEC to evolve advertisement texts, whereas Makiwan et
al. applied it for the selection of color pallets (Makiwan,
Yoshida, and Koppen 2017).

The C? Evolutionary Approach

We now introduce our IEC approach for creating behaviors
for the cubes of a C3 Project. As described early, such a
behavior is expressed as a state machine. From now on, we
use the term “solution” (and “individual”) to refer to a set
of three state machines, one for each cube, that composes a
complete C® Cubes project.

The IEC implements a standard evolutionary cycle with
the following steps: (1) an initial population of individuals
are created; (2) the individuals of the current population are
evaluated; (3) a selection process of some promising indi-
viduals takes place; (4) crossover operators are applied on
the selected individuals resulting in a set of new individuals;
(5) the new individuals undergo mutation operations; and (6)
the resultant individuals, possibly joined also with some un-
changed individuals, form the new population that replaces
the previous one. Steps (2) to (6) are repeated iteratively un-
til a stop condition is reached. The difference here to a tra-
ditional evolutionary cycle is that step (2) above is mainly
done by human interactors. As it will be seen later, this may
also be performed automatically using a surrogate function.

Solution Representation

Individuals in a population are encoded using a high-level
graph-based representation. An individual has three graph
structures, each one defining a state machine (for a cube).

83

The nodes and the edges of a graph represent the states and
the transitions of the corresponding state machine, respec-
tively. Each node has also a (possibly empty) list of feed-
back actions. Similarly, each edge has a list of conditions
that define its transition.

By an automatic process, every correct solution represen-
tation can be translated into a state machine coded in a pro-
gramming language. It can then be compiled and upload to
the Arduino boards of the C® Cubes, for been experimented
and evaluated.

Solution Evaluation

In the first tests of our approaches, we let the human inter-
actors evaluate a C® Cubes project simply by giving a score
to it between 1 and 10 (lower scores were considered bet-
ter, as we aimed at a minimization problem). However, a
plain numerical score is not a natural way of evaluating an
art project. A numerical score is not even of much utility,
since it does not provide details about the aspects that the
person liked or not about the cubes.

We then changed the evaluation process to ask the in-
teractors to express how they feel about three different as-
pects of the project: (A) the feedback (lights and sounds)
produced the cubes; (B) the interaction among the cubes
(for example, the actions performed by a cube when another
cube was manipulated by an interactor); and (B) the gen-
eral complexity of the behaviors implemented in the project.
We also adopted a visual scheme consisting of thumbs
up/middle/down for the interactors to provide their evalu-
ation for each of the three aspects. Internally to the system,
a thumb up, a thumb middle, and a thumb down are repre-
sented by the grades -1, 0 and 1, respectively. When sum-
ming up these grades for the three aspects, we get a value in
the range from -3 to 3 that is then normalized, resulting in a
positive score. Although we have ended up again with a nu-
merical simple score, this new evaluation approach collects
more information from the interactor about the C® Cubes
project, which is used in a fine tuning control of the muta-
tion operators, as explained later.

Another important element to mention is that, instead of
showing just one solution for the interactor to evaluate, we
always present a subset of the population (in the present
work, we show five individuals at a time). This is because
there is no precise reference measure of quality for the so-
lutions. Therefore, it is difficult for an interactor to evaluate
a solution by visualizing and testing only it. On the other
hand, by having access to more than one solution, the inter-
actor may compare them and define a scale of grades that
are more intuitive for him/her. This also allows a better dif-
ferentiation of the solutions.

Finally, in order to reduce the subjectiveness of the eval-
uation process, we demands every solution to be evaluated
by more than one interactor (two interactors at the moment)
and compute the average score of them.

Initial Population

The initial population is generated with diversified C® Cubes
Projects. This is done by a combination of four small



manually-designed projects with some other randomly gen-
erated solutions.

Selection Process

After the individuals are evaluated, a quarter of the popu-
lation with the highest scores are selected, and a roulette
method is used to select another quarter, thus resulting in
half of the population been selected. Then a pair for each in-
dividual, from the whole population, is chosen by a roulette
method. The roulette method uses the score to decide the
chance of a solution to be selected for forming a pair.

