
Toward Automated Story Generation with Markov Chain
Monte Carlo Methods and Deep Neural Networks

Brent Harrison, Christopher Purdy, Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia, USA
{bharrison6, cpurdy3, riedl}@gatech.edu

Abstract

In this paper, we introduce an approach to automated story
generation using Markov Chain Monte Carlo (MCMC) sam-
pling. This approach uses a sampling algorithm based on
Metropolis-Hastings to generate a probability distribution
which can be used to generate stories via random sam-
pling that adhere to criteria learned by recurrent neural net-
works. We show the applicability of our technique through a
case study where we generate novel stories using an accep-
tance criteria learned from a set of movie plots taken from
Wikipedia. This study shows that stories generated using this
approach adhere to this criteria 85%-86% of the time.

Introduction
Automated story generation is the use of artificial intel-
ligence to craft novel, fictional story content. Automated
story generation systems have achieved the greatest suc-
cesses in fictional worlds for which there are a finite, enu-
merated set of actions, characters, objects, and settings. Ex-
amples include computer game environments (Porteous and
Cavazza 2009; Li and Riedl 2010) and micro-worlds based
on fairy tales (Meehan 1977; Turner 1994; Pérez y Pérez and
Sharples 2001; Riedl and Young 2010; Martens et al. 2014;
Farrell and Ware 2016) or soap operas (Lebowitz 1987). In
these worlds, a domain author first constructs a model of the
fictional world. This domain model could be logical oper-
ators, an ontology, etc. A story generation algorithm then
reasons about the model to produce a sequence of actions
performed by characters. These systems are, by their nature,
locked in to one specific domain until the domain model is
changed.

Open story generation tackles the challenge of generat-
ing and telling stories in any conceivable domain without
re-learning or retraining the domain model. That is, a user
may request a story about any topic he or she can think of
and the automated story generation system will be able to re-
spond. There are two primary challenges of open story gen-
eration: (1) automatically acquiring a model of story pro-
gression, and (2) guiding the story progression progress in
the face of uncertainty.

Recently, recurrent neural networks (RNNs) have been
proposed as a means of automated story generation (Roem-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mele 2016; Martin et al. 2017; Khalifa, Barros, and Togelius
2017). A recurrent neural network can be trained on a cor-
pus of natural language stories to infer the probability of a
character, word, or sentence given one or prior characters,
words, or sentences. Stories can then be generated by sam-
pling from this distribution. That is, the problem of story
generation with neural networks is cast as a prediction prob-
lem. Training the RNN on a text corpus containing stories
from many domains and topics can yield a path toward open
story generation.

While recurrent neural networks have shown promise in
turn-taking dialogue, where one—or a few—natural lan-
guage utterances follow a human utterance, RNNs have
demonstrated difficulty maintaining a coherent progression
for more than a few turns. This is especially true when the
neural network is trained on a diverse story corpus. One of
the reasons for this is that a RNN model trained on text
is a language model: it models the probability of tokens
(characters, words, etc.) being produced given the obser-
vation of prior tokens. The act of story writing is better
described as a deliberative, planning process (Dehn 1981;
Sharples 1999) than a process of sampling conditioned on
observations.

In this work, we introduce an approach to open story gen-
eration using Markov Chain Monte Carlo (MCMC) search
trained on a diverse story corpus. Unlike a neural language
model approach to story generation which generates stories
by learning a distribution over observations, MCMC meth-
ods attempt to approximate a posterior distribution of an
unknown function by performing simulations. In this case,
the unknown distribution we want to learn is that of a hypo-
thetical storyteller that tells coherent stories in which certain
events come to pass.

Our contributions are as follows:

• We introduce a MCMC algorithm for open story genera-
tion.

• We introduce a technique for using deep neural networks
to guide the MCMC search toward producing stories that
meet genre expectations.

• We perform a case study in which we use this algo-
rithm for generating stories based on movie plots from
Wikipedia, resulting in successfully guided stories 85%-
86% of the time.

