
Generating Paths with WFC

Hugo Scurti, Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, Canada

hugo.scurti@mail.mcgill.ca, clump@cs.mcgill.ca

Abstract

We describe a tool based on the Wave Function Collapse
algorithm that performs example-based path generation on
fixed maps. Our design aims at a practical system usable by
non-programmers, and includes both easy input control and
multiple post-processing steps. The design is implemented in
Unity and enables users to easily visualize the results of ex-
perimenting with different path descriptions and game levels.

Introduction
In this work we describe an example-based approach to path
generation with a simple, flexible interface. Our design is
based on the Wave Function Collapse (WFC) algorithm (Gu-
min 2016), an example-based approach to texture genera-
tion. We developed a complete realization in Unity, with
available source code (Scurti 2018). We modify and aug-
ment WFC to form a workflow that takes a representative
path design and game level as input, and produces a usable
set of paths respecting the given path properties and level
constraints. Simple modifications to the input path design
can be done with any image editor, and can then be used
to control properties of the resulting paths. The algorithm
scales to significant, practical level sizes. For easy use and
experimentation, the tool is able to read in actual game levels
expressed in ASCII form, as from the Moving AI benchmark
suite (Sturtevant 2012). For more information, a detailed
analysis is available at https://arxiv.org/abs/1808.04317

WFC Background
Our approach builds heavily on the Wave Function Collapse
algorithm developed by Gumin (2016), more precisely the
overlapping version of the algorithm. This algorithm builds
random output textures based on smaller input textures by
looking at overlapping patterns in the input texture sample.
The original implementation adds a few helpful options for
texture generation, such as the ability to set boundary pat-
terns, wrap periodically, and extend the range of available
patterns by adding rotations and reflections of patterns sam-
pled from the input. Further detail can be found in the code
itself.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The WFC algorithm has seen a few notable ports and
forks. Our design is influenced by Karth and Smith’s paper
on WFC in which they describe in depth the algorithm and
relate it to constraint solving (2017). We also made use of
Fehr and Courant’s modifications to improve performance
(2018).

WFC for Path Generation
The intent of our approach is to allow a user to supply a sin-
gle path sketch showing an example path, and to then apply
it to an existing output level, filling the level with paths that
have characteristics similar to the original example. How-
ever, using the WFC algorithm to achieve this would intro-
duce a few issues. First, we need to be able to fix tiles in
the output to represent the output map on which the algo-
rithm is executed. While it is possible to fix tiles in WFC,
doing so manually for each obstacle in the output would be
tedious. We solve this by automatically generating static out-
puts that represent the output map on which the algorithm is
executed. Furthermore, using only the precise paths and ob-
stacles in inputs would either put too much or not enough
constraints on the output. We deal with this by using stretch
space, which is a defined color between obstacles and paths
to represent an arbitrary distance between them. It is also not
possible to represent all shapes of obstacles into a single in-
put. We therefore introduce the notion of masks in order to
handle different shapes in the output map and to deal with
boundaries.

Since the algorithm works on pixelated images, we add
post-processing steps in order to generate actual paths on
game maps and make the end result more appealing through
simplification and smoothing (Ramer 1972; Douglas and
Peucker 1973; Chaikin 1974).

Implementation
Our tool is based on a Unity implementation of our modified
WFC algorithm. We use custom inputs, extracting patterns
of size 3 × 3 as sufficient to represent useful path proper-
ties, without introducing major scaling issues. Input and out-
put 2D maps use small monochromatic sprites to represent
tiles and interactively show the execution of the algorithm.
When the execution succeeds, post processing steps can be
applied to generate paths in a 3D representation of the output

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

271

Figure 1: Screenshot of the Unity tool developed. First image on the left is the input. The image in the middle is the result of
the main algorithm. The image on the right is the final result after post-processing.

Figure 2: Comparison between output generated with differ-
ent types of input. Rotations and reflections are disabled

map, along with an agent that can walk through generated
paths. Figure 1 shows the interface. The algorithm was tested
with maps representing game levels from Dragon Age: Ori-
gins and Baldur’s Gate II, as extracted from the Moving AI
benchmark sets (Sturtevant 2012).

Results
Output of the algorithm depends on characteristics of the
input and can be controlled by different user options. Below
we show the effects of some major choices.

Frequency distribution
Using weights to select patterns gives us some control over
the outcome of the algorithm. Our algorithm uses the same
pattern selection mechanism as in the WFC algorithm: the
frequency distribution of patterns found in the input is used
to bias the choice of patterns applied to the output. As we
can see in figure 2, the difference in number of horizontal or
vertical components of the input patterns is thus reflected in
the generated output.

Different input/output combinations
To support the argument that the algorithm works for dif-
ferent combinations of input and output, we show examples
on 2 larger inputs, namely Arena2 and Lak519d from the
Dragon Age: Origins benchmark set, which are respectively
of size 281× 209 and 168× 145 pixels. We also introduce 2

Figure 3: Example of execution with the Arena2 map.

Figure 4: Example of execution with the Lak519d map.

new input textures to show examples of different outcomes
based on significantly different inputs.

Figure 3 shows a result of the algorithm on the Arena2
map using a complex polygon as the input, and with rota-
tions and reflections enabled. As a result, generated paths
have more complex turns and routes.

Figure 4 shows a result on the Lak519d map using an oc-
tagon as the input. For this input, enabling rotations and re-
flections is irrelevant as it would not add additional patterns.
Compared to figure 3, this output has less varying path seg-
ments. However, in terms of path shapes, paths in this output
are more similar to its corresponding input.

272

References
Chaikin, G. M. 1974. An algorithm for high-speed curve
generation. Computer Graphics and Image Processing
3(4):346 – 349.
Douglas, D. H., and Peucker, T. K. 1973. Algorithms for
the reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisu-
alization 10(2):112 – 122.
Fehr, M., and Courant, N. 2018. fast-wfc. https://github.
com/math-fehr/fast-wfc. Github repository.
Gumin, M. 2016. WaveFunctionCollapse.
https://github.com/mxgmn/WaveFunctionCollapse. Github
repository.
Karth, I., and Smith, A. M. 2017. WaveFunctionCollapse is
constraint solving in the wild. In Proceedings of the 12th
International Conference on the Foundations of Digital
Games, FDG ’17, 68:1–68:10. New York, NY, USA: ACM.
Ramer, U. 1972. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics and
Image Processing 1(3):244 – 256.
Scurti, H. 2018. Path-wfc.
https://github.com/hugoscurti/path-wfc. Github repository.
Sturtevant, N. 2012. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence
and AI in Games 4(2):144 – 148.

273