Crossover Operator

The crossover operator is applied to each pair defined by
the selection process, resulting in two new solutions. For the
present research, a two random point crossover operator was
designed. Let (A, B) be a pair of individuals produced by
the previous step. Each cube from A pairs with a random
cube from B. Suppose A; and By are the chosen cubes.
Now, all states of A; are listed. This list is sliced in two ran-
dom points, generating three sets of states. The same process
is done for Bs. The sets of states from these different cubes
are then aggregated, generating the new cubes D; and Fs.
The cube D1, for example, has some parts of A; and some
parts of Bo, while E5 has the remaining parts. This process
is repeated for the other cubes of A. During the crossover,
some transitions may loose their final state (they may point
to a moved state). If this happens, then the final states of
such transitions need to be redefined in order to point to an
existing state (any one) in the new list.

Mutation Operators

After the crossover step, the resulting individuals undergo
a mutation phase. There are 12 possibles mutations: creat-
ing a new state, deleting a state, adding a new action to a
state, deleting an action of a state, changing the parameter
value of an active action in a state (e.g., the RGB parameter
of an action that sets the LEDs’ colors), adding a transition,
deleting a transition, changing the final state of a transition,
changing the initial state of a transition, adding a new con-
dition to a transition, removing a condition of a transition,
and changing the parameter value of a condition in a transi-
tion. Transitions that loose their final state during mutation
are also corrected, as done in the previous step.

Each mutation operator has a random probability of being
applied to an individual, that is previously defined and very
low (usually a value like 0.01). Nevertheless, those proba-
bilities may change based on the average scores received by
the population of individuals in the current evolutionary cy-
cle. If the average score of the feedback aspect of the whole
population is low, then the probabilities of the mutation op-
erators for adding actions and changing their parameters are
momentarily increased. If the average score of the interac-
tion aspect is low, then the activation probabilities of the
mutations that add a transition and change their final states
are also raised. In a similar way, the probabilities of the mu-
tation operators that remove a condition from a transition
and change its value are increased if the average score of

84

the complexity aspect is low. These changes on the mutation
probabilities allow the IEC method to take into considera-
tion more information about the human evaluation.

The Surrogate Approach

After the human interactors completely evaluate a popula-
tion, a surrogate function is constructed using the average
solution scores in the population. We employed a surrogate
model based on the work of (Kim et al. 2014) that uses
a Radial Basis Function Network (RBFN). The RBFN can
be applied to different problem representations and demands
only the existence of a function to compute the distance be-
tween two solutions in the solution space. The distance from
two C3 Cubes Projects was defined as thin-plate splines us-
ing the difference between their graph structures.

As said before, the surrogate mimics the original objec-
tive function, which, in our case, resides in the users’ mind.
Therefore, we can use the recently created surrogate func-
tion to evaluate the solutions in the population. For the evo-
Iutionary cycle immediately after constructing the function,
the surrogate will provide the same results given by the hu-
man interactors. Then k£ more cycles should be performed
using only the surrogate function to evaluate the solutions in
the population, with &k a predefined and fixed number. Af-
ter the k — th iteration, the resultant population is assigned
again to the interactors for evaluation, the surrogate function
is reconstructed and the process repeats.

Virtual Environment for Simulation

In order to allow a quick population evaluating, a web-
based 3D virtual environment was designed for simulating
C? Cubes projects. The environment allows simultaneously
several users to play with and evaluated projects. Each time
a user accesses the environment, he or she sees five C°
Cubes projects randomly taken from the current population
(projects that were not evaluated yet have a higher chance
of being chosen). The user evaluates the cubes according
to the three aspects mentioned before and sends the results
to the IEC system (that runs in background and performs
1 + k evolutionary cycles when all solutions have received
two user evaluations). The user is required to play with ev-
ery C3 Cubes Project for at least 30 seconds, and to move all
three cubes at least once, in order to unlock the evaluation
area of the project. These requirements are intended to avoid
fake evaluations.

The 3D simulator supports two interaction modes: using a
mouse for holding, shaking, moving and rotating the cubes;
and using a tangible interface for interacting with the vir-
tual cubes. The tangible interface consists of a Web Camera
and three paper cubes of small sizes with fiducial markers
at their sides (for an Augmented Reality (AR) application).
The paper cubes need to be cut from a sheet and assembled.
Each one controls a unique C® cube. By moving the paper
cubes in front of the Web camera, the user gets the same
movement on the cubes at the virtual environment. Figure 2
illustrates the system’s functioning with the tangible inter-
face activated.