The AIIDE-17 Workshop on
Intelligent Narrative Technologies

WS-17-20

191

The remainder of the paper is organized as follows. We
will first discuss related research in this area as well as back-
ground knowledge on Markov Chain Monte Carlo sampling.
Next, we introduce our approach for using MCMC sampling
for open story generation. We then discuss a case study we
performed which shows how this approach can be used to
generate stories using naturally-occurring story corpora. We
conclude with a discussion of results, limitations, and oppor-
tunities for future work.

Related Work

Automated Story Generation has been a research problem of
interest since nearly the inception of artificial intelligence.
Closed world story generation techniques include sym-
bolic and logical planning (Meehan 1977; Lebowitz 1987;
Cavazza, Charles, and Mead 2002; Porteous and Cavazza
2009; Pérez y Pérez and Sharples 2001; Riedl and Young
2010; Martens et al. 2014; Farrell and Ware 2016) and case-
based reasoning (Turner 1994; Gervás et al. 2005). Sym-
bolic planning systems rely on predicate domain models that
state the characters, objects, and actions that can be per-
formed. Case-based reasoning systems require a case base—
a database of examples. While this case base can be ac-
quired, most case-based story generation systems to date re-
quire stories to be represented according to a preexisting on-
tology.

Recently, machine learning has been used to attempt to
learn story domain models or to identify segments of story
content available in an existing repository to assemble sto-
ries. The SayAnthing system (Swanson and Gordon 2012)
uses textual case-based reasoning to identify relevant exist-
ing story content in online blogs. Unlike earlier case-based
approaches, textual case-based reasoning does not require
the case base to be represented according to an existing
ontology. SayAnything is an interactive system in which a
human storyteller and a computer take turns. The system
searches online blog posts for a sentence similar to that writ-
ten by a human and then retrieves the next sentence to con-
tinue the story. However, the system tends to quickly lose
the coherence of the story and requires human intervention
to keep it on track.

The Scheherazade system (Li et al. 2013) uses a crowd-
sourced corpus of example stories to learn a domain model
from which to generate novel stories. While Scheherazade
is an approach to open story generation that does not suf-
fer from coherence issues, every new domain or topic re-
quires a new corpus to be crowdsourced and a new model to
be learned. The story representation used by Scheherazade
makes it difficult to combine or generalize these models.

Recurrent neural networks can theoretically learn to pre-
dict the probability of the next character, word, or sentence
in a story. By implementing a softmax layer over outputs,
stories can be generated by sampling from the output of a re-
current neural network trained on story text data. Roemmele
and Gordon (Roemmele 2016) use a Long Short-Term Mem-
ory (LSTM) network (Hochreiter and Schmidhuber 1997) to
generate stories. Khalifa et al. (Khalifa, Barros, and Togelius
2017) argue that stories are better generated using recurrent

neural networks trained on highly specialized textual cor-
pora, such as the body of works from a single, prolific au-
thor. However, such a technique is not capable of open story
generation as such a network would be too specialized to
generate stories in any conceivable domain.

Martin et al. (Martin et al. 2017) showed that they could
increase the predictive power of a sequence-to-sequence re-
current neural network (Sutskever, Vinyals, and Le 2014)
for story generation if one reduces sentences in a natural
language corpus to a specialized event representation con-
taining only the subject, verb, object, and a modifier token.
They break the problem of open story generation into two
problems: (1) generating a successor event, and (2) translat-
ing events back into natural language so that the generated
stories are human-readable. In our work, we adopt Martin
et al.’s event representation and their decomposition of story
generation into successor generation and natural language
generation.