The tangible interface intents to bring the user a bit closer



C3-Project about
Available Cubes

FRP

&a
va

Evaluat:

Figure 2: Virtual environment for simulating and evaluating
C? Projects, with the tangible interface activated.

to the interaction with the real C® cubes, making the expe-
rience more realistic and motivating. The user may opt for
using one interface or the other.

Experiments

Two experiments were done for testing our approach. The
first experiment aimed at verifying the effectiveness of us-
ing a surrogate function. The second experiment focused on
identifying whether IEC guides to new interesting behaviors
for the C? project.

Testing the surrogate

For testing the surrogate approach, we replaced the user
evaluation by a simple fitness function (to be minimize) that
computes the distance of a solution to a predetermined fixed
target?. The evolutionary process was implemented and set
for running for 100 normal generations (using the fitness
function). After every evolutionary cycle of the normal IEC
algorithm, we computed %k generations using the surrogate
function. This results in 100 x (1 4 k) generations in total.

We tested two scenarios: with £ = 0, meaning no usage
of the surrogate function, and with £ = 5, representing five
generations using the surrogate for each normal generation.
The whole process was repeated 100 times and the average
quality of the best, the worse and the median solutions were
computed for the generations that employed the distance fit-
ness only.

A chart comparing the results for the surrogate evolution
(k = 5, referred as “S”) against the normal evolution (k = 0,
abbreviated as “N”) is shown in Figure 3, with colored lines.
We highlight that the use of the distance function as the fit-
ness is a metaphor for having users performing the evalua-
tion (what can demand a considerable amount of time). The
use of the surrogate function, on the other hand, is a fully
automatic and relatively fast process.

From the data, we realize that the surrogate evolution has
a better early gain in comparison to the normal evolution.
By generation 30, the surrogate approach had produced, on
average, best solutions that would be surpassed only at gen-
eration 70 by the normal evolutionary process. Nevertheless,
as more normal generations take place, the gap in quality be-
tween the two approaches decreases. After 100 generations,

) The target solution was a behavior manually designed for the
C3, consisting of 6 states and 36 transitions.

85

180

160
140

120
\
100
80
60
40
20
0

- oMo~
- -

100

N oo o [N
wWowWoN~NN®®O®ON N
N

-==BestS --eeer WorstS =———MedianS ===BestN - Worst N ———Median

Figure 3: The average fitness value (Y-axis), considering 100
independent trials, of the Best, the Worst and the Median in-
dividuals for the 100 generations that actually used the fit-
ness function (X-axis). The Surrogate Evolution is shown in
red and the Normal Evolution in blue.

the normal approach tends to provide a better result then the
method with the surrogate. This might be because the way
the surrogate function models the search space, very often
including points with high evaluation values that prevent a
fine-grain focus of the search method. This also explains
way the red line on the top of the chart (representing the av-
erage value of the worst solution in the surrogate approach)
is quite erratic and reaches a plateau soon in the computa-
tion.

Based on these observations, and considering that, for the
IEC, only a small number of generations with user evalua-
tion is possible (in general from 10 to 50 generations), we
can see that the use of the surrogate function represents a
significant gain over the other approach. In addition, the two
approaches can be combined by setting £ >> 0 at the be-
ginning and moving it to 0 when the change of the quality of
the best solution becomes small.

Evolving behaviors

For the second experiment, a complete evolutionary sys-
tem coupled the Web-based virtual environment for simu-
lation were used. The population size was set to 15 indi-
viduals and two evaluations of each individual was required
for triggering the evolutionary cycle. The number of auto-
matic surrogate generations, after each complete user eval-
uation of the population, was k = 4. The initial population
was composed by four small human-designed C® Projects
(having two states in each and covering different types of
state-change conditions and feedback actions) and eleven
randomly generated projects. The three cubes in every ini-
tial human-designed C Project had the same state machine.

The experiment involved undergraduate students from a
computer graphics discipline at our institution. It was con-
ducted for a week, during which the students had access to
the Web application. Each time a user accessed the system,
he or she was presented with five C® Projects, randomly
chosen from the current population, for interaction and eval-
uation. After evaluating all five solutions, the system would
load five new projects (from the same population, or from a
new one if an evolutionary cycle was completed).

During the period when the system was active, 11 users
participated by conducting more than 210 evaluations as a



group, which led to 6 new generations of the population.
The participants could use either the mouse interaction or the
tangible interface. The results obtained in this experiment
are presented next.