Markov Chain Monte Carlo Simulation

The technique introduced in this paper is based on the
Metropolis-Hastings algorithm (Chib and Greenberg 1995)
for generating samples from a distribution that is either un-
known or otherwise difficult to sample from. This is done
by, first, starting with an initial distribution, X . A candidate
sample, x ∼ Xt, is drawn from this distribution on itera-
tion t and is either accepted or rejected according to some
criteria. Typically, this acceptance criteria is a ratio based
on this candidate sample, x, compared to the previous ac-
cepted sample, y ∼ Xt−1. Given a value function f(x), the
probability of acceptance α = min(1, f(x)

f(y)). If the candi-
date sample is accepted, then the distribution Xt is updated
with this new information, becoming Xt+1. If the candidate
sample is not accepted, then X remains unchanged. After
generating samples for some number of initial iterations, T ,
often referred to as a burn-in period, the distribution XT is
considered to be an approximation for the true, underlying
distribution that we wished to sample from.

This places a great deal of importance on how the value
function f(x) is chosen, as it determines how the sample
distribution will change over time. In this paper, we will use
this function to help guide story generation using MCMC
sampling.

MCMC for Story Generation

The goal of this approach is to construct a distribution over
sentences that can be used to create stories that fit a pre-
defined pattern. It is difficult to directly sample from this
distribution since the space of all possible stories, even when
using a fixed vocabulary, is very large. Even performing
MCMC sampling over a distribution of words to create sto-
ries can be difficult because it is likely to result in stories
that fail to maintain context or any coherent plot. In this sec-
tion we will first discuss three simplifications that make this
problem tractable: constructing a conditional word distribu-
tion for sampling, using an event representation, and im-
plementing vocabulary restraints. We will then discuss, in

192

greater detail, the acceptance criteria that we use to guide
the MCMC sampling process.

Conditional Word Distribution

In order to use this technique, we first need to define a sam-
pling distribution, X0. The ultimate goal of this work is to
use this distribution to construct stories, thus one option is
for this distribution to be over all possible stories. This is in-
feasible as the space of all possible stories is impossible to
enumerate. To simplify this we instead define a conditional
distribution over individual words that can be used to sample
stories. This greatly reduces the complexity of the sampling
distribution; however, this distribution contains minimal his-
tory that can be exploited to generate the story. Specifically,
the words that are sampled from this distribution are condi-
tioned on the previous word sampled, meaning that this is
a distribution over bigrams of words that can appear in the
story. Limiting the distribution to bigrams is acceptable in
this case as this is the initial distribution; we will use the ac-
ceptance criteria to help encode history into this distribution.
This will be discussed in more detail later in the paper.

Event Representation

In this work, we consider a story to be a Markov chain where
each element of the chain is sampled from a distribution, X ,
over possible bigrams that can be in the story. To simplify
the problem, we use the simplification trick from Martin et
al. (2017) and use events to represent sentences in the story.
In this work, each event consists of the following elements:
〈subject, verb, object,modifier〉. That is, every sentence
in the original story corpus is reduced to a 4-word sequence
of this form. Sentences with more than one verb or more than
one subject are broken up into multiple events. The event
representation drastically reduces the amount of words that
need to be generated in order to produce a story. Instead of
having to sample the bigram distribution to generate each
word in each sentence of the story, we simply have to sample
four words for each sentence in the story.

In practice, however, this event representation combined
with the conditional distribution used for sampling can cause
problems. If each word in the sampling distribution is only
conditioned on the word that comes before it, then it is very
difficult for samples drawn from this distribution to adhere
to this event structure. This is because a simple conditional
distribution cannot effectively encode position information
for a 4-tuple. For instance, if the first word generated was a
noun it is possible to draw a verb from the distribution (in
which case the preceding noun was the subject of the event
tuple), but it is also possible to draw another noun from the
distribution (in which case the preceding noun was likely
the object of an event tuple because the modifier slot can
also contain a noun). This ambiguity makes it impossible to
use this conditional distribution to reliably reconstruct event
structure. To solve this, we add position constraints to the
distribution.