Results The cubes’ actions were divided into three classes
in order to better analyze them. The first class was named
Light, and consists of actions that turn the light on or off
and make the cube light to blink. The second class, called
Color, contains the actions that change the cube color. These
actions include changing the light color to a random value or
to a specific variation from a color palette. The last class was
named Sound, and has actions that play a sound.

The various metrics that will be explained next are com-
puted in the following way: first, a metric to be analyzed is
defined for a cube; Then it is averaged for the three cubes
of a C® Project; Finally, the grade of a population is com-
puted by averaging the metric for all C Projects within that
population. This rule applies to all metrics.

Table 1 summarizes the main metrics for the population
in each generation. The rows are: the population identifier
(ID); the average number of states per cube (STT); the aver-
age number of transitions in each state of each cube (EDG);
the average number of conditions inside each transition in
the cubes (CND); the average number of actions in each
state (ACT); the average number of conditions that use other
cube’s information, such as if one of the other cubes has its
Face 1 up or if the other cubes are nearby (LC); the sum of
Light actions divided by the total number of states (LTC);
the sum of Color actions divided by the number of states
(CRC); the sum of Sound actions divided by the number of
states (SDC); the maximum grade a C*® Project obtained in
the population (MXG); the minimum grade a C Project ob-
tained in the population (MIG); the average grade of the C3
Projects in the population (AG); and the standard deviation
of the C? Projects’ grades of the population (SDG).

Table 1: Main metrics of the population in each generation.

ID 0 1 2 3 4 5 6
STT 1.7 19 21 21 22 26 27
EDG |15 19 20 23 23 29 41
CND | 3.0 15 12 15 13 1.2 1.1
ACT |19 15 1.8 2.8 33 37 37
LC 1.7 12 1.1 12 1.0 08 038
LTC .1 07 07 I.1 15 1.7 1.7
CRC |07 02 04 10 12 15 1.6
SDC | 03 0.6 07 19 1.0 1.0 1.0
MXG | 85 85 100 100 93 100 -
MIG |20 20 18 10 1.8 1.0 -
AG 59 5.1 57 58 58 62 -
SDG |33 29 32 35 32 32 -

The proposed approach was able to evolve the C®
Projects, obtaining behaviors different from the initial ones.
The complexity of the state machines in terms of number
of states and transitions increased with the generations and
was possible to identify changes on the transitions and on
the state actions in terms of type and other parameters.

86

—a—STT -e— EDG CND ACT

Figure 4: Average number of states (STT), edges (EDQG),
conditions (CND) and actions (ACT) per generations.

wov b ow

1
- I I I
0
1 2 3
mLC

Figure 5: The average number of conditions that use the sta-
tus of other cubes (LC) versus the average number of condi-
tions that use only the cube’s own status (Other conditions).

a s 5 7

Other Conditions

The line chart in Figure 4 shows the changes of some met-
rics that measures the complexity of the C3 projects in the
population over generations. There is an initial decrease of
the numbers CND and ACT. This may be because of the ini-
tial random projects, which contain many non intuitive inter-
actions that are badly evaluated by the user. After one or two
generations, however, the solutions started to become more
suitable to the users’ interest and the measures increased or
became stable.

Figure 5 highlights another pattern. The average number
of conditions based on the other cubes’ information (LC)
and the average number of the remaining conditions are very
high and almost proportional in the first population, due to
the randomized initialization process. Then, they reduce sig-
nificantly and start to become more stable with a higher per-
centage for LC. The increase in the proportion of LC is a fa-
vorable factor, since it indicates that there is relatively more
interaction between the cubes in a C project.

The line chart in Figure 6 shows that the normalized num-
ber of Light and Color actions (LTC and CRC) had an initial
decrease, as happened with some other metrics. After a few
generations, the normalized number of Sound actions (SDC)
grew and found a limit; the values LTC and CRC kept grow-
ing as their limits were higher (with more types of actions
available). The increase in these numbers are also favorable
in general, because it possibly indicates more feedback to
the interactors. However, if they raise too much, the cubes’
behaviors may be very similar, with all interactions possibly
resulting in the same type of feedback.

It is useful to understand the best evaluated C® Project
in the last population, as well. That solution presented more



N\

4—;—"" '
) / .
/

—m-LTC CRC sDC

Figure 6: Average of Lights, Color, and Sound actions as
LTC, CRC and SDC respectively, per generation.

complex and interesting behaviors than that in the initial C*
Projects. The three cubes in final best solution also had dis-
tinct state machines.

Finally, although we offered a tangible interface and con-
sidered that it would be more appealing for playing with the
cubes, most users preferred the mouse-based interface. One
reason for this may be the extra effort for printing, cutting
and assembling the paper cubes. Furthermore, it was neces-
sary to use the mouse anyway for giving the grades.

Conclusion

This paper proposes the integration of computer processing
power and human evaluation by means of an interactive evo-
lutionary computation approach. The approach is assisted by
a surrogate function and a simulation environment for the
creation of new C3 Cubes projects.

The human-computer combination provides new and
more interesting projects as the evolution of populations
goes on. The final projects (or just the best evaluated one)
may be implemented and uploaded to the Arduino board
in real cubes, without the need of programming skills or
knowledge about the hardware and the software of the artis-
tic project. There is still the need of time for playing and
evaluating several C® projects, but this is significantly re-
duced by using of the simulation environment and the surro-
gate function.

The application as a virtual environment still lacks some
physical aspects, which unfortunately is required to provide
a better experience. Thus, we are planning to build a simulta-
neous experience with a physical C* Cubes project installa-
tion being dynamically loaded with the best current solution
in order to allow the users to interact to it and to add his or
her evaluation to the population.

Further studies in this field include the adaptation of tech-
niques to compensate the surrogate long-term loss. Also,
the use of a different rating approach, in which more in-
formation can be inferred from the evaluation of C® Cubes
projects, could help the evolutionary process. Finally, we in-
tend to create incentives for the users to use the tangible in-
terface over the mouse, and to extend the investigation of the
benefits of these interfaces.

We also consider extending the our proposal to game de-
sign, for example, for creating scenarios, landscapes, racing
roads and new RPG avatars, which present the same chal-

87

lenges described in the present work.

Acknowledgments

The authors would like to thank FAPEG (Fundacdo de
Amparo a Pesquisa do Estado de Goids), process number
01/2018, for the financial support.

References

Draves, S. 2005. The electric sheep screen-saver: A case
study in aesthetic evolution. In Workshops on Applications
of Evolutionary Computation, 458-467. Springer.

Hastings, E. J.; Guha, R. K.; and Stanley, K. O. 2009. Evolv-
ing content in the galactic arms race video game. In Com-
putational Intelligence and Games, 2009. CIG 2009. IEEE
Symposium on, 241-248. TEEE.

Kim, Y.-H.; Moraglio, A.; Kattan, A.; and Yoon, Y. 2014.
Geometric generalisation of surrogate model-based optimi-
sation to combinatorial and program spaces. Mathematical
Problems in Engineering 2014.

Lages, W. S.; Gobira, P.; and Marinho, F. 2017. Better
hands. In Proceedings of the 2017 ACM SIGCHI Confer-
ence on Creativity and Cognition, C&#38;C *17, 453-455.
New York, NY, USA: ACM.

Madera, Q.; Castillo, O.; Garcia, M.; and Mancilla, A. 2016.
Interactive evolutionary computation with adaptive mutation
for increasing the effectiveness of advertisement texts. In
Computational Intelligence (SSCI), 2016 IEEE Symposium
Series on, 1-6. IEEE.

Makiwan, D.; Yoshida, K.; and Koppen, M. 2017. Inter-
active evolutionary computation of color palette design en-
hanced by impression words. In Platform Technology and
Service (PlatCon), 2017 International Conference on, 1-6.
IEEE.

Roggla, T.; Wang, C.; Perez Romero, L.; Jansen, J.; and Ce-
sar, P. 2017. Tangible air: An interactive installation for
visualising audience engagement. In Proceedings of the
2017 ACM SIGCHI Conference on Creativity and Cogni-
tion, C&#38;C "17, 263-265. New York, NY, USA: ACM.
Romero, J. J., and Machado, P. 2007. The art of artifi-
cial evolution: a handbook on evolutionary art and music.
Springer Science & Business Media.

Semet, Y. 2002. Interactive evolutionary computation: a
survey of existing theory. University of Illinois.

Sims, K. 1991. Artificial evolution for computer graphics,
volume 25. ACM.

Takagi, H. 2001. Interactive evolutionary computation: Fu-

sion of the capabilities of ec optimization and human evalu-
ation. Proceedings of the IEEE 89(9):1275-1296.