Position Constraints

In order to solve the ordering issue, we alter the sampling
distribution such that words are conditioned on both the pre-

vious word as well as that word’s position. That, is we sam-
ple words from the distribution P (x|X, i) where i is the
word’s position in the story. This effectively encodes event
structure into the distribution, resolving any potential ambi-
guities. Consider the example used in the previous section. If
given the information that a noun was previously generated,
it is ambiguous as to what can possibly come next. If the po-
sitional knowledge that the noun was generated in the first
(i.e., i = 0) position is also used to condition the next word,
then we know that a verb must be generated in the i = 1
position. This additional position information also encodes
vocabulary restrictions in each position, further improving
the quality of generated events using random sampling. In
addition to improving the quality of generated events, this
additional information improves story quality as it helps en-
code long-term story trajectory.

Acceptance Criteria

The acceptance criteria, f(x), forces the distribution X to
change toward the final, a priori unknown distribution. As
each sample x is drawn from the current Xt distribution,
f(x) provides a score. If the score is greater than the sample
drawn from the previous iteration’s distribution Xt−1, then
Xt is updated. Otherwise, the distribution is unchanged. We
implement two acceptance criteria, described in the next sec-
tions, which are then multiplied together.

Event Succession

Our first acceptance criterion implements a model of event
succession. Certain events are more likely to occur after
other events. Since the original word bigram distribution
cannot capture long-term word dependencies, we score se-
quences of eight words (two events) according to whether
they are supported by the corpus.

We use a sequence-to-sequence neural network
(Sutskever, Vinyals, and Le 2014) to learn a model of
event succession. A sequence-to-sequence neural network
comprises two neural networks trained together in an
end-to-end process. The first network is an encoder, which
learns a latent representation of the input sequence. The
second network is a decoder, which learns to generate a
sequence from the latent representation. The network learns
to compute the probability of an output sequence y1, ..., yT ′ ,
given an input sequence x1, ..., xT . That is:

p(y1, ..., yT ′ |x1, ..., xT) = p(yt|v, y1, ..., yt1) (1)

where v is the latent vector learned by the network.
We train the sequence-to-sequence network by providing

pairs of inputs and outputs such that the input is event t and
the output is event t + 1, as shown in Figure 1. The event
data is the same story corpus represented as events as used
by the MCMC simulation.

Once the event succession model is trained, we send ev-
ery group of eight words—two events—from the MCMC
sampled story through the sequence-to-sequence neural net-
work to compute the log-probability that the first event
is succeeded by the second event. These individual log-
probabilities are then summed in order to obtain the cumu-
lative log-probability of the sampled story.

193

LSTM
cell

LSTM
cell

LSTM
cell

subji verbi obji modi

LSTM
cell

LSTM
cell

<EOS>

LSTM
cell

LSTM
cell

LSTM
cell

LSTM
cell

subji+1 verbi+1 obji+1 modi+1

subji+1 verbi+1 obji+1 modi+1

<EOS>

Figure 1: Sequence-to-sequence neural network.

Long-Range Event Relationships

The event succession model above will cause MCMC to
learn a posterior distribution similar to that learned by the
sequence-to-sequence network. That is, the result would be
no different than generating stories using an LSTM trained
on a story corpus, e.g., Martin et al. (2017). However, events
can have long-distance relationships that cannot easily be
captured by an event succession model. For example, we
might want stories with marriages to first have one character
fall in love with another character. This is a standard pattern
of character behavior in stories that is not easily captured by
the event succession model; “fall in love” and “get married”
may not occur near to each other in a story.

One of the advantages of generating stories with MCMC
is that it generates arbitrarily long sequences, providing
some ability to perform lookahead to future events. Our sec-
ond acceptance criterion attempts to push the system’s pos-
terior distribution toward learning long-range relationships
between events. Our acceptance criteria takes a k-length se-
quence of verbs and scores a generated story according to
whether the k verbs appear in the specified order without
consideration for adjacency.

Any sequence of k verbs can be provided to this accep-
tance criteria based on human intuition. The list of verbs is
used as an acceptance criteria as follows. We scan through
the Markov chain of events sampled from the MCMC’s cur-
rent distribution. For each of the verbs vk found in word po-
sition i, we check that (ik mod 4) = 1 (i.e., it is the second
word in an event) and that ik > ik−1. If this is true for each
verb provided, then this score for the sample is set to one.
If it is not true, then this score for the sample is set to zero.
Since we multiply the long-range relationship score with the
event succession score order to determine overall sample ac-
ceptance, this means that each accepted sample must adhere
to the desired verb order. This ensures that the bigram distri-
bution learned will be skewed towards stories that adhere to
this criteria.

Skipping Recurrent Neural Networks

Ideally, we would like to guide the MCMC algorithm with
long-range event dependencies that are not reliant on human
intuition. We train a second neural network to generate plot
summaries for a corpus of stories. A plot summary is a list
of the k most important events in a story. We use a special-
ized neural network architecture called skipping recurrent
neural networks (S-RNNs) (Sigurdsson, Chen, and Gupta
2017). Whereas conventional recurrent neural networks such
as LSTMs and sequence-to-sequence have limited ability to
learn a distribution conditioned on a history of observations,
S-RNNs learn to select a set of k elements in a sequence that

minimizes the amount of information lost by removing all
other items. When the model is applied to a new sequence,
the set of k items selected by the model is the best summary
of the overall sequence.

The S-RNN neural network architecture was originally
developed to summarize image albums. The goal of the S-
RNN network is to learn the maximum likelihood model pa-
rameters (M) by maximizing the marginal likelihood of the
observed data according to the following objective function:

M∗ = argmax
M

log
∑

z1:N

P (x1:T , z1:N |M)

− λR(M)

(2)

where x1:T is the T images in an album, z1:N is the set of
indexes that represent the images selected for the summary,
N is the number of elements in the summary (N � T), and
R(·) is the �2 regularizer. Maximizing the marginal likeli-
hood over all possible subsets of z is done with Expecta-
tion Maximization (EM). See (Sigurdsson, Chen, and Gupta
2017) for details for how the expectation and maximization
steps are performed. Each index zi generated by the network
is the index of an image within an image album. A summary
is produced by retrieving the image at each index, retaining
the order, and discarding the rest.

We modified S-RNN to work with textual data. We ob-
serve that, from the perspective of the S-RNN algorithm, a
story in event representation can be considered analogous to
an image album, an event is analogous to a single image, and
each of the four words in an event is analogous to a pixel but
with a large-but-finite set of possible values in the form of
a one-hot vector word encoding instead of RGB encoding.
Thus, our S-RNN model is trained with a corpus of story
events, identical to that used by MCMC and the sequence-
to-sequence network. Once the S-RNN model is trained, ar-
bitrary sequences of events can be input and k indices are
generated. A story summary is generated by retrieving each
of the k events at the specified position in the story.

To use S-RNN generated summaries as acceptance cri-
teria, we first reduce the summary to a list of k verbs—we
simply discard the subjects, objects, and modifiers from each
event. Although it would be possible to perform an exact
event match, we felt it would be too restrictive and allow-
ing MCMC to only match verbs would give it some flex-
ibility. Summaries can be generated for every story in the
same story event corpus that MCMC and the sequence-to-
sequence network uses. Any number of summaries can be
generated in this way; however in our case study we use
two of the most frequent summaries. For each summary, a
different MCMC distribution is trained. At the beginning of
the story generation process, we randomly pick one of the
distributions and then randomly sample from it until a story
of the desired length has been generated.

Case Study

In this section we present a case study in which we use our
technique in conjunction with romance movie summaries
taken from Wikipedia to generate new stories that adhere to
desired criteria. The goal of this study is to determine how

194

MCMC

Seq2Seq S-RNN

Summaries

New event sequence

Translate events to
natural language

New story text

Event corpus

Text story corpus

Figure 2: The story generation pipeline.

well this technique can produce stories that adhere to the ac-
ceptance criteria used during the MCMC sampling.

Our system architecture is shown in Figure 2. The dashed
lines and boxes represent future work. Since events are not
easily human readable, we must translate events generated
by MCMC back into human-readable form. For example,
Martin et al. (2017) use a neural network to translate events
into natural language.

Event Corpus

As seen in Figure 2, we first convert each sentence in the
story corpus into the event representation discussed previ-
ously. This can be accomplished in linear time using the
Stanford CoreNLP toolkit (Manning et al. 2014), Wordnet
(Miller 1995), and Verbnet (Schuler 2005) as described in
(Martin et al. 2017). During conversion, named entities are
removed and replaced with general identifiers, remaining
nouns are converted into high-level classes defined using
Wordnet synsets, and verbs were assigned to verb classes us-
ing Verbnet. This is done to reduce event sparsity and make
learning the distribution easier. An example sentence and
its corresponding event representation is shown in Figure 3.
This event corpus is then used to train both the sequence-to-
sequence event succession model and the S-RNN, and it is
used to generate the initial bigram distribution used to pro-
duce candidate stories during sampling.

Acceptance Criteria

The sequence-to-sequence transition model and the S-RNN
are used to calculate the acceptance score used during sam-
pling. The S-RNN is used to generate a sequence of three

Figure 3: Example sentence and its conversion into two sep-
arate events. <NE> refers to a named entity, Synsets were
assigned using Wordnet, and verb classes were assigned us-
ing Verbnet.

events for each story in the training set. These sequences
act as summaries of the actions that take place in story seen
during training. We use these summaries to impose strict
restrictions the type of stories that can be accepted during
sampling. To simplify this criteria, we are only concerned
with the verb element of the event rather than the entire
event. This makes it easier for the MCMC sampling algo-
rithm to generate stories that adhere to this criterion. In this
case study, we use two sequences in particular:

1. amuse-31.1, get-13.5.1-1, fit-54.3

2. transfer-mesg-37.1.1-1-1, seem-109-1-1, become-109.1

Since these sequences were generated from our event cor-
pus, they consist of verb classes from VerbNet rather than
the natural language text from the original plot corpus. Only
stories in which these three verb classes occur in this correct
order relative to each other will be accepted.

The LSTM neural network is used to ensure that the sam-
pled stories retain a reasonable structure. Without this addi-
tional criteria, the MCMC sampler would eventually con-
verge upon a story that simply recreates the verb order-
ing criterion discussed previously. For our experiments, we
trained a LSTM neural network with two layers and embed-
ding layer of size 300 for 100 epochs using the same train-
ing data that was used to train the S-RNN. Each sampled
story that adheres to the verb ordering criteria is then run
through this network. We then extract the log-probability
that the sampled story could have been produced by the net-
work and use this to score the story. If this story’s score is
greater the previous accepted story’s score, then the current
story is accepted. Otherwise, the story is accepted according
to the probability of acceptance, P (a): P (a) = P (x|Xt)

P (y|Xt−1) .
Here P (x|Xt) is the log probability of sampling the current
story from the current distribution, and P (y|Xt−1) is the log
probability of the most recently accepted story.

MCMC Sampling

The event corpus is used to populate the initial probability
distribution used for sampling. To do this, we scan each story
in the corpus and calculate the conditional probability of
each word given the previous word in the story using word
frequency. During training, the sampling algorithm creates

195

Table 1: Percentage of stories that adhere to the acceptance
criteria before MCMC sampling and after.

Condition Criteria 1 Criteria 2
Original Distribution 1.0% 1.2%

After MCMC Sampling 85.5% 86.1%

stories by sampling this distribution until 100,000 stories
have been accepted. For our experiments, we limited our al-
gorithm to generate only stories containing 10 events. This
was done to prevent the sampling algorithm from creating
overlong, possibly rambling, stories as well as to examine if
the algorithm would be able to successfully guide the story
using a small, fixed number of events. Each time a story is
accepted, the sampling distribution is updated with this new
story’s information and this new distribution is used to sam-
ple the next stories.

For this study, we created two models with different ac-
ceptance criteria and then used them to generate one thou-
sand stories for testing. To evaluate our approach we cal-
culated the percentage of these stories that adhered to the
verb ordering criteria. For comparison, we also calculated
the percentage of stories in the event corpus that adhered to
the original ordering criteria.

Results and Discussion

The results of this evaluation can be seen in Table 1. These
results show that stories sampled from the conditional word
distribution created using our MCMC sampling technique
can accurately recreate the verb ordering criteria around
85% of the time. We also show how many stories in the
original learning corpus adhere to each of the verb order-
ing criteria used for testing. In the original corpus, only 1%
of stories contained the provided verbs in the desired order.
This shows that our technique was able to significantly shift
the starting distribution towards the acceptance criteria.

The primary conclusion to be drawn from these results is
that the MCMC sampling algorithm that we introduced ap-
pears to successfully produce a word distribution that pro-
duces stories that fit the provided acceptance criteria. For
each criteria we examined, our technique was able to sample
stories that fit the criteria 85.5% of the time and 86.1% for
each criterion, respectively. This is especially notable given
how few of the stories in the original corpus adhered to each
of these criteria. This means that this technique was able to
detect the signal and effectively shift the distribution to im-
prove the probability that these stories would be sampled.

While this shift is promising, these results still show that
the random nature of sampling stories from this distribution
can result in some stories not adhering to the desired criteria.
While the goal of this technique is to produce a distribution
that greatly increases the probability of sampling an accept-
able story, it is still possible to generate stories that do not
adhere to the acceptance criteria. This could possibly be im-
proved by encoding a longer event history into the sampling
distribution. So, instead of encoding bigrams into the distri-
bution we could encode trigrams or four-grams. This would
increase sparsity in the distribution which could increase the

probability that the resultant stories exhibit the desired prop-
erties. This would, however, likely result in fewer unique
stories that could be generated. This tradeoff is important to
consider when deciding on how much story history to en-
code in the sampling distribution. This could also be helped
by improving the quality of the LSTM used as part of our ac-
ceptance criteria. Extending its capabilities beyond bigram
prediction should also, albeit indirectly, improve the quality
of stories generated using our technique.

Limitations and Future Work

Despite the effectiveness of this technique, there are some
important limitations that need to be considered. The most
important of these is that the resultant stories are not, in
their current form, semantically interpretable. This makes
it hard to easily determine the quality of the sentences sam-
pled using our approach beyond verifying that they exhibit
the author-defined story properties. This is because we use
an event representation to simplify the sampling process. As
shown in Figure 2, the final module in our system pipeline
translates sequences of events back into natural language.
This, however, is a nontrivial task as this module would need
to possess the ability to ground the abstract noun and verb
classes we define in natural language in a way that is human
readable and still maintains story context.

In addition, it is not clear how to define effective accep-
tance criteria, or how to define more complex acceptance
criteria. In our case study, we examine one of the simpler
cases where we are only concerned with generating stories
that have high-level plot structure similar to existing stories
within a genre, as defined by the event summaries learned by
S-RNN. We have not explored how to construct more com-
plex acceptance criteria that could give authors more control
over how a story should unfold.

Conclusions

In this work, we propose a MCMC sampling technique
for guided, open story generation using naturally occurring
story corpora. We show how MCMC sampling, when com-
bined with a set of criteria for accepting or rejecting sampled
stories, can create a probability distribution over words that
can be used to generate stories that adhere to the acceptance
criteria. We also perform a case study using this technique to
generate stories based on movie plots taken from Wikipedia.
This case study shows that our technique was successful at
generating stories that adhered to our provided acceptance
criteria about 85% of the time.

While this work is still in a preliminary stage, we feel that
it shows great potential for story generation. This is because
it is able to easily take advantage of large, naturally occur-
ring story corpora while also being able to provide authors a
way to direct the story as they see fit.

Acknowledgements

This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No.
W911NF-15-C-0246 and by the National Science Founda-
tion under Grant No. IIS-1350339.

196

References

Cavazza, M.; Charles, F.; and Mead, S. 2002. Planning
characters’ behaviour in interactive storytelling. Journal of
Visualization and Computer Animation 13:121–131.
Chib, S., and Greenberg, E. 1995. Understanding the
metropolis-hastings algorithm. The american statistician
49(4):327–335.
Dehn, N. 1981. Story generation after TALE-SPIN. In Pro-
ceedings of the 7th International Joint Conference on Artifi-
cial Intelligence, 16–18.
Farrell, R., and Ware, S. 2016. Fast and diverse narra-
tive planning through novelty pruning. In Proceedings of
the 12th AAAI International Conference on Artificial Intelli-
gence and Interactive Digital Entertainment.
Gervás, P.; Dı́az-Agudo, B.; Peinado, F.; and Hervás, R.
2005. Story plot generation based on CBR. Journal of
Knowledge-Based Systems 18(4–5):235–242.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Khalifa, A.; Barros, G. A.; and Togelius, J. 2017. Deeptin-
gle. arXiv preprint arXiv:1705.03557.
Lebowitz, M. 1987. Planning stories. In Proceedings of
the 9th Annual Conference of the Cognitive Science Society,
234–242.
Li, B., and Riedl, M. O. 2010. An offline planning approach
to game plotline adaptation. In Proceedings of the 6th Con-
ference on Artificial Intelligence for Interactive Digital En-
tertainment Conference, 45–50.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. O. 2013.
Story generation with crowdsourced plot graphs. In Pro-
ceedings of the 27th AAAI Conference on Artificial Intelli-
gence.
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S. J.; and McClosky, D. 2014. The Stanford CoreNLP nat-
ural language processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations, 55–60.
Martens, C.; Ferreira, J.; Bosser, A.-G.; and Cavazza, M.
2014. Generative story worlds as linear logic programs. In
Proceedings of the 2014 AAAI Workshop on Intelligent Nar-
rative Technologies.
Martin, L. J.; Ammanabrolu, P.; Hancock, W.; Singh, S.;
Harrison, B.; and Riedl, M. O. 2017. Event representa-
tions for automated story generation with deep neural nets.
In arXiv:1706.01331.
Meehan, J. R. 1977. TALE-SPIN: An interactive program
that writes stories. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence, 91–98.
Miller, G. A. 1995. WordNet: A lexical database for english.
Communications of the ACM 38(11):39–41.
Pérez y Pérez, R., and Sharples, M. 2001. MEXICA: A
computer model of a cognitive account of creative writing.
Journal of Experimental and Theoretical Artificial Intelli-
gence 13:119–139.
Porteous, J., and Cavazza, M. 2009. Controlling narrative
generation with planning trajectories: the role of constraints.

In Proceedings of the 2nd International Conference on Inter-
active Digital Storytelling, 234–245.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research 39:217–268.
Roemmele, M. 2016. Writing stories with help from recur-
rent neural networks. In AAAI, 4311–4342.
Schuler, K. K. 2005. Verbnet: A broad-coverage, compre-
hensive verb lexicon.
Sharples, M. 1999. How We Write: Writing as Creative
Design. London: Routledge.
Sigurdsson, G. A.; Chen, X.; and Gupta, A. 2017. Learning
visual storylines with skipping recurrent neural networks.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Swanson, R., and Gordon, A. 2012. Say Anything: Using
textual case-based reasoning to enable open-domain inter-
active storytelling. ACM Transactions on Interactive Intelli-
gent Systems 2(3):16:1–16:35.
Turner, S. R. 1994. The Creative Process: A Computer
Model of Storytelling. Hillsdale, NJ: Lawrence Erlbaum As-
sociates.

197

